The NMR Newsletter - Notice

Phase Inversion at Null Excitation

Artifacts Caused by Automatic DC Correction

Calibration of 195Pt Chemical Shift Scale on a UNITY 500 Spectrometer

Big Sensitivity Gains in Dipolar Recoupling Measurements Through Pulsed Spin Locking

Selective Saturation of Antisymmetric States (SSAS)

Fluorinated Ethers

Bruker MAS Controller Available

Proton NMR of Nanocrystalline PdH$_x$

The 43rd ENC, Asilomar Conference Grounds, April 14 – 19, 2002

A monthly collection of informal private letters from laboratories involved with NMR spectroscopy. Information contained herein is solely for the use of the reader. Quotation of material from the Newsletter is not permitted, except by direct arrangement with the author of the letter, in which case the material quoted must be referred to as a “Private Communication”. Results, findings, and opinions appearing in the Newsletter are solely the responsibility of the author(s). Reference to The NMR Newsletter or its previous names in the open literature is strictly forbidden.

These restrictions and policies apply equally to both the actual Newsletter recipient/participants and to all others who are allowed access to the Newsletter issues. Strict adherence to this policy is considered essential to the successful continuation of the Newsletter as an informal medium for the exchange of NMR-related information.
FREQUENCY GENERATORS, AGILE, QUIET, FAST

FREQUENCY SYNTHESIZERS

- PTS 040
 - Frequency Range: 1-40 MHz
 - Resolution: 1 Hz to 100 KHz
 - Switching Time: 1-20μs
 - Phase-Continuous Switching: optional
 - Rack-Mount Cabinet Dim.: 5¾" H x 19" W
 - Remote-Control Interface: BCD (std) or GPIB (opt)
 - Price Example: $5,330.00

- PTS 120
 - Frequency Range: 90-120 MHz
 - Resolution: 1 Hz to 100 KHz
 - Switching Time: 1-20μs
 - Phase-Continuous Switching: optional
 - Rack-Mount Cabinet Dim.: 5¾" H x 19" W
 - Remote-Control Interface: BCD (std) or GPIB (opt)
 - Price Example: $5,330.00

- PTS 160
 - Frequency Range: 1-160 MHz
 - Resolution: 1 Hz to 100 KHz
 - Switching Time: 1-20μs
 - Phase-Continuous Switching: optional
 - Rack-Mount Cabinet Dim.: 5¼" H x 19" W
 - Remote-Control Interface: BCD (std) or GPIB (opt)
 - Price Example: $6,495.00

- PTS 250
 - Frequency Range: 1-250 MHz
 - Resolution: 1 Hz to 100 KHz
 - Switching Time: 1-20μs
 - Phase-Continuous Switching: optional
 - Rack-Mount Cabinet Dim.: 5¼" H x 19" W
 - Remote-Control Interface: BCD (std) or GPIB (opt)
 - Price Example: $7,440.00

- PTS 310
 - Frequency Range: 1-310 MHz
 - Resolution: 1 Hz
 - Switching Time: 1-20μs
 - Phase-Continuous Switching: standard
 - Rack-Mount Cabinet Dim.: 3½" H x 19" W
 - Remote-Control Interface: BCD (std) or GPIB (opt)
 - Price Example: $8,720.00

- PTS 500
 - Frequency Range: 1-500 MHz
 - Resolution: 1 Hz to 100 KHz
 - Switching Time: 1-20μs
 - Phase-Continuous Switching: optional
 - Rack-Mount Cabinet Dim.: 5¾" H x 19" W
 - Remote-Control Interface: BCD (std) or GPIB (opt)
 - Price Example: $9,625.00

- PTS 620
 - Frequency Range: 1-620 MHz
 - Resolution: 1 Hz to 100 KHz
 - Switching Time: 1-20μs
 - Phase-Continuous Switching: optional
 - Rack-Mount Cabinet Dim.: 5¼" H x 19" W
 - Remote-Control Interface: BCD (std) or GPIB (opt)
 - Price Example: $11,830.00

- PTS 1000
 - Frequency Range: 0.1-1000 MHz
 - Resolution: 1 Hz to 100 KHz
 - Switching Time: 5-10μs
 - Phase-Continuous Switching: optional
 - Rack-Mount Cabinet Dim.: 5¾" H x 19" W
 - Remote-Control Interface: BCD (std) or GPIB (opt)
 - Price Example: $14,850.00

- PTS 3200
 - Frequency Range: 1-3200 MHz
 - Resolution: 1 Hz
 - Switching Time: 1-20μs
 - Phase-Continuous Switching: optional
 - Rack-Mount Cabinet Dim.: 5¼" H x 19" W
 - Remote-Control Interface: BCD (std) or GPIB (opt)
 - Price Example: $18,360.00

- PTS x10
 - Frequency Range: 10 MHz decade
 - Resolution: 1 Hz
 - Switching Time: 1-5μs
 - Phase-Continuous Switching: standard
 - Rack-Mount Cabinet Dim.: 3½" H x 19" W
 - Remote-Control Interface: BCD (std) or GPIB (opt)
 - Price Example: $2,000.00

- PTS D310
 - Frequency Range: two channels 1-310 MHz
 - Resolution: 1 Hz
 - Switching Time: 1-20μs
 - Phase-Continuous Switching: standard
 - Rack-Mount Cabinet Dim.: 5¾" H x 19" W
 - Remote-Control Interface: BCD (std) or GPIB (opt)
 - Price Example: $13,240.00

- PTS D620
 - Frequency Range: two channels 1-620 MHz
 - Resolution: 1 Hz
 - Switching Time: 1-20 μs
 - Phase-Continuous Switching: standard
 - Rack-Mount Cabinet Dim.: 5¾" H x 19" W
 - Remote-Control Interface: BCD (std) or GPIB (opt)
 - Price Example: $18,360.00

1 Bench cabinets are 17" wide.
2 Prices are U.S. only and include Manual and Remote (BCD) Control; PTS 3200 Digital Front Panel.

PTS CAN SUPPLY OEM-TYPE SYNTHESIZERS FOR ALL LEADING NMR-SPECTROMETER PRODUCTS.

PROGRAMMED TEST SOURCES, INC.

P.O. Box 517, 9 Beaver Brook Rd., Littleton, MA 01460 Tel: 978-486-3400 Fax: 978-486-4495

http://www.programmedtest.com • e-mail: sales@programmedtest.com
Author Index

<table>
<thead>
<tr>
<th>Author</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baker, D. B.</td>
<td>25</td>
</tr>
<tr>
<td>Brey, W. S.</td>
<td>21</td>
</tr>
<tr>
<td>Conradi, M. S.</td>
<td>25</td>
</tr>
<tr>
<td>ENC</td>
<td>26</td>
</tr>
<tr>
<td>Garroway, A. N.</td>
<td>22</td>
</tr>
<tr>
<td>Gorenstein, D. G.</td>
<td>5</td>
</tr>
<tr>
<td>Kumar, A.</td>
<td>18</td>
</tr>
<tr>
<td>Mahesh, T. S.</td>
<td>18</td>
</tr>
<tr>
<td>Pelczer, I.</td>
<td>23</td>
</tr>
<tr>
<td>Ramanathan, K. V.</td>
<td>18</td>
</tr>
<tr>
<td>Reichert, D.</td>
<td>9</td>
</tr>
<tr>
<td>Ribeiro, A. A.</td>
<td>13</td>
</tr>
<tr>
<td>Salazar, I.</td>
<td>25</td>
</tr>
<tr>
<td>Shapiro, B. L.</td>
<td>2</td>
</tr>
<tr>
<td>Sinha, N.</td>
<td>18</td>
</tr>
<tr>
<td>Sjoberg, J. A.</td>
<td>26</td>
</tr>
<tr>
<td>Tycko, R.</td>
<td>17</td>
</tr>
<tr>
<td>Zhang, S.</td>
<td>5</td>
</tr>
</tbody>
</table>

Advertiser Index

- **Advanced Chemistry Development, Inc.** on page 11
- **Avanti Polar Lipids, Inc.** on page 15
- **Bruker Instruments, Inc.** on page 7
- **Isotec Inc.** on page 19

Sponsors of THE NMR NEWSLETTER

- Abbott Laboratories
- Advanced Chemistry Development, Inc.
- Aldrich Chemical Company, Inc.
- Amgen, Inc.
- AMT
- Anasazi Instruments, Inc.
- AstraZeneca
- Avanti Polar Lipids, Inc.
- Bruker Instruments, Inc.
- Bristol-Myers Squibb Company
- Cambridge Isotope Laboratories
- Cryomag Services, Inc.
- The Dow Chemical Company
- E. I. du Pont de Nemours & Company
- Isotec, Inc.
- JEOL (U.S.A.) Inc., Analytical Instruments Division
- The Lilly Research Laboratories, Eli Lilly & Company
- Merck Research Laboratories
- Nalorac Corporation
- Pharmacia Corporation
- Programmed Test Sources, Inc.
- Tecmag
- Unilever Research
- Union Carbide Corporation
- Varian, Inc.

Forthcoming NMR Meetings

- **ISMAR 2001**, Note change of meeting location: Convention Center of Rodos Palace Hotel in Rhodes, Greece. **August 19-24, 2001**; See http://www.tau.ac.il/chemistry/ISMAR.html.

- **14th European Symposium on Polymer Spectroscopy, Dreikönigskirche – Haus der Kirche, Dresden, Germany**, **September 2-5, 2001**. Contact: Institut für Polymerforschung Dresden c. V., ESOPS 14, Postfach 12 04 11, 01005 Dresden, Germany. Tel: +49 351 4658-282; Fax: +49 351-4658-214; E-mail: esp@ipfdd.de.

- **Fourth International Conference on Molecular Structural Biology, Vienna, Austria**, **September 5-9, 2001**. Contact: Dr. Andreas Kungl, Austrian Chemical Society (GÖCH), Biochemical Subgroup, c/o Institute of Pharmaceutical Chemistry, University of Graz, Universitätsplatz 1, A-8010 Graz, Austria. Tel: +43 316 380 5373; Fax: +43 316 382541; E-mail: andreas.kungl@kfunigraz.ac.at.

- **2nd Alpine Conference on Solid-State NMR, Chamonix-Mont Blanc, France**, **September 9-13, 2001**. Contact: Alpine Conference Secretariat, Laboratoire STIM, Ecole Normale Supérieure de Lyon, 46 allée d’Italie, 69364 Lyon Cedex 7, France; alpine.SSNMR@ens-lyon.fr; Tel. +33-(0)4 72-72-84-86 / 83 84; Fax. +33 (0)4 72 72 84 83; http://www.ens-lyon.fr/STIM/alpineweb/html.

- **EMBO Practical Course: Structure Determination of Biological Macromolecules by Solution NMR, EMBL, Meyerhofstr. 1, D-69117 Heidelberg, Germany**, **September 12-19, 2001**; Email: nilges@EMBL-Heidelberg.de; sattler@EMBL-Heidelberg.de; http://www.embl-heidelberg.de/nmr/sattler/embo.

- **EMBO Workshop on NMR and Molecular Recognition, Ravello, Italy**, **October 3-7, 2001**; Contact: Dr. T. Tancredi: tiancredi@icmib.na.cnr.it, or Dr. P. Amodeo: pamodeo@icmib.na.cnr.it. Information: http://www3.icmib.na.cnr.it/ravello2001.

- **43rd ENC (Experimental NMR Conference), Asilomar Conference Center, Pacific Grove, CA**, **April 14-19, 2002**. Contact: ENC: 505-989-4573; 505-989-1073 fax; enc@enc-conference.org; http://www.enc-conference.org; See Newsletter 515, 26.

- **XXth International Conference on Magnetic Resonance in Biological Systems, Toronto, Ont.,** **August 25-30, 2002**. For further information check www.uso.ca/chem/icmrbs/, or contact: mgordon@julian.uso.ca.

Additional listings of meetings, etc., are invited.
After 43 years of consecutive monthly publication, the time has come to close down *The NMR Newsletter*. Accordingly, the September 2001 issue will be the last.

I must admit that I'd like to see a good full issue for the Newsletter's swan song, and I hope that several of our loyal readers will avail themselves of this final chance to tell colleagues of their latest research efforts via the Newsletter pages. The deadline date for receipt of material for issue No. 516 is August 27. As always, the nature of the contributions is wide open; whatever you wish, including graphics of any kind (including cartoons).

Barry Shapiro
Palo Alto, California
Simplicity

The LOCATOR has replaced your spectrometer logbook

VnmrJ’s new and intuitive information retrieval system, the LOCATOR, has driven the spectrometer logbook to join the antique typewriter and old fountain pen as a recording collectible.

Customized Solution
Now you have the luxury of finding your data in a way that makes sense to you. VnmrJ’s LOCATOR helps you organize your data the way you want it, ready for instant access. Forget confusing file systems and complicated directory structures.

Query Capabilities
Where is that COSY you ran last Wednesday? You didn’t process it, and it was run on the product of the reaction that you described on page 10/14703 of your lab notebook. You can’t remember the filename you gave it, but you need it now. The LOCATOR will find it immediately.

So, find out for yourself how easy it is to simplify your workday and improve your productivity with VnmrJ’s LOCATOR. For more information, please call 800-356-4437, or check out our Web site at www.varianinc.com.
View and select objects, based on attributes you determine with Varian's innovative VnmrJ software and its ground-breaking LOCATOR. Unlike a filter, the LOCATOR reorders the list of objects so that you can see things that are "nearly the same." Use the LOCATOR to examine collected data, protocols, pulse sequences, shim sets or any other object on disk without having to remember operating system specific incantations.

VnmrJ's LOCATOR uses a powerful SQL database manager running in the background. It invisibly combs your disk system, cataloging your files, ready to respond immediately to your changing requirements. You interact with the LOCATOR with an intuitive interface developed for your needs and written in Java based technology.
Dear Dr. Shapiro,

In the excitation profile by the composite pulse $90^\circ_x 90^\circ_y 90^\circ_x 90^\circ_y$ (1), phase inversion occurs at each null (λ_1 to λ_4, in the range of $-2 \leq \lambda \leq 2$) as shown in Fig. 1. All the nulls correspond to overall rotations of $\Phi = 2j\pi$ ($j = 0, \pm 1, \pm 2, \ldots$) around certain axes. As a result, the initial magnetization returns to its original position along the z-axis and outputs a null. The phase inversion associated with the null can be revealed by the following analysis.

Assume a differential of the offset $d\Delta$ occurs at a null Δ_k, which introduces differentials of rotation angle $d\Phi$ and axis dN. The unitary rotation operator by the composite pulse can be expressed as

$$U = e^{-i\eta(N+dN)\sigma[\Phi+d\Phi]/2} = e^{-i\eta(N+dN)\sigma(d\Phi/2)}e^{-i\eta(N+dN)\sigma(\phi/2)}$$

$$= e^{-i\eta(N+dN)\sigma(d\Phi/2)} = e^{-i\eta\sigma d\Phi/2}.$$

where $\eta = 1/\sqrt{(N+dN)(N+dN)}$ is a normalization factor. In Eq. [1], the operator $e^{-i\eta(N+dN)\sigma(\phi/2)}$, which corresponds to a $2j\pi$ rotation, is dropped and the high order term including $dNd\Phi$ is dropped in the last step. The excitation near null is then determined by an infinitesimal rotation,

$$\sigma = e^{-iN\sigma(d\Phi/2)}\sigma_z e^{iN\sigma(d\Phi/2)} = \sigma_z + i(d\Phi/2)[\sigma_z, N\sigma]$$

$$= \sigma_z + d\Phi(N_y\sigma_x - N_x\sigma_y).$$

In Eq. [2], the overall rotation axis $N \neq N_z$ is assumed, which is, however, not necessary in a more elaborate calculation if the rotation angle $\Phi \neq 2j\pi$.
The transverse magnetizations can be derived by,

\[
M_x(\Delta + d\Delta) \approx \text{Tr}\{\sigma_x \sigma\} \approx N_y d\Phi = N_y \frac{d\Phi}{d\Delta} \Delta ,
\]

\[3a\]

\[
M_y(\Delta + d\Delta) \approx \text{Tr}\{\sigma_x \sigma\} \approx -N_x d\Phi = -N_x \frac{d\Phi}{d\Delta} \Delta .
\]

\[3b\]

When \(d\Delta\) varies from a small negative to a small positive both \(M_x\) and \(M_y\) change sign if \(\frac{d\Phi}{d\Delta}\bigg|_{\Delta_k} \neq 0\). Consequently, a phase inversion occurs at null since the phase is defined as the angle between the vector of the magnetization, \(M_x + iM_y\), and the x-axis in the rotating frame.

![Diagram](image)

Fig. 1. The excitation profile by the composite pulse \(90^\circ_x, 90^\circ_y, 90^\circ_x, 90^\circ_y\)(top) and the corresponding phase (bottom). A phase inversion, denoted by \(\lambda_1\) to \(\lambda_4\), occurs at each null.

Best regards,

Shanmin Zhang

David. G. Gorenstein

Reference:
The 800 US² combines Bruker’s innovative magnet technologies: UltraShield™ and UltraStabilized™. This new magnet system guarantees the ultimate performance demonstrated by its predecessors, including:

- Excellent field homogeneity and stability
- Minimal evaporation rates for sub-cooled magnets
- Small stray fields, and
- Efficient screening against external field perturbations

The 800 US² will reduce siting costs and provide more flexibility for future upgrades by reducing stray fields. This will enable customers to:

- **Utilize smaller labs** - the 800 US² will actually fit in a smaller footprint than a non-shielded 500.

- **Avoid the impact of stray fields** above and below the magnet.

- **Site multiple systems in the same lab** - up to four (4) Avance 800 US² can fit in the same space allocated to one 800 non-shielded system.
TECHNICAL SPECIFICATIONS

Superconducting Magnet

<table>
<thead>
<tr>
<th>Specification</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>NMR frequency (^H)</td>
<td>800 MHz</td>
</tr>
<tr>
<td>Magnetic field strength</td>
<td>18.8 Tesla</td>
</tr>
<tr>
<td>Field stability</td>
<td>< 8 Hz/hr</td>
</tr>
<tr>
<td>Superconducting shim coils</td>
<td>z, x, y, z^2, xz, xy, x^2-y^2</td>
</tr>
<tr>
<td>5G Line from the magnetic center</td>
<td></td>
</tr>
<tr>
<td>radial distance</td>
<td>< 2.8 m</td>
</tr>
<tr>
<td>axial distance</td>
<td>< 3.9 m</td>
</tr>
</tbody>
</table>

800 MHz / 54 mm
UltraShield-UltraStabilized (US^2™) NMR Magnet System

Cryostat

<table>
<thead>
<tr>
<th>Specification</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dewar type</td>
<td>UltraStabilized, sub-cooled</td>
</tr>
<tr>
<td>Room temperature bore</td>
<td>54 mm</td>
</tr>
<tr>
<td>Cryostat height (with magnet stand)</td>
<td>3865 mm</td>
</tr>
<tr>
<td>Cryostat diameter</td>
<td>1688 mm</td>
</tr>
<tr>
<td>He evaporation rate</td>
<td>< 250 ml/hr</td>
</tr>
<tr>
<td>He refill volume</td>
<td>~ 350 liters</td>
</tr>
<tr>
<td>Helium hold time</td>
<td>> 60 days</td>
</tr>
<tr>
<td>N_2 evaporation rate</td>
<td>< 700 ml/hr</td>
</tr>
<tr>
<td>N_2 refill volume</td>
<td>~ 400 liters</td>
</tr>
<tr>
<td>N_2 hold time</td>
<td>> 21 days</td>
</tr>
<tr>
<td>Magnet stand</td>
<td>included</td>
</tr>
<tr>
<td>Vibration dampers</td>
<td>included</td>
</tr>
<tr>
<td>Weight (including cryogens)</td>
<td>~ 7000 kg</td>
</tr>
<tr>
<td>Minimum ceiling height</td>
<td>< 5300 mm</td>
</tr>
</tbody>
</table>

Dimensions in millimeters unless stated otherwise

USA
BRUKER INSTRUMENTS, INC.
15 Fortune Dr., Manning Park
Billerica, MA 01821
Tel. (978) 667-9580
Fax. (978) 667-3954
E-mail: magnetics@bruker.com
www.bruker.com

GERMANY
BRUKER ANALYTIK, GmbH
Wikingerstrasse 13
D-76189 Karlsruhe 21
Tel. (49) 721 9528 731
Fax. (49) 721 9528 773
E-mail: magnetics@bruker.de
www.bruker.de
Artifacts caused by automatic DC correction

Dear Barry,

as we all know, NMR processing software provides a wide variety of parameters and options for the correction of experimental artifacts and for cosmetic operations on the NMR spectrum. Some of them has to applied explicitly by separate commands, however, there are some that are invoked automatically and might cause surprising effects.

A problem that sometimes happens to beginners is associated with the correction of the DC offset. The latter is imposed on the signal by the receiver electronics and shows up as a feature at the center of the frequency spectrum ("transmitter spike", "center glitch"). The normally applied CYCLOPS phase cycle is supposed to take care of the suppression of this feature by proper adding/subtracting signals with inverted pulse phases, however, in a number of occasion the artifact shows up nevertheless. As an example, we show a static solid-state spectrum of the synthetic polymer Polybutylmethacrylate. Fig. (a) displays the spectral expansion covering the overlapping powder patterns of the aliphatic lines between 0 and 100ppm and the carboxylic resonance between 110 and 270ppm. Since the latter is free from spectral overlap, the tensor elements of the chemical-shift tensor can easily be extracted from it.

Closer inspection reveals that there is a annoying spectral feature at 140ppm, see Fig (b). This frequency appears to be the center of the spectrum and thus, the artifact is identified as the "transmitter spike". The question came up why after completion of many CYCLOPS cycles, the latter did not took care of it. We identified the automatic correction of the DC offset by the NMR software as the source of the problem. The programmers might not trust the CYCLOPS (or had other good reasons) and thus the software performs a subtraction of the time-domain DC from the time-domain signal prior to each FT. It is done by assuming that the last points in the fid are just noise and the average over a couple of them is supposed to be the DC level of the signal which is subsequently subtracted from each fid data point. Now, if the acquisition time was by mistake chosen a bit too short such that the fid was cut off, this procedure leads to
an erroneous DC level that is imposed in the fid and the "transmitter spike" reappears in the spectrum. An easy solution is to switch off the DC correction prior to FT which in our case could be done by providing an additional argument for the FT command, see Fig. (c).

This example might serve to demonstrate that the automatic and hidden execution of data manipulations by software not only hampers the insight into the meaning and working of this operations but also might cause faulty results.

Please credit this contribution to Horst Schneider.

Best Regards,
ACD/PNMR
Predictor & DB

31P NMR Spectra

Look up structures and predict spectra from the same interface!

Displays the predicted structure, interactively related to assigned shifts & coupling constants.

ACD/PNMR is the most complete package available today for scientists working in the areas of agrochemicals, surfactants or other areas of chemistry requiring the application of 31P NMR.

Each entry in the ACD/PNMR database includes original literature references, molecular formula, molecular weight, assigned peaks and IUPAC name. You can search on any of these fields. Search capabilities also include structure and substructure, and searching by exact value or range of values for chemical shifts and coupling constants.

NEW - The substructure search has been improved and significantly speeded up.

NEW - Search for several structure fragments simultaneously.

NEW - Output your predicted results, or print a database record in PDF format.

NEW - The internal ACD/PNMR database contains more entries (over 19,000 records) and represents more classes of structure types than previously. This means over 24,000 chemical shifts and 9,000 coupling constants. Over 100 entries are from references published in 2000.

NEW - The Tile View of database entries can be done after a search, thereby assisting comparison and summary. The displayed data fields, the font, and the zoom level can be chosen after right-clicking to access the pop-up menu.

Phosphorus database window summarizes, and can be searched by chemical shifts, coupling constants, references, formula and IUPAC name.

ACD/FNMR
Predictor & DB

19F NMR Spectra

If it's not in the database, our prediction is the next best thing.

Fluorine database window showing chemical shifts, coupling constants & references.

ALSO AVAILABLE! ACD/FNMR contains the same interface, with full search and prediction capabilities and the latest improvements for speed and ease of use. Its database comprises 19F NMR spectra for over 11,400 structures with over 25,200 chemical shifts and 15,300 coupling constants.
ACD/CNMR Predictor

13C NMR Spectra

Train the system with your own data and don’t be limited by a restricted set!

- Draw a molecule and predict the 13C spectrum at the touch of a button.
- ACD/CNMR enables you to:
 - Calculate spin-spin interactions, simulate off-resonance, DEPT, and J-modulation.
 - Show predicted chemical shifts as a table or on the chemical structure.
 - NEW: The accuracy of prediction is even greater. The DAT file has been expanded by over 20% and now contains over 1,500,000 experimental chemical shifts.
 - Algorithm includes cases such as diastereotopic carbon atoms.
 - Modify or delete shifts in the internal DAT file.
 - NEW: File Associations for CNMR-specific file extensions can be set through a menu command.

Database Capability
- Create your own database of structures and observed chemical shifts and coupling constants.
- Enter 13C-X coupling constants, where X = 19F, 31P, etc.
- Enter unassigned shifts or automatically transfer the peak table into the CNMR database from ACD/NMR Manager.
- Self-training system will access user-defined databases for improved prediction accuracy of compounds important to your lab.
- Export database entries as printed reports, PDF file, or JCAMP.
- Data Forms Manager streamlines and standardizes record entries as you build your own databases.
- Include multiple-user databases in system training.
- Search database by chemical shift, coupling constant, structure and substructure, formula, MW, or any one of the data fields you specify when designing your own database.
- NEW: Several entries in the database can be seen in a single window, with the new Tile View feature.

ALSO AVAILABLE! The ACD/CNMR DB Add-on lets you access the internal ACD database containing even more entries: 120,000 structure records. This is an increase in size of over 20% from the previous release. This database now contains about 1,500,000 chemical shift values and 60,000 coupling constants. Each entry contains original references, MW, IUPAC name, solvent, coupling constants (if available), and details of NMR experiment (technique, frequency, temperature), all of which can be viewed and printed out.

Advanced Chemistry Development

90 Adelaide St. West, Suite 702
Toronto, ON, Canada M5H 3V9
T: 416 368·3435
F: 416 368·5596
Toll Free: 1 800 304·3988
info@acdlabs.com
www.acdlabs.com
Re: Calibration of 195Pt Chemical Shift Scale on a Unity 500 Spectrometer

Dear Barry,

For a collaborative project on platinum complexes with Mark Grinstaff (Duke, Chemistry), we recently calibrated the 195Pt chemical shift scale on our Unity 500 spectrometer. From the sensitivity viewpoint, recording of 195Pt NMR spectra (195Pt nucleus: spin 1/2, 33.7% natural abundance, relative sensitivity 9.94×10^{-3}) is similar to recording of 13C NMR spectra (13C nucleus: spin 1/2, 1.1% natural abundance, relative sensitivity 1.59×10^{-2}) (1). However, while 13C NMR shifts span a 220 ppm window, 195Pt NMR shifts span a 5500 ppm range (1), which is about 0.59 MHz on a 500 MHz spectrometer. Since the Unity console has a maximum spectral window of 100 kHz, the platinum NMR spectra were recorded in small spectral windows while systematically tracking spectral frequencies and offsets.

The figure shows our resultant calibrated 195Pt shift scale. The nine NMR spectra were recorded with an 80 kHz spectral width (SW), a 45° pulse flip angle (8 usec), a 1.5 sec repeat time, and digitized into 120320 complex points to give a digital resolution of 1.33 Hz/pt. A tuned K and E bandpass filter was connected in series to the 5mm Varian probe, and a 60-130 MHz 114A cable was used in the low band preamp. The 195Pt chemical shift scale (1) was calibrated by setting the low field 195Pt signal of a 2M sample of Na$_2$PtCl$_6$ in d$_2$O to 0 ppm (exact resonance at 107.468767 MHz on the 500 MHz system). The transmitter was adjusted upfield to -300 ppm (107.436526 MHz) and a spectrum (spectrum 1) recorded between 70 ppm and -670 ppm (80 kHz SW = 740 ppm). The transmitter frequency was systematically decreased in 600 ppm steps to cover the full 0.59 MHz 195Pt range with the most upfield spectrum corresponding to the transmitter at -5100 ppm (106.920675 MHz) and spectral range covering -4730 to -5470 ppm. Note that these are explicit frequencies and we have bypassed Varian’s “tn” transmitter nucleus macro which had a more limited range. An experimental spectrum of 1M Na$_2$PtCl$_4$ in d$_2$O (spectrum 3) obtained over the 80 kHz SW with transmitter at the calibrated -1500 ppm position showed 195Pt resonance at -1620 ppm [1] and added confidence to the achievement of a systematic calibration of the 195Pt chemical shift scale.

Regards,

Anthony A. Ribeiro (A2R)

107.436526 MHz = -300ppm

107.372044 MHz = -900ppm

107.307653 MHz = -1500ppm

107.243082 MHz = -2100ppm

107.178600 MHz = -2700ppm

107.114119 MHz = -3300ppm

107.049638 MHz = -3900ppm

106.985156 MHz = -4500ppm

106.920675 MHz = -5100ppm
Determination of Water Soluble Protein Structure

Tjandra & Bax recently developed a new nuclear magnetic resonance (NMR) technique that gently aligns protein molecules in a bath of liquid crystals, allowing researchers to determine how each bond between neighboring atoms is oriented with respect to the rest of the molecule. By compiling all such orientations between atoms, a precise map of the protein can be derived. In aqueous solution, just above room temperature, the lipids switch from a gel to a Liquid Crystal (LC) phase, where they form disc-shaped particles, often referred to as bicelles, with diameters of several hundred angstroms and thicknesses of ~40Å. The lipids are diamagnetic, and, as a result, the bicelles orient with their normal orthogonal to the magnetic field. However, the lifetimes and temperature ranges of orientation for these samples are critically dependent on sample composition and experimental conditions. Losonczi & Prestegard demonstrated that doping dilute bicelle solutions with small amounts of charged amphiphiles substantially improves the stability and degree of alignment, as well as extends the temperature range of orientation for these systems.

Bicelle Preparation

Buffer:
An effective and convenient method for preparing bicelles makes use of a buffer solution containing 10 mM phosphate buffer, pH 6.6, 0.15 mM sodium azide, 93% H₂O (HPLC-grade), 7% D₂O (99.9%). Below, this solution will simply be referred to as buffer.

Bicelle Formation:
DMPC/DHPC stock solutions containing a total of 15% w/v (150 mg lipid/ml) are prepared as follows: Add buffer to the lyophilized lipid mixture - 50 mg lipid mixture/280 µg buffer or 200 mg lipid mixture/1130 µg buffer. Let the mixtures hydrate at room temperature (18-22°C) for several hours.

Lipid mixtures with a "q" of 2.8 - 3.0, the hydration is complete in 2 - 3 hours. Lipid mixtures with a "q" of 3.25 - 3.5 require 24 hours for complete hydration. Accelerated hydration (one hour) may be effected by heating any mixture to 40°C for 10 minutes and cycling to 18°C twice, then briefly vortexing.

Protein-Bicelle Mix: Two volumes of protein solution are added to one volume of bicelle solution.

<table>
<thead>
<tr>
<th>Product</th>
<th>M.W.</th>
<th>25mg</th>
<th>200mg</th>
<th>500mg</th>
<th>1 gram</th>
<th>Catalog Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>DHPC (6:0 PC)</td>
<td>453.51</td>
<td>$21</td>
<td>$40</td>
<td>$75</td>
<td>$120</td>
<td>850305</td>
</tr>
<tr>
<td>DMPC (14:0 PC)</td>
<td>677.94</td>
<td>$10</td>
<td>$20</td>
<td>$40</td>
<td>$60</td>
<td>850345</td>
</tr>
</tbody>
</table>

Also in stock at Avanti: DMPC•Na 14:0, DMPS•Na 14:0, DMTAP•Cl 14:0, 6:0 PC, 12:0 PC, 13:0 PC, 14:0 PC, 14:0 PC•Na, 14:0 Ethyl•DMPC•Cl, DDAB•Br 18:0, and for your convenience: Pre-mixed Lipids DMPC:DHPC - 2:8:1, 3:0:1, 3:25:1, 3:5:1.

HPLC on all these lipids show the outstanding purity, which has made the Avanti name a synonym for excellence.
A phospholipid chelate complexed with ytterbium (DMPE-DTPA:Yb\(^{3+}\)) is shown to be readily incorporated into a model membrane system, which may then be aligned in a magnetic field such that the average bilayer normal lies along the field. This so-called positively ordered smectic phase, whose lipids consist of less than 1% DMPE-DTPA:Yb\(^{3+}\), is ideally suited to structural studies of membrane proteins by solid-state NMR, low-angle diffraction, and spectroscopic techniques that require oriented samples. The chelate, 1,2-dimyristoyl-sn-glycero-3-phosphoethanolamine diethylenetriaminepentaacetic acid, which strongly binds the lanthanide ions and serves to orient the membrane in a magnetic field, prevents direct lanthanide-protein interactions and significantly reduces paramagnetic shifts and line broadening. Similar low-spin lanthanide chelates may have applications in field-ordered solution NMR studies of water-soluble proteins and in the design of new magnetically aligned liquid crystalline phases.

The addition of lanthanides (Tm\(^{3+}\), Yb\(^{3+}\), Er\(^{3+}\), or Eu\(^{3+}\)) to a solution of long-chain phospholipids such as DMPC and short-chain phospholipids such as DHPC is known to result in a bilayer phase in which the average bilayer normal aligns parallel to an applied magnetic field. Lanthanide-doped bilayers have enormous potential for the study of membrane proteins by solid-state NMR, low-angle diffraction, and a variety of optical spectroscopic techniques.

The equimolar complex, consisting of the lipid-like, amphiphilic chelating agent DTPA-18 and Tm\(^{3+}\), is shown by deuterium NMR to be useful in aligning bicelle-like model membranes, consisting of DMPC and DHPC. As shown previously, in the absence of chelate, the lanthanide ions bind loosely with the lipid phosphate groups and confer the membrane with a sufficient positive magnetic anisotropy to result in parallel alignment. Two conclusions could be drawn from this study: 1. The addition of Tm\(^{3+}\) to the bicelle system is consistent with a conformational change in the surface associated peptide, and this effect is shown to be reversed by addition of the chelate, and 2. The paramagnetic shifts are shown to be significantly reduced by addition of chelate.

Product	**M.W.**	**1mg**	**5mg**	**10mg**	**25mg**	**Catalog Number**
DMPE-DTPA | 1096.35 | $10 | $45 | $80 | $175 | 790535

Deuterium labeled lipids now available including DMPE, DPPC, DSPC, DIIPC, Lyso PC, Diacyl PE, Diacyl PS, Diacyl PA, Diacyl PG.

Mixed Acyl Lipids. Also 2\(^{13}\)-PC available in 14:0, 16:0, and 18:0.

HPLC on all these lipids show the outstanding purity, which has made the Avanti name a synonym for excellence.

Phone 800-227-0651 (205-663-2494 International) or Email info@avantilipids.com for a current catalog, specify CD or printed edition - or download a copy from avantilipids.com
Big Sensitivity Gains in Dipolar Recoupling Measurements Through Pulsed Spin Locking

Dear Barry:

Structural measurements on specifically isotopically labeled compounds in solid state NMR typically require 0.1 to 1.0 micromoles of labeled molecules and many hours or days of signal averaging at room temperature and fields in the 7-14 T range. Often, especially in the case of biological macromolecules, sufficient sample quantities are not available. We have found that the sensitivity of many structural measurements, including dipolar recoupling measurements to determine internuclear distances and tensor correlation measurements to determine torsion angles, can be enhanced quite substantially by detecting NMR signals under pulsed spin locking conditions. In the case of 13C magic angle spinning experiments, pulsed spin locking can effectively narrow the NMR lines of interest from 100-600 Hz to 10-20 Hz, producing signal-to-noise enhancements of 2 to 8. One example is shown below. More examples and experimental details will be given in a forthcoming paper.

Sincerely yours,

Dr. Robert Tycko

e-mail: tycko@helix.nih.gov

13C-detected 13C/15N rotational echo double resonance (REDOR) data obtained with pulsed spin lock detection (top) and conventional FID detection (bottom) for the peptide Ac-KLVFFAE-NH$_2$ in the form of amyloid fibrils (see Biochemistry, vol. 39, p. 13748, 2000). All other data acquisition conditions are identical. Undephased (S_0) and REDOR difference (ΔS) peaks are plotted alternately, with the dephasing period increasing from 6.8 ms to 77.2 ms in 6.4 ms increments. Peaks are plotted in spectral widths of 400 Hz (top) and 4000 Hz (bottom).
Selective Saturation of Antisymmetric States (SSAS)

Dear Berry,

The proton NMR spectrum of CH$_3$CN oriented in a liquid crystal matrix is shown in Fig. 1(a). The 3:6:3 intensity pattern arises from a 3:4:3 pattern from transitions of symmetric eigenstates and two transitions of unit intensity from antisymmetric eigenstates overlapped with the central transition (Fig. 1(b)). To treat the 4 symmetric eigenstates of this spin system as a 2 qubit system, we needed to saturate away the antisymmetric domains. This proved easy, since the matrix element of the I_X operator connecting states 2 and 3 is twice as large as that connecting states 5 and 6, and 7 and 8. That is,

$$<2|I_X|3> = 2 <5|I_X|6> = 2 <7|I_X|8>$$

(1)

Therefore the nutation angle for a given r.f., selectively applied at the central transition frequency, is twice for symmetric domain compared to the antisymmetric domains. If the flip angle is adjusted for π for symmetric domain, the r.f. acts as a $\pi/2$ pulse for both transitions of antisymmetric domains. Following such an r.f. pulse, a gradient pulse destroys the magnetization of antisymmetric domains. A subsequent π pulse at central transition frequency restores the equilibrium magnetization of the symmetric domain Fig.1(c). The resulting spectrum (measured by small flip angle pulse) has intensity pattern 3:4:3 (Fig.1(d)). We have used oriented CH$_3$CN and 13CH$_3$CN as 2 and 3 qubit systems after SSAS and implemented several logic gates. This work has just been submitted for publication.

Anil Kumar
K.V.Ramanathan
T.S.Mahesh
Neeraj Sinha

p.s.: Please credit this contribution to the account of Prof. C.L.Khetrapal.
ISOTEC REFERENCE STANDARDS

NMR REFERENCE STANDARDS

<table>
<thead>
<tr>
<th>CAT NO</th>
<th>PRODUCT DESCRIPTION</th>
<th>APPLICATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>T82-00103</td>
<td>1% Chloroform in Acetone-d₆(99.9%)</td>
<td>¹H Line Shape</td>
</tr>
<tr>
<td>T82-00114</td>
<td>5% Chloroform in Acetone-d₆(99.9%)</td>
<td>¹H Line Shape</td>
</tr>
<tr>
<td>T82-00100</td>
<td>1% 1,2-Dichlorobenzene in Acetone-d₆(99.9%)</td>
<td>¹H Resolution</td>
</tr>
<tr>
<td>T82-00093</td>
<td>0.1% Ethylbenzene, 0.01% TMS in Chloroform-d(99.8%)</td>
<td>¹H Sensitivity</td>
</tr>
<tr>
<td>T82-00147</td>
<td>0.1mg/ml GdCl₃, 0.1% DSS, 1% H₂O in D₂O(99.9%)</td>
<td>Autotest, PW90, PFG</td>
</tr>
<tr>
<td>T82-00102</td>
<td>0.0485M Triphenylphosphate in Chloroform-d(99.8%)</td>
<td>³¹P Sensitivity</td>
</tr>
<tr>
<td>T82-00101</td>
<td>0.05% Trifluorotoluene in Benzene-d₆(99.6%)</td>
<td>¹⁹F Sensitivity</td>
</tr>
<tr>
<td>T82-00148</td>
<td>40% p-Dioxane in Benzene-d₆(99.6%)</td>
<td>¹³C Sensitivity/Resolution</td>
</tr>
<tr>
<td>T82-00154</td>
<td>40% p-Dioxane, 5mg/ml Cr(acac)₃ in Benzene-d₆(99.6%)</td>
<td>¹³C PW90/Sensitivity</td>
</tr>
<tr>
<td>T82-09911</td>
<td>1% 3-Heptanone in Chloroform-d(99.8%)</td>
<td>¹H App Test, Lineshape</td>
</tr>
<tr>
<td>T80-00007</td>
<td>12% TMS in Chloroform</td>
<td>APT & DEPT Demonstration</td>
</tr>
<tr>
<td>T82-09912</td>
<td>30% Menthol in Chloroform-d(99.8%)</td>
<td>¹⁵N Sensitivity</td>
</tr>
<tr>
<td>T82-09913</td>
<td>90% Formamide in DMSO-d₆(99.9%)</td>
<td></td>
</tr>
</tbody>
</table>

...plus many more. Call to request information on these or other NMR Reference Standards.

All NMR Reference Standards listed above are packaged in 5mm x 8" tubes.

ISOTEC NMR Reference Standards are also available in 3mm, 8mm, and 10mm tubes.

NANO PROBE REFERENCE STANDARDS

<table>
<thead>
<tr>
<th>CAT NO</th>
<th>PRODUCT DESCRIPTION</th>
<th>APPLICATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>T82-00142</td>
<td>0.1% Ethylbenzene, 0.01% TMS in Chloroform-d(99.8%)</td>
<td>¹H Sensitivity</td>
</tr>
<tr>
<td>T82-00143</td>
<td>0.1mg/ml GdCl₃ in D₂O(99.9%)</td>
<td>¹H PW90, PFG</td>
</tr>
<tr>
<td>T82-00144</td>
<td>40% p-Dioxane, 5mg/ml Cr(acac)₃ in Benzene-d₆(99.6%)</td>
<td>¹³C PW90</td>
</tr>
<tr>
<td>T82-00141</td>
<td>40% p-Dioxane in Benzene-d₆(99.6%)</td>
<td>¹³C Sensitivity/Resolution</td>
</tr>
<tr>
<td>T81-00029</td>
<td>0.2% Cr(acac)₃, 2% Benzamide-¹⁵N(99%) in DMSO-d₆ "100%"(99.96%)</td>
<td>¹⁵N Sensitivity</td>
</tr>
<tr>
<td>T81-00028</td>
<td>1% ¹³CH₃(99%)/1% Trimethylphosphate, 0.2% Cr(acac)₃ in CDCl₃(99.8%)</td>
<td>³¹P Sensitivity</td>
</tr>
<tr>
<td>T82-00145</td>
<td>5% Chloroform in Acetone-d₆(99.9%)</td>
<td>¹H Lineshape</td>
</tr>
</tbody>
</table>

...plus many more. Call to request information on these or other Nano Probe Reference Standards.

All Nano Probe Reference Standards listed above are packaged in 4mm nano tubes.

ISOTEC INC.
A MEMBER OF THE SIGMA-ALDRICH FAMILY

3858 Benner Road • Miamisburg, OH 45342 USA
E-mail: isosales@isotec.com • Internet: www.isotec.com
800-448-9760 • 937-859-1808 • Fax 937-859-4878

We are Committed to the Success of our Customers, Employees and Shareholders through Leadership in Life Sciences, High Technology and Service.
Biomolecular NMR Products

From the leader in labeled compound synthesis

TECHNICAL KNOWLEDGE

Isotec's knowledge and expertise allow the production of thousands of labeled products and the flexibility to meet any customers' needs. With 10 Ph.D. Chemists and 30 Masters- and Bachelors-level Chemists and Technicians, Isotec is fully committed to the development of innovative ways to synthesize both new and existing compounds.

THE ISOTEC ADVANTAGE

Isotec continues to be the trusted source for reliable stable isotope labeled products for Biomolecular NMR Studies. Isotec offers a comprehensive line of 13C, 15N, and/or D labeled compounds for metabolic or rational drug design research. Isotec’s pioneering synthesis knowledge enables us to synthesize compounds that help you reach your goals. Our list of products is extensive and includes the following:

<table>
<thead>
<tr>
<th>Amino Acids</th>
<th>Glucose</th>
<th>Buffers & Reagents</th>
<th>Growth Media</th>
</tr>
</thead>
<tbody>
<tr>
<td>Amino Acids: 13C, 15N</td>
<td>D-Glucose-13C$_6$</td>
<td>Acetic Acid-d_4</td>
<td></td>
</tr>
<tr>
<td>Specifically labelled Amino Acids</td>
<td>D-Glucose-13C$_6$,C-d_7</td>
<td>DL-1,4-Dithiothreitol-d_{10}</td>
<td></td>
</tr>
<tr>
<td>N-t-Boc and F-MOC Protected Amino Acids</td>
<td>D-Glucose-$C-d_7$</td>
<td>Dodecylphosphocholine-d_{38}</td>
<td></td>
</tr>
<tr>
<td>Ammonium Salts</td>
<td>Buffers & Reagents</td>
<td>Ethylenediaminetetraacetic Acid-d_{12} (EDTA)</td>
<td></td>
</tr>
<tr>
<td>Ammonium-15N Chloride</td>
<td>Acetic Acid-d_4</td>
<td>Glycine-d_5</td>
<td></td>
</tr>
<tr>
<td>Ammonium-15N$_2$ Sulfate</td>
<td>DL-1,4-Dithiothreitol-d_{10}</td>
<td>Sodium Dodecyl-d_{25} Sulfate</td>
<td></td>
</tr>
</tbody>
</table>

Growth Media

<table>
<thead>
<tr>
<th>ISOGRO™ 13C Powder</th>
<th>NMR Solvents</th>
</tr>
</thead>
<tbody>
<tr>
<td>ISOGRO™ 13C, 15N Powder</td>
<td>Custom Synthesis</td>
</tr>
<tr>
<td>ISOGRO™ 13C, 15N, D Powder</td>
<td></td>
</tr>
<tr>
<td>ISOGRO™ -Powder (unlabelled)</td>
<td></td>
</tr>
</tbody>
</table>

Deoxyribonucleotides

Ribonucleotides

Contact Isotec for availability

Call our Sales Office at 1-800-448-9760 or 1-937-859-1808 to request more information about how Isotec can meet your labeled Biomolecular NMR Products needs.
Fluorinated Ethers

July 20, 2001
(received 7/27/2001)

Dr. B. L. Shapiro
The NMR Newsletter
966 Elsinore Court
Palo Alto, CA 94303

Dear Barry:

We have been continuing our exploration of the NMR characteristics of interesting fluorocarbon derivatives, and recently we have been compiling results on a number of fluoroethers, of which samples have been provided to us by several different laboratories.

The simplest molecules are the derivatives of dimethyl ether in which various numbers of fluorines and chlorines are substituted for hydrogens. In hexafluoro-, pentafluoro- and tetrafluoro- derivatives, the one-bond C-F coupling values are usually 260-265 Hz, while in one -OCF2Cl group, J is as large as 294 Hz. Across the oxygen, the three-bond C-F couplings are about 5 Hz, and the four-bond F-F J values are 4 to 8 Hz. 2J (H-F) values in -OCHF2 groups are 69-75 Hz, but in groups with only one F, such as -OCHFCI and -OCH2F, the value is substantially less, 53-59 Hz.

In saturated, longer-chain fluoro-ethers, with CF2 groups on each side of the oxygen, the value of 4J(F-F) across the oxygen is larger, 10-15 Hz. This coupling constant is reduced by substitution of a hydrogen for one of the four fluorines and increased by substitution of an iodine atom.

Trifluorovinyl ethers offer some interesting spin-spin coupling results. Within the vinyl group itself, the trans F-F coupling is always about 110-120 Hz, so that it is quite characteristic. The geminal and cis vicinal couplings vary over a wide range, depending on what is attached to the oxygen. Some interesting aspects of F-F indirect coupling are illustrated by the following molecule:

The coupling from (a) to (c) is 7.8 Hz, rather small. Fluorines (c) are coupled by 6 Hz to both (d) and (f), but not coupled to (e), the atom trans to the fluoroalkoxy
group, a pattern which seems to be followed by all the molecules in which a trifluorovinyl group is on one side of the oxygen and a fluorine-containing entity is on the other side. This effect might be explained by a combination of "through-space" coupling with the geometry established for trifluoromethyl vinyl ethers by other spectroscopic techniques in which the methyl group is directed almost perpendicular to the plane of the vinyloxy group. Also interesting in this respect is a coupling of 0.7 Hz from (a) to (d).

If we examine the molecule perfluorovinyllethyl ether, in which there is an ethyl instead of an n-propyl group, the $-OCF_2-$ fluorines are again coupled by 6 Hz to two of the three fluorines in the vinyl group, but the CF_3 fluorines show no resolvable coupling. However, in $CF_3CH_2OCF=CF_2$, the CF_3 fluorines are coupled by about 2 Hz to the CF fluorine. These and other effects, which we are in process of compiling for a manuscript to be submitted for publication, lead to interesting questions about the relative contributions to J of bonding and geometrical variations, which the theoreticians will perhaps soon be able to explain.

Yours sincerely,

Wallace S. Brey

25 July 2001

Bruker MAS Controller Available

Dear Barry,

We have an old Bruker pneumatic MAS controller (model MAS-DB, MSL vintage) and a transformer (120 V to 220 V) for running Bruker equipment. Present condition is unknown, though these were used within the past 5 years. They are available free to good home, preference given to educational institutions.

Sincerely,

Al

A. N. Garroway, Head
Polymer Diagnostics Section
Code 6122
Chemistry Division

GARROWAY@NRL.NAVY.MIL
tel (202) 767-2323
The NMR Newsletter - Book Reviews

Book Review Editor: István Pelczer, Dept. of Chemistry, Princeton University, Princeton, NJ 08544

In Vivo Carbon-13 NMR
Biological Magnetic Resonance Vol. 15
(Edited by Lawrence J. Berliner and Pierre-Marie Robitaille)
ISBN 0-306-45886-1, pp. 238, $125.00

NMR in Microbiology. Theory and Applications
(Edited by Jean-Noël Barbotin and Jean-Charles Portais)
ISBN 1-898486-21-2, pp. 496, $169.99

NMR has been used to study metabolic processes and profile metabolism for decades, but – in this era of genomics, post-genomics, proteomics, and so on – metabonomics is another new term we can make friends with now. As it was presented, for example, recently in Princeton by Jeremy Nicholson and his group (Imperial College, London, UK) (www.genomics.princeton.edu/html/events.htm), this field is undergoing a rapid and truly impressive metamorphosis, and is becoming a revolutionary chapter in NMR applications. It is due, in large part, to amazing technical developments over the last few years, which have increased the sensitivity of NMR by magnitudes, and have introduced hyphenated and HR-MAS NMR techniques as very competitive tools. And, I believe, this is only the overture.

Publications are mushrooming on this subject, and academic research groups and pharmaceutical companies alike rush to benefit from this expanding field. Hence it is particularly timely and pleasant to have these two books available.

Interdisciplinary developments often show the character of intercultural engagement, if I may say so, when the participants have to learn each other’s language. In both books there is multitude of introductions of one or the other technique, such as basics of NMR spectroscopy, mathematical analysis of metabolic flux, etc., sometimes in partial repeat. This, however, does not take away from the great value of the subject and presentations overall.

In the fifteenth volume of the great series "Biological Magnetic Resonance," in vivo 13C NMR studies are discussed. Such experiments can be done either on tissues, or on perfused organs, or using imaging methods. The book presents seven chapters on these subjects, extended with the list of titles of the previous volumes, and three pages of index.

The first chapter is a well-structured extensive introduction to tracer theory, various structural and kinetic models, which also gives an overview of how 13C NMR spectroscopy is applied in this field. Various experimental protocols for following metabolic pathways and kinetics are discussed, including condensation reactions by analysis of multiplets due to 13C-13C couplings. Technical aspects of 13C NMR spectroscopy, isotope labelling, signal detection, and enrichment schemes and sensitivity considerations are also presented. Theory and mathematical analysis of metabolic flux are further discussed in chapters 3 and 4.

continued
There are two chapters which deal with particular metabolic cycles. In Chapter 2 metabolic pathways which intersect in the citric acid cycle, are probed by NMR, while Chapter 7 presents results on the tricarboxylic acid cycle. Chapter 5 tells about pathological studies on perfused heart using both dynamic \(^{13}\)P and \(^{13}\)C NMR. Metabolic processes and functional behaviour of the brain can also be studied by imaging methods following \(^{13}\)C-labelled compounds, either using surface coils or resonant cavity coils are presented in Chapter 6.

The more recent book, “NMR in Microbiology” gives a great overview of various NMR techniques applied in this field, mostly by authors from Europe. It is extended by a couple of pages listing web-sites of some of these authors and others, such as educational sites, data banks, etc., and also with four pages of index.

The book is organized into five sections. The first one, in six chapters, is about NMR methods and microbiology. Basic NMR theory, practical aspects of NMR spectroscopy and microbiology, \(^{13}\)C labelling and mathematical methods for analysis are discussed. The closing chapter of this section is about two-dimensional NMR by Jack Skalicki and Thomas Szyperski (who also contributed to another chapter about future perspectives).

The section “NMR and Macromolecules” opens with an elegant presentation from Uhrin and Brisson about solving the structure of microbial polysaccharides using (selective) 1D, and multidimensional NMR methods. It is followed by a chapter, which discusses NMR studies of the bacterial sugar transport system, determining 3D structure, and complexation behaviour of relevant proteins. An interesting chapter on protein hydration and in situ water activity in enzyme reactions is next, followed by a contribution which talks about in situ monitoring of enzyme activity by \(^{1}\)H, \(^{31}\)P, and \(^{13}\)C NMR. The last chapter in this section is an overview of solid state NMR studies of biological membranes, membrane peptides and proteins.

A relatively short section (three chapters) presents investigations of microbial metabolic pathways in both bacteria and yeast, which is then followed by an extensive section of case studies. This is a very impressive collection of applications, such as studies of polymer biosynthesis, sugar transport and metabolism, NMR on bacterial biofilms and model systems, pattern analysis in spectra of stable isotope-labelled metabolites, biodegradation of xenobiotics using \(^{19}\)F, \(^{1}\)H, \(^{13}\)C, and \(^{2}\)H (and also applying LC-NMR), and solid state NMR of soils. The book closes with a section of two chapters discussing general perspectives of integration of genomic and physiological data by metabolic engineering, and future perspectives.

This book is trying to cover a very big area of methods and applications, and present it to a diverse audience – and does so with great success. Perhaps the typography is something to complain about; the font is small for the text, while the titles are too large, and the appearance of the figures is uneven.

I recommend both books to a wide audience, including many, who have never used NMR before, as we are at the doorstep of a significant expansion of utilizing this spectroscopic method in life sciences. The recent, and anticipated improvements in hardware (cryo-probes, and also very high fields), technology (hyphenated applications), and data analysis open a new chapter both in academic and industrial research, as well as in direct medical applications. I am sure we shall see many similarly good books on this subject in the near future.

István Pelczer
Department of Chemistry
Princeton University
ipelczer@princeton.edu
Dr. Shapiro,

Mea culpa.

We noticed a report that nanocrystalline palladium displays two well-resolved proton NMR lines after exposure to hydrogen gas. The nanocrystalline material has a grain size of about 10 nm, so about half the Pd atoms are within 1-2 nm of the surface. Thus the authors attributed the two lines to H atoms in the interior of the nanocrystallites and in the grain boundary regions. This assignment is problematic - H atoms jumping 10^7-10^8 hops per second (as indicated by narrow lines and T_1) would be expected to exchange between the interior and grain boundary regions on the 10^{-3} second NMR timescale, leading to a single merged line. Possibly the authors were seduced: spectroscopic separation of these two kinds of sites is a big goal in nanocrystalline research.

For this reason, we re-examined the proton NMR. We hydrided some nano-Pd by H_2 gas exposure at 1 atm to yield the uppermost spectrum (A) with two NMR lines about 30 ppm apart. Upon evacuation, both lines disappear. Subsequent exposure to H_2 yields only the single resonance shown as B; the single resonance is nearly at the frequency (30 ppm up-frequency Knight shift, relative to water) of H in coarse-grain Pd metal. Further cycles of evacuation and exposure to H_2 gas only yield spectrum B.

We found a way to retrieve the two-line spectrum, similar to A. The material yielding spectrum B was evacuated and then exposed to O_2 at 1 atm for 18 hours. Then, after a 1 hour evacuation, exposure to H_2 at 1 atm returned spectrum A. Exposure to air (instead of O_2) works, too. Here's what is happening: the O_2 bonds to the high surface area of nano-Pd. Despite Pd's reputation as a non-oxidizing metal, the O_2 evidently bonds sufficiently that it is not removed by subsequent evacuation. When H_2 is next introduced, the catalytic Pd surface splits the H_2 into H atoms. Some H dissolve into the Pd and some extract the oxygen from the Pd surface to form H_2O. The H_2O is a surface species (i.e., it does not freeze out even at 200 K). Evacuation removes the dissolved H and the H_2O, so that subsequent hydriding cycles find no oxygen, so no second proton NMR line occurs. We note that the H atoms bond oxygen more tightly than does the Pd surface, but the Pd surface binds the H_2O molecules more weakly than the oxygen atoms.

If there is a lesson here, it involves the careless handling of the nano-Pd ("Pd is not an oxidizing metal" - wrong). And the lesson would be easier to take had we not been the authors of the incorrect assignment of the two peaks. Mea maxima culpa. Maybe, on the bright side, there is a message here about testing out the simple explanations before invoking exotic phenomena.

D. Blane Baker Ivar Salazar Mark S. Conradi

July 23, 2001

The NMR Newsletter
Attn: Bernard L. Shapiro
966 Elsinore Court
Palo Alto, CA 94303

Please announce the following meeting in your calendar of events.

Date	**Event**
April 14 – 19, 2002	The 43rd ENC on Experimental Nuclear Magnetic Resonance Conference
	Asilomar Conference Center
	Pacific Grove, California
	Contact: ENC, 1201 Don Diego Avenue
	Santa Fe, New Mexico 87505 (USA)
	Telephone: (505) 989-4573
	Fax: (505) 989-1073
	E-mail: enc@enc-conference.org
	Web page: http://www.enc-conference.org

Thank you.

JUDITH A. SJOBERG
Conference Manager
Address all Newsletter correspondence to:

Dr. B. L. Shapiro
The NMR Newsletter
966 Elsinore Court
Palo Alto, CA 94303.
650-493-5971* - Please call
only between 8:00 am and
10:00 pm, Pacific Coast time.

Deadline Dates

No. 516 (Sept.) 27 Aug. 2001

* Fax: 650-493-1348, at any hour. Do not use fax for technical contributions to the Newsletter, for the received fax quality is very inadequate.

* E-mail: shapiro@nmrnewsletter.com
JEOL Can Give You the Data You Need From Your Desktop PC or MAC

The Eclipse+ NMR Spectrometer can be operated anywhere there is a computer on the local network. The Single Window Automation pictured above can be used with a single mouse click to select the sample from the auto-sample changer, gradient shim on any probe, run the selected experiment, and plot the data on any network postscript printer. Need more data, click another button and the Eclipse+ is off to do your work - and you have not left your office. Contact us at nmr@jeol.com or visit or web site at www.jeol.com.