UCSF: a VAST Difference from Nebraska Gmeiner, W. H. 2

Activation Energies for Molecular Motions in Asphalts .. Netzel, D. A., and Miknis, F. P. 5

SLF vs. PISEMA ... Gan, Z. 9

Practical Results with NMRSAMS, a CASE Tool ... Hilton, B. D. 13

Chart Paper Wanted .. Joseph-Nathan, P. 14

Shift Assignment Errors in the Published Literature - the Impact on Computational Shift Prediction ... Williams, A. J. 17

7th "Advances in NMR Applications" Symposium - Final Agenda Matamoroz, A./Nalorac Corp. 22

Book Review ("Methods for Structure Elucidation" by Batta, Kövér and Szántay) Berger, S. 28

A Reliable and Quiet Air Compressor That Can Handle the NMR and Other Air Requirements ... Commodari, F., and Donahue, E. J. 31

A monthly collection of informal private letters from laboratories involved with NMR spectroscopy. Information contained herein is solely for the use of the reader. Quotation of material from the Newsletter is not permitted, except by direct arrangement with the author of the letter, in which case the material quoted must be referred to as a "Private Communication". Results, findings, and opinions appearing in the Newsletter are solely the responsibility of the author(s). Reference to The NMR Newsletter or its previous names in the open literature is strictly forbidden.

These restrictions and policies apply equally to both the actual Newsletter recipient/participants and to all others who are allowed access to the Newsletter issues. Strict adherence to this policy is considered essential to the successful continuation of the Newsletter as an informal medium for the exchange of NMR-related information.
Frequency Generators, Agile, Quiet, Fast

Accurate, stable frequencies on command, µs switching. For NMR, Surveillance, ATE, Laser, Fluorescence. Low noise/jitter. Adapting to your needs with options.

Frequence Synthesizers

Frequency Range	Resolution	Switching Time	Phase-Continuous Switching	Rack-Mount Cabinet Dim.	Remote-Control Interface	Price Example
PTS 040	0.1-40 MHz	.1 Hz to 100 KHz	1-20 µs	5 1/2" H x 19" W	BCD (std) or GPIB (opt)	$5,330.00
	optional		optional			$5,330.00 (1 Hz resol., OCXO freq. std.)
PTS 120	90-120 MHz	.1 Hz to 100 KHz	1-20 µs	5 1/2" H x 19" W	BCD (std) or GPIB (opt)	$6,495.00
	optional		optional			$6,495.00 (1 Hz resol., OCXO freq. std.)
PTS 160	0.1-160 MHz	.1 Hz to 100 KHz	1-20 µs	5 1/2" H x 19" W	BCD (std) or GPIB (opt)	$7,440.00
	optional		optional			$7,440.00 (1 Hz resol., OCXO freq. std.)
PTS 250	1-250 MHz	.1 Hz to 100 KHz	1-20 µs	5 1/2" H x 19" W	BCD (std) or GPIB (opt)	$8,720.00
	optional		optional			$8,720.00 (1 Hz resol., OCXO freq. std.)
Type 1						1 Hz resol., OCXO: $6,425.00
PTS 310	1-310 MHz	1 Hz	1-20 µs	3 1/2" H x 19" W	BCD (std) or GPIB (opt)	$9,625.00
Type 2						$9,625.00 (1 Hz resol., OCXO freq. std.)
PTS 500	1-500 MHz	.1 Hz to 100 KHz	1-20 µs	5 1/2" H x 19" W	BCD (std) or GPIB (opt)	$11,830.00
	optional		optional			$11,830.00 (1 Hz resol., OCXO freq. std.)
PTS 620	1-620 MHz	.1 Hz to 100 KHz	1-20 µs	5 1/2" H x 19" W	BCD (std) or GPIB (opt)	$14,850.00
	optional		optional			$14,850.00 (1 Hz resol., OCXO freq. std.)
PTS 1000	0.1-1000 MHz	.1 Hz to 100 KHz	5-10 µs	5 1/2" H x 19" W	BCD (std) or GPIB (opt)	$16,200.00
	optional		optional			$16,200.00 (1 Hz resol., OCXO freq. std.)
PTS 3200	1-3200 MHz	1 Hz	1-20 µs	5 1/2" H x 19" W	BCD (std) or GPIB (opt)	$18,600.00
	optional		optional			$18,600.00 (1 Hz resol., OCXO freq. std.)
PTS x10	user specified 10 MHz decade	1 Hz	1-5 µs	3 1/2" H x 19" W	BCD (std) or GPIB (opt)	$20,000.00
	specified or 10 MHz decade					$20,000.00 (1 Hz resol., OCXO freq. std.)
PTS D310	two channels 1-310 MHz	.1 Hz	1-20 µs	5 1/2" H x 19" W	BCD (std) or GPIB (opt)	$21,200.00
	optional		optional			$21,200.00 (1 Hz resol., OCXO freq. std.)
PTS D620	two channels 1-620 MHz	.1 Hz to 2 Hz	1-20 µs	5 1/2" H x 19" W	BCD (std) or GPIB (opt)	$23,200.00
	optional		optional			$23,200.00 (1 Hz resol., OCXO freq. std.)

1 Bench cabinets are 17" wide.
2 Prices are U.S. only and include Manual and Remote (BCD) Control; PTS 3200 Digital Front Panel.

PTS CAN SUPPLY OEM-TYPE SYNTHESIZERS FOR ALL LEADING NMR-SPECTROMETER PRODUCTS.

PROGRAMMED TEST SOURCES, INC.
P.O. Box 517, 9 Beaver Brook Rd., Littleton, MA 01460 Tel: 978-486-3400 Fax: 978-486-4495
http://www.programmedtest.com • e-mail: sales@programmedtest.com
THE NMR NEWSLETTER NO. 485, FEBRUARY 1999

AUTHOR INDEX

Commodari, F. 31 Hilton, B. D. 13 Miknis, F. P. 5 Voorhees, R. 25
Donahue, E. J. 31 Joseph-Nathan, P. 14 Nalorac Corp. 22 Williams, A. J. ... 17

THE NMR NEWSLETTER NO. 485, FEBRUARY 1999

ADVERTISER INDEX

Advanced Chemistry Development, Inc. 19 JEOL outside back cover
Aldrich Chemical Company, Inc. 23 Oxford Instruments, Ltd. 11
AMT ... 7 Programmed Test Sources, Inc. inside front cover
Bruker Instruments, Inc. 15 Varian NMR Instruments 3
Cambridge Isotope Laboratories, Inc. 29 Voltronics Corporation 27
Cryomag Services, Inc. 33

SPONSORS OF THE NMR NEWSLETTER

Abbott Laboratories
Aldrich Chemical Company, Inc.
AMT
Amgen, Inc.
Anasazi Instruments, Inc.
Astra AB
Bruker Instruments, Inc.
Cambridge Isotope Laboratories
Cryomag Services, Inc.
The Dow Chemical Company
E. I. du Pont de Nemours & Company
Hewlett-Packard Company
Isotec, Inc.
JEOL (U.S.A.) Inc., Analytical Instruments Division
The Lilly Research Laboratories, Eli Lilly & Company
Merck Research Laboratories
Nalorac Corporation
Oxford Instruments
Pharmacia & Upjohn, Inc.
Programmed Test Sources, Inc.
SINTEF Unimed MR Center, Trondheim, Norway
Tecmag
Unilever Research
Union Carbide Corporation
Varian NMR Instruments
Zeneca Inc.

FORTHCOMING NMR MEETINGS

7th Annual "Advances in NMR Applications" Symposium, Omni Rosen Hotel, Orlando, Florida, February 28, 1999; Contact: Annette Matamoroz at the Nalorac Corp.; 510-229-3501; annette.matamoroz@nalorac.com; See Newsletter 485, 22.

40th ENC (Experimental NMR Conference), Clarion Plaza Hotel, Orlando, Florida, February 28 - March 5, 1999, immediately preceding Pittcon Orlando; Contact: ENC, 1201 Don Diego Avenue, Santa Fe, NM 87505; (505) 989-4573; Fax: (505) 989-1073; Email: enc@enc-conference.org.

Pittcon '99, Orlando, FL, March 7-12, 1999 (50th year celebration of the Pittsburgh Conference on Analytical Chemistry and Applied Spectroscopy.) Contact: The Pittsburgh Conference, Dept. CFP, 300 Penn Center Blvd., Suite 332, Pittsburgh, PA 15235-5503; 412-825-3220; Fax: 412-825-3224; e-mail: pittconinfo@pittcon.org;
Spin Choreography - a symposium in appreciation of Ray Freeman, Cambridge, England, April 8-11, 1999; web site: http://mchsg4.ch.man.ac.uk/mcnmr/RF.html; fax: c/o M.H.Levitt +46-6-8-15 2187; email: mhl@physc.su.se.

Seventh Scientific Meeting and Exhibition of the Intl. Soc. for Magnetic Resonance in Medicine (ISMRM), Philadelphia, PA, May 22 - 28, 1999; Contact: International Society for Magnetic Resonance in Medicine, 2118 Milvia St., Suite 201, Berkeley, CA 94704.
International School of Structural Biology and Magnetic Resonance, 4th Course: Dynamics, Structure and Function of Biological Macromolecules; Erice, Sicily, Italy; May 25-June 5, 1999; Contact: Ms. Robin Holbrook, Stanford Magnetic Resonance Laboratory, Stanford University, Stanford, CA 94305-5055; (650) 723-6270; Fax: (650) 723-2253; Email: rfb@stanford.edu. See Newsletter 483, 8.
Royal Society of Chemistry: 14th International Meeting on NMR Spectroscopy, Edinburgh, Scotland, June 27 - July 3, 1999; Contact: '99NMR14' c/o Mrs. Paula Whelan, The Royal Society of Chemistry, Burlington House, London W1V 0BN, England; +44 0171 440 3316; Email: conferences@rsc.org

SMASH No. 1 (Small Molecules Are Still Hot), Argonne, IL, August 15-18, 1999; Contact: Ms. Karen McCune, (mccune_karen@lilly.com, 317-276-9783) or S. R. Maple (maple_steven_r@lilly.com) or G.E.Martin (gary.e.martin@am.pnu.com) or A. G. Swanson (alistair_swanson@sandwich.pfizer.com. See Newsletter 484, 29

continued on inside back cover
UCSF: A VAST Difference From Nebraska

Dear Barry:

I recently completed a half-year sabbatical at UCSF, amicably hosted by Tom James and his group. Although summer in San Francisco is as chilly as advertised, it was a refreshing change from the heat of Nebraska in the summer. While in the Bay area I made an appointment to visit the Varian applications lab, and they kindly let me in the door even though no new instrument purchase is on the horizon. As one of my focii is on the use of NMR Spectroscopy As A Tool To Investigate the Structural Basis of Anticancer Drugs (reviewed by yours truly in Current Medicinal Chemistry, 1998, 5, 115-135; reprints available) I asked Paul Keifer for a demonstration of the VAST accessory (versatile automated sample transfer). Using VAST and the flow probe, we rapidly screened a number of putative complexes between drugs and nucleic acids. I think this technology is really useful and recommend it to anyone with resources available to invest in drug discovery. As I don’t know when I will have the opportunity of visiting UCSF or the Bay area again, I’d like to thank Tom James and his group for their help and insight, and Paul Keifer for showing me the VAST technology.

Sincerely yours,

William H. Gmeiner, Ph.D.
Associate Professor

P.S. - Thanks for letting me speak at BANG, it was a lot of fun.

Bill:

I had nothing to do with your invitation to talk at the BANG* meeting - Paul Keifer and Gina Miner were the responsible parties. Your talk was very well received - come back again anytime!

*Bay Area Nmr Group.

BL
UNITY INOVA™: Innovation in RF System Design

Only Varian Meets and Exceeds RF Performance Demands

Experience the benefits of excellent RF system design with Varian's UNITY/INOVA NMR spectrometer. Giving you accurate, precisely-timed RF pulses for the most complex pulse sequence, UNITY/INOVA delivers unmatched performance, reliability, and productivity for all applications.

And, only Varian's high precision, linear RF system design, in combination with an accurate and flexible pulse programmer, allows you to transfer pulse sequences from any lab or across Varian systems without modification.

Let Varian expand your experimental capability with our innovative user pulse sequence library, featuring over 150 pulse sequences.

Contact the Varian sales office nearest you for more information on our full line of highest performance NMR spectrometers for all applications.

The advantages are clear:
- Precisely-timed RF pulses
- Accurate RF pulse phase, amplitude, and timing
- Pulse programs that deliver expected results
- Easy complex pulse sequence programming
- Available for all UNITY/INOVA and UNITYplus systems

© Varian Associates
Obtain the Highest Level of NMR Performance in All Applications

UNITY/NOVA's high dynamic range RF transmitters deliver predictable, linear NMR response over a >140 dB power range.

Stable, shaped RF pulses are a hallmark of the UNITY/NOVA linear RF system, which delivers high stability shaped pulses such as these 15 µsec gaussian pulses.

Predictable, complex shaped RF pulses are easily produced with UNITY/NOVA.

Predictable, reproducible, and stable RF pulses at all frequencies and power levels are the hallmark of UNITY/NOVA. Flexible, modular RF allows UNITY/NOVA to be configured for all applications, with easy upgradeability and expansion for future experimental needs.
January 22, 1999
(received 1/29/99)

Dr. B. L. Shapiro
The NMR Newsletter
966 Elsinore Court
Palo Alto, CA 94303

Activation Energies for Molecular Motions in Asphalts

Dear Barry:

Many rheological properties of asphalt depend on the molecular motions of the many different carbon types in the asphalt. From a knowledge of the activation energy for a particular type of molecular motion, it may be possible to use activation energies as an indicator of polar association and/or steric hindrance present in asphalts, and, which in turn, may be used to predict asphalt road performance.

The Arrhenius plots of the aromatic and aliphatic hydrogen relaxation rates, $1/T_1^H$, for three asphalts are shown in Figure 1. The activation energies for aromatic ring motions (6.5 to 8.2 kJ/mole) show a small increase from asphalts AAA-1 to AAM-1. Thus, the aromatic ring motions in asphalt AAA-1 have a lower barrier to motion than asphalt AAB-1, which in turn, have a lower barrier to motion than asphalt AAM-1. This is in agreement with the fact that AAA-1 has both a lower glass-transition temperature and lower number of condensed aromatic rings per average molecule than either AAB-1 and AAM-1, and, thus, has a greater degree of ring motions.

![Arrhenius plots](image)

Figure 1. Arrhenius plots for the spin-lattice relaxation rate for hydrogens in the rotating frame for the aromatic and aliphatic hydrogens in asphalts AAA-1, AAB-1, and AAM-1
The low activation energies measured for the phenyl ring motions in asphalts (6.5 to 8.2 kJ/mole) over a temperature range from 20°C to -45°C compared to phenyl ring motions in polymers suggest some type of rapid rotational motions of the small (3-5 rings) condensed aromatic structure or pendant phenyl exist in the solid state. Conceivably, the observed low activation energies are representative of fast in-plane molecular reorientation of the aromatic molecules in a frozen state because asphalts can be considered to be glass-like at low temperatures with low concentration of aromatic carbons (~30%). However, another explanation for the low activation energies for the motions of the aromatic structure in the solid state is based upon 1H spin-diffusion between the aromatic and aliphatic molecular components in the asphalt. Because of the methyl and ethyl substituents on the phenyl rings 1H spin-transfer of the methyl hydrogens to the hydrogens of the protonated aromatic carbons may be possible. The barrier to methyl rotation for methyl groups attached to an aromatic ring has been reported for o-xylene (5.8 kJ/mole), hemimellitine (6.06 kJ/mole), and isodurene (6.48 kJ/mole). Thus, because of 1H spin-transfer, the activation energies measured for the aromatic components in the asphalts may be directly influenced by the attached methyl group rotation.

The activation energies given in Figure 1 for the motions of aliphatic components in the asphalts over the temperature range from 20 to -45°C are slightly higher than those observed for the aromatic ring motions. The activation energies (8.8 to 9.8 kJ/mole) for the motion of the aliphatic components in asphalts measure the combined average barrier to segmental motions of the methylene carbons and rotational motions of the various types of methyl groups (terminal, branched, and as an alkyl substituent on an aromatic ring). Based on the literature data for the activation energies associated with n-alkanes, the activation energies for the motions of the aliphatic components of the asphalts at temperatures above and below the glass-transition temperature are attributed mainly to methyl rotation. The activation energies for the segmental motion of the methylene carbons may contribute partly to the measured activation energy but can not be differentiated because of 1H spin-diffusion of the methylene hydrogens is controlled by rapid methyl group rotation.

A more detailed discussion of the activation energies for molecular motions in asphalts is given in reference 3.

References

Sincerely,

Dan Netzel

Fran Miknis
Its that time of year again!

Come talk to the leading RF solid state amplifier supplier at the 40th ENC, Clarion Plaza Hotel, Orlando, Florida.

AMT will be located in Salon 17 this year. Salon 17 will be open:

Monday, March 1st through Wednesday, March 3rd.
6:00pm to midnight each night.

by and discuss your amplifier needs with AMT. We look forward to seeing you there.

2570 E. Cerritos Ave., Anaheim, CA 92806 Toll Free: (888) 545-4268 or Fax: (714) 456-0778
SLF vs PISEMA

Dear Dr. Shapiro,

Heteronuclear dipolar coupling of $^{13}\text{C}-^{1}\text{H}$ and $^{15}\text{N}-^{1}\text{H}$ spin pairs directly reflects the orientation of the bond vector. For the measurement of the heteronuclear dipolar coupling, the PISEMA technique introduced by Hu, Ramamoorthy and Opella [J. Magn. Reson. A 109, 270 (1994)] shows great improvement on spectral resolution over the separated-local-field (SLF) experiment (see Figure 1). In this letter, we report that the truncation of weak heteronuclear dipolar coupling to remote protons is the primary cause of this improvement.

In essence, PISEMA is a cross polarization experiment with proton homonuclear decoupling and the Hamiltonian is a sum of the flip-flop terms of the heteronuclear dipolar interaction

$$H_{Si} = sD_{Si}(S_{4z}^I + S_{4z}^J), \quad (s = \sin 54.7^\circ) \quad \text{with all surrounding protons.}$$

The flip-flop Hamiltonians do not commute with each other, $[H_{Si}, H_{Sj}] \neq 0$ for $i \neq j$. Therefore, the weak dipolar coupling from remote protons is truncated because of the presence of the strong coupling term from the directly bonded proton. In the SLF experiment, however, the dipolar Hamiltonian terms $H_{Si} = sD_{Si}2S_{z}^I$ ($s = \cos 54.7^\circ$ for FSLG homonuclear decoupling) commutes with each other $[H_{S\text{p}}, H_{Sj}] = 0$. Each weak dipolar coupling splits the dipolar spectrum and it contributes the linebroadening. Figure 2 shows the numerical simulation of PISEMA and SLF spectra which demonstrates this truncation effect. The
Figure 2. PISEMA (left) and SLF (right) dipolar spectra calculated for a ^{13}C spin coupled to one, two and three protons. The $^{13}\text{C}^{1}\text{H}$ dipolar coupling are 20, 1.5 and 1.0 kHz, respectively.

The addition of weakly coupled protons (1.5 and 1.0 kHz) has nearly no effect to the PISEMA spectrum of the strongly coupled (20 kHz) $^{13}\text{C}^{1}\text{H}$ pair.

The analytical solution of cross polarization with flip-flop Hamiltonian has been solved for simple spin systems: CH, CH$_2$, and fast rotating CH$_3$ group. The PISEMA spectra of more complicated systems have been simulated numerically. These results will be presented in a poster at this year’s ENC in Orlando.

Please credit this contribution to Dr. Nagarajan Murali’s account. Professor David Grant is gratefully acknowledged for providing the methyl-α-D-glucopyranoside single crystal sample.

Best regards,

Zhehong Gan
Center of Interdisciplinary Magnetic Resonance (CIMAR)
National High Magnetic Field Laboratory (NHMFL)
email: gan@magnet.fsu.edu, phone: 850-644-4662, fax: 850-644-1366
800MHz together with a 63mm room temperature bore

Available only from OXFORD

the right technology

If it's proof you are looking for, here are just some of the reasons why Oxford Instruments remains the world's leading supplier for 800MHz NMR magnet systems.

The only manufacturer to offer the significant advantages of a 63mm diameter room temperature bore, providing:

- Intrinsically superior transverse homogeneity
- Greater bore volume to facilitate high power, state-of-the-art NMR probes

The only manufacturer to offer a choice of systems:

- Conventional operation at the standard liquid helium temperature of 4.2 Kelvin
- Pumped (2.2K) operation, from the manufacturers' who developed this technology more than 25 years ago and refined it to produce the most reliable systems available today.

The manufacturers' who provide the most compact system available today, offering:

- Optimum transportability
- Ease of installation
- Minimum operational ceiling height

Engineering excellence available only from Oxford Instruments - setting the pace while others follow...

Oxford Instruments
NMR Instruments
Old Station Way, Eynsham,
Witney, Oxfordshire OX8 1TL, England
Tel: +44 (0)1865 884500 Fax: +44 (0)1865 884501
Specifications for Vertical Bore, High Resolution NMR Magnet Systems

<table>
<thead>
<tr>
<th>NMR Operating Frequency (MHz)</th>
<th>200</th>
<th>300</th>
<th>400</th>
<th>500</th>
</tr>
</thead>
<tbody>
<tr>
<td>Field Strength (Tesla)</td>
<td>4.7</td>
<td>7.0</td>
<td>9.4</td>
<td>11.7</td>
</tr>
<tr>
<td>Nominal Bore Temperature (mm)</td>
<td>54</td>
<td>89</td>
<td>54</td>
<td>150</td>
</tr>
<tr>
<td>Magnet Type</td>
<td>Standard</td>
<td>Standard</td>
<td>Standard</td>
<td>Standard</td>
</tr>
<tr>
<td>Field Stability (Hour)</td>
<td><2</td>
<td><3</td>
<td><3</td>
<td><15</td>
</tr>
<tr>
<td>Axial 5 Gauss Stray Field Contour (Metres)</td>
<td>1.81</td>
<td>2.65</td>
<td>2.15</td>
<td>2.75</td>
</tr>
<tr>
<td>Radial 5 Gauss Stray Field Contour (Metres)</td>
<td>1.42</td>
<td>2.0</td>
<td>1.7</td>
<td>2.2</td>
</tr>
<tr>
<td>Crystal Type</td>
<td>Compact</td>
<td>Compact</td>
<td>Compact</td>
<td>T3</td>
</tr>
<tr>
<td>Minimum Helium Refill Interval (Days)</td>
<td>80</td>
<td>235</td>
<td>209</td>
<td>120</td>
</tr>
<tr>
<td>Helium Refill Volume (Litres)</td>
<td>26</td>
<td>75</td>
<td>68</td>
<td>101</td>
</tr>
<tr>
<td>Year Hold Crystal Option Available</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Minimum Nitrogen Refill Volume (Litres)</td>
<td>32</td>
<td>61</td>
<td>68</td>
<td>135</td>
</tr>
<tr>
<td>Minimum Operational Ceiling Height (Metres)</td>
<td>2.69</td>
<td>2.92</td>
<td>2.92</td>
<td>3.36</td>
</tr>
<tr>
<td>System Weight (kg) Including Cryogen's</td>
<td>120</td>
<td>315</td>
<td>399</td>
<td>400</td>
</tr>
</tbody>
</table>

Room Temperature Shim Specifications

<table>
<thead>
<tr>
<th>Shim Type (Model)</th>
<th>Number of Channels</th>
<th>External Diameter (Cryostat Bore Size)</th>
<th>Internal Diameter (NMR Probe Diameter)</th>
</tr>
</thead>
<tbody>
<tr>
<td>22/35/65</td>
<td>25</td>
<td>54mm</td>
<td>45mm</td>
</tr>
<tr>
<td>18/35/73</td>
<td>18</td>
<td>89mm</td>
<td>73mm</td>
</tr>
<tr>
<td>20/35/73</td>
<td>26</td>
<td>89mm</td>
<td>73mm</td>
</tr>
<tr>
<td>28/35/140</td>
<td>28</td>
<td>51mm</td>
<td>40mm</td>
</tr>
<tr>
<td>40/35/140</td>
<td>40</td>
<td>51mm</td>
<td>40mm</td>
</tr>
<tr>
<td>28/35/145</td>
<td>29</td>
<td>51mm</td>
<td>45mm</td>
</tr>
<tr>
<td>36/35/51</td>
<td>36</td>
<td>63mm</td>
<td>51mm</td>
</tr>
</tbody>
</table>

UK
Oxford Instruments
NMR Instruments,
Old Station Way
Eynsham, Witney,
Oxon, OX8 1TL
England
Tel: +44 (0)1865 884500
Fax: +44 (0)1865 884501
e-mail: info.mrr@oxinst.co.uk

France
Oxford Instruments SA
Parc Club-Orsay
Universite, 27, rue Jean Rostand, 91893 - Orsay Cedex, France
Tel: +33 1 6941 8990
Fax: +33 6941 8680

Germany
Oxford Instruments GmbH
Kreuzaerker Ring 38, Postfach 4509, D-6200 Wiesbaden, Germany
Tel: +49 611 76471
Fax: +49 611 764100

Japan
Oxford Instruments K.K.
Haseman Building, 201106 Tomioka, Tokyo, Japan 135
Tel: +8 3 5245 3261
Fax: +8 3 5245 4472

USA
Oxford Instruments
NMR Instruments,
3120 Hansen Way,
Mi5 D177, Palo Alto, CA 94304-1030, USA
Tel: +1 650 813 9068
Fax: +1 650 613 9069
e-mail: ominrwest@aol.com

Subject: Practical Results with NMRSAMS, a CASE tool

Dear Barry,

After eighteen years at the Frederick Cancer Research & Development Center in Frederick, Maryland I have relocated to G. D. Searle in Skokie, Illinois. This is a change from a government contracting position operating an NMR laboratory as a Center resource to a private pharmaceutical company, where I am working with Roy Bible, Bob Dykstra, Dave Lankin, Pat Finnegan, Elisabeth Hajdu and other heroes of the private sector. This is not just a change in geography and organization; I am also changing from many years with Varian equipment to working primarily with Bruker spectrometers. As a result I am in an unusual position to make comparisons between the two vendors at least as small molecule structure determination goes. I will defer any definite statements however until a later letter since I don’t believe I have given the Bruker approach enough time to “sink in”. I am interested in hearing from other people who have for one reason or another experienced what amounts to a vendor 180 pulse. In the meantime I want to make some comments on my experiences in Frederick with NMRSAMS, a CASE (computer assisted structure elucidation) program. I will start with some general comments.

The idealized goal of a CASE tool is to provide raw data to a program which then cranks out structures consistent with the data, such that the program could be used in combination with an autosampling machine. With sufficient concentrations (not unreasonable in a pharmaceutical company) one could fairly rapidly get 1D proton and carbon and 2D COSY, HMQC and HMBC data, (preferably gradient enhanced but that is not the point here). Though the principle is apparently straightforward I think this goal is not a realistic one. A far more practical approach is to conceive of a “toolbox” which allows rapid correlation of existing data by an interactive procedure. The advantages of the CASE program would not be automation, but rather vastly improved data handling and a much more thorough checking of the structure space when appropriate. The spectroscopist is allowed (maybe required is a better word) to examine the data in detail, but has a much better, faster grasp of the connection between his opinion of a particular data item and the consequences of his decisions in the target structure(s).

My experience with NMRSAMS bears out the value of the latter approach. Over the past year and a half or so working with Dr. Gwen Chmurny at Frederick we adopted the approach of running ALL novel structure problems through NMRSAMS. In not a single instance was the program able to generate a new structure on the first go-round. The central problem was that the sheer amount of data being generated even for small molecules meant that invariably there were cross peaks that were misinterpreted, typographical errors, etc. which prevented an immediate solution. Nevertheless I considered the program invaluable. I took the following approach: in
general we had some idea of the structure, in some cases even a complete target. I would then start the program and begin building a structure atom by atom, in essence creating user defined constraints as I merrily built a likely structure. Since the program immediately reports conflicts in the data set and the particular data leading to the inconsistency I could generally proceed quite rapidly, while examining data in detail as necessary and massaging/fixing the raw data as necessary. Eventually I would arrive at a complete structure, by which time I had by force produced a carefully cleaned up set of NMR data. Then - and only then - I removed my user constructed constraints (the bonds) I had put in to create the structure, and started the structure generation search using only data justified constraints. It is difficult to describe the increase in the confidence in the result I experienced when, as frequently happened, the program produced a unique, or nearly unique result. Or the surprise when it produced an unexpected result completely consistent with the data. I regret not being able to show some results as in general the structures are proprietary.

The program is not perfect by any means. It struggles with aromatic ring systems, for example. Fortunately the experienced human can often see these possibilities and provide a helping hand in the form of user constraints. The point I want to make is not with regard to the value of NMRSAMS vs other CASE tools, but rather that providing experienced spectroscopists with tools that help them control the data that modern 2D NMR produces is very useful, while providing them with black boxes that tend to hide what is going on is pretty much worthless. I am very curious as to other peoples opinions.

Bruce D. Hilton

G. D. Searle

Opinions expressed are my own and not representative of G. D. Searle, the National Cancer Institute, or any other organization.

Please credit this submission to: Robert Dykstra

CENTRO DE INVESTIGACION Y DE ESTUDIOS AVANZADOS DEL I.P.N.

Departamento de Química
Apartado 14-740
México, D.F. 07000

Tel: (525)747-7112
Fax: (525)747-7032
(525)747-7113

HELP REQUEST-PAPER FOR ZETA 8 PLOTTER

Dear Professor Shapiro:

Please be so kind as to include in The NMR Newsletter our HELP REQUEST:

If any reader of the Newsletter knows where to purchase paper for Zeta 8 plotters, please inform to me.

Many thanks in advance

Pedro Joseph-Nathan
pjoseph@nathan.chem.cinvestav.mx
The first 300 MHz NMR you can get really close to.

It's more than just user-friendly.
It's downright people-friendly.
It's also budget-friendly. And results-friendly.
Not to mention throughput-friendly.
And, of course, very sitting-friendly.

Building NMR systems all these years has taught us exactly what you want for NMR today:

- Safer, space-saving magnets (the 5 Gauss field is now inside the 300 UltraShield™ cryostat!)
- Easy-to-use software (NMR SUITE™ now runs under either UNIX or WINDOWS NT!)
- Great performance (the AVANCE™ NMR includes digital filters and electronics)
- And, of course, compact, affordable hardware and accessories you can fit anywhere.

Get all the friendly details... visit www.bruker.com
AVANCE™ — The easy to use NMR spectrometer

You know us for our great hardware, now take a look at our easy-to-use software: Icon-NMR, a fully configurable software package, makes it easy to have what you want at your finger tips.

You decide which experiments are available for users, and how you want the data to look. We give you the tools to make it easy to customize your output and interaction with the machine.

Now the AVANCE spectrometer gives you more choices: Running under UNIX with an SGI computer or under WINDOWS NT with a PC!

It's your choice of operating systems and computers, for complete compatibility within your organization.

We have lots of other products that can improve your operation:

- UltraShield™ magnets with reduced fringe fields, now available up to 700 MHz.
- A full range of sample changers, including the popular NMR SIXPACK™, the new NMR CASE™, the robotics-based 60 and 120 unit carousels. We even have an NMR tube washer for high throughput labs that want to recycle NMR tubes.
- Gradient hardware with a full range of options for high-throughput gradient spectroscopy, gradient shimming, and multidimensional experiments.
- Solids and Imaging accessories for even more applications.
- LC-NMR and direct flow injection probes and sampling accessories give you what you need: great performance, rugged reliability and high throughput.
- 800 MHz systems (installed worldwide) for ultra high field applications.
- Digital filters and electronics: the same electronics that made waves when first introduced, continue to get even better with updated firmware and more compact designs.

For complete details contact your local Bruker sales representative. We'd like to hear from you.

www.bruker.com
Shift Assignment Errors in the Published Literature - the Impact on Computational Shift Prediction

January 6th, 1999
(received 1/22/99)

Dear Barry,

As you are well aware, our NMR shift prediction software has been available for over four years and has been well accepted by the marketplace. To date, we have prediction software and chemical shift assignment databases available for H1, C13, F19 and P31 nuclei. One of the common concerns for anyone considering the implementation of our software is both the quality of our prediction algorithms as well as the quality of the database which was used as the basis of our correlation algorithms and is updated on an ongoing basis with fresh data from the literature. As all NMR spectroscopists will be aware, there are "considerable" misassignment errors in the literature resulting from simple typographical errors, poor interpretation of experimental data and errors which have been carried through the literature when based on an initial poor assignment.

Our quality checking procedures include careful examination of the shift assignments and comparison with those entries already existing within our database. Following entry of the data into our database and two stages of typographical error checking we will then look for inconsistencies across the compiled database. In this way we have identified many thousands of poor assignments. Where necessary we will work with our collaborators to obtain fresh experimental data in order to clear up confusions.

One example of a substructure specific error which we have unearthed as a part of our database quality checking is shown below. We have noticed there have been a number of contrary assignments made for the quaternary aromatic carbons for alkoxy substituted tosylates of the form below:

For example, for the ethyl substituted system, the predicted C-13 spectrum is given in the table on the following page.
Notice the large error in chemical shift (95% confidence interval) for C-1 and C-4 (6ppm and 5ppm respectively) compared to the small confidence limits for the other predicted chemical shifts. In general C-13 chemical shifts are predicted to better than +/- 3ppm with our C13 NMR prediction program. Within the program it is possible to directly view assigned fragments from within our database of 67,000 assigned structures. These fragments are shown within a Calculation Protocol window. The displays for both C-1 and C-4 are shown on the next page. As can be seen in each of the windows there are a number of representative fragments for both nuclear environments (each of the black squares represents a structure and by passing the mouse over a square displays the related structure and highlights the associated fragment in red). Consideration of the calculation protocol windows shows that for each of the two nuclei, C-1 and C-4, there are TWO distinct columns of related structures displayed, one around 132ppm and one around 145ppm. The conclusion from this data is that ongoing assignments for C-1 and C-4 have been confused in a number cases. These confusions have not arisen from one particular publication that we can identify. For example the shifts at ca. 132.30 for C-4 are were obtained from a number of sources including the following two references:

Advanced/2D NMR Processor

A simple-to-use interface that brings maximum 2D processing capabilities to the desktop. Fully integrated with our powerful structure drawing package, Advanced/ChemSketch, NMR processing at the desktop has finally come of age.

Advanced/2D Processor allows you to:
- Import different spectrometer formats
- Carry out basic spectral manipulation such as Fourier Transform, weighting functions, phase correction, baseline correction, calibration, peak picking and integration
- Show magnitude spectrum, power spectrum and symmetrization
- View slices and 3D representation
- Attach the chemical structure and additional data to the spectrum
- Attach 1D spectra to the 2D spectrum
- Print spectra and create reports using all the power of Advanced/ChemSketch.

Advanced/2D NMR Predictor

Calculate spectra for a variety of 2D experiments: H,H COSY; C,C COSY (INADEQUATE); C,H COSY (HETCOR); H,H and C,H J-resolved. Display data as intensity or contour plots

Now the 2D NMR spectrum for a given structure can be predicted at the click of button:
- View tables of shifts and coupling constants
- Adjust chemical shift or coupling constant values and recalculate the spectrum, if desired
- Display with scaling identical to experiment

Optionally:
- Use direct or all coupling constants for C,C COSY and C,H J-resolved experiments
- Use 1J-3J constants or all coupling constants for H,H COSY and H,H J-resolved experiments
- Use first-order or higher-order interactions for prediction of the H,H J-resolved experiment
- Use heteronuclear couplings for all the experiments
Advanced/Structure Elucidator generates lists of fragments which are consistent with the 13C NMR chemical shifts and (if available) other chemical information. Using proven algorithms for merging structure fragments, complete molecular structures can be generated.

To use Advanced/Structure Elucidator, you will require a 13C NMR spectrum. It is helpful (but not necessary) to have multiplicity information available from DEPT or APT experiments, and 1H NMR and IR spectral data. Molecular weight and elemental composition data provide further refinement.

Advanced/Structure Elucidator provides suggested structures from fragment overlap using the unique fragment-based rules system at the heart of the highly successful Advanced NMR predictive packages.

Observe the process of structure identification: Advanced/Structure Elucidator will display a number of possible structures or (if a complete structure cannot be found) a set of structural fragments corresponding to portions of the spectrum. You can then use the fragment list on your own to help assemble the structure of the unknown compound.

Make use of other data: Advanced/Structure Elucidator contains filters for 1H NMR resonances, IR peaks, mass spectrometer (MW) data and elemental composition.

Fine-tune the search: Advanced/Structure Elucidator will let you customize the fragment generation procedure by assigning spectral dark areas.

Test the hypothesis: Once a structure or fragment list is generated, you can compare experimental and predicted spectra in a single screen.

Advanced/Structure Elucidator is fully integrated with NMR Manager, NMR Predictors and Databases and ChemSketch.

Available late 1999

Utilize your 2D data in Structure Elucidator!
In order to clarify and correct the appropriate shift assignment for such structures we obtained NMR spectra for Ethyl p-Toluenesulfonate using a combination of H-1, C-13, HETCOR and HMBC experiments we were able to produce the following corrected assignments (see the picture on the next page). The spectra were measured on a Bruker AM-300 at room temperature in CDCl3 solutions at 300 MHz for H-1 and 75.47 MHz for C-13, respectively. These corrections have been included in our prediction algorithms thereby impacting the predictions for such related structures in the future.

With this information we have been able to make assignments for the structures in the following references:

Tetrahedron 1990, vol 46, page 3061
Tetrahedron 1984, vol 40, page 905

and have been able to change assignments in the literature including in Tetrahedron 1994, vol 50, page 11039.

This is not the only example of such a problem that we have identified with literature data and have had to resolve. However, it is an indication of some of the approaches we are taking to building a high quality and appropriate database to be used as reference data for prediction and searching by structure and substructure.

We welcome clarification from any of your readers of any literature assignments that they have noted to be incorrectly carried throughout the literature. Please forward any comments to me directly at tony@acdlabs.com.

Yours sincerely,

Antony Williams

P.S. Your readers may wish to take advantage of the FREE NMR viewer now posted at our website (www.acdlabs.com/download). This includes an integrated Structure Drawing Package, Chemsketch and can read and display Varian, Bruker and JCAMP spectra. JEOL format is presently being implemented.
ADVANCES IN NMR APPLICATIONS
SYMPOSIUM

FEATURING THE LATEST DEVELOPMENTS IN EXPERIMENTAL TECHNIQUES
SUNDAY, FEBRUARY 28, 1999 1:00 TO 6:00 P.M.

THE OMNI ROSEN HOTEL, GRAND BALLROOM C
9840 INTERNATIONAL DRIVE, ORLANDO, FLORIDA
(LOCATED A SHORT WALK FROM THE CLARION PLAZA HOTEL)

*** FINAL AGENDA ***

MULTIDIMENSIONAL PULSED FIELD GRADIENT EXPERIMENTS ON POLYMERS AT HIGH TEMPERATURE
Peter Rinaldi, Weixia Liu, and Dale Ray Ill, The University of Akron

OH MY GOD, THEY SHRUNK THE SAMPLE
Gary Martin and Chad Hadden, Pharmacia & Upjohn, Inc.

CARRYING ON OVER CARRYOVER – IMPORTANCE FOR ACCURATE QUANTITATIVE NMR MEASUREMENTS IN THE FLOW ENVIRONMENT
Yung-Hsiang Kao, Genentech, Inc.
Ron Crouch and Jim Moore, Nalorac Corporation

LC-NMR-MS: IS THE INFORMATION WORTH THE INVESTMENT?!
Steven R. Maple, Andreas Kaerner, Craig A.J. Kemp, Edward G. Groleau, and Karen A. McCune
Eli Lilly and Company

TRIPLE RESONANCE NMR ON SMALL MOLECULES: PRACTICAL CONSIDERATIONS OF 13C / 19F / 1H EXPERIMENTS
Jim Beery, BASF Corporation

NEW PROBE TECHNOLOGY FOR AUTOMATED NMR
Claude Jones, Monsanto Company
Ron Crouch, Atholl Gibson, and Toby Zens, Nalorac Corporation

PROGRESS IN AFFINITY NMR
Aidi Chen and Michael Shapiro, Novartis Institute for Biomedical Research

METHODS FOR IMPROVING NMR STRUCTURE DETERMINATIONS OF RNA
Arthur Pardi, University of Colorado

FROM ALIGNMENT TO STRUCTURE IN HIGH RESOLUTION NMR
Nico Tjandra, National Institutes of Health

USE OF CHEMICAL SHIFT FOR DETERMINATION OF PROTEIN STRUCTURES
Gabriel Comislecu, Frank Delaglio, and Ad Bax, National Institutes of Health

APPLICATIONS OF THE TROSY TECHNIQUE
Arthur G. Palmer and J. Patrick Loria, Columbia University
Mark Rance, University of Cincinnati

NALORAC CORPORATION
841A ARNOLD DRIVE, MARTINEZ, CA 94553 PH: (925) 229-3501 FAX: (925) 229-1651
E-MAIL: annette.matamoroz@nalorac.com
"Water, water everywhere, nor any drop to drink."
—Coleridge

Just as the old saying goes, the Stable Isotopes Group at Aldrich has deuterated water in stock and ready to ship. We have deuterium oxide with isotopic purities ranging from 100.00% to 0% for all of your NMR and synthesis needs. For your convenience, we have added reference standards to some of our most popular selections to create “ready-to-use” solvents for NMR. A wide selection of packaging options allows you to choose from screw-cap bottles, septum bottles, Sure/Seal™ bottles, or individual ampules. For more information and a complete list of our deuterium oxide products, please see our new 1998-99 Catalog/Handbook of Fine Chemicals or visit our Web site at www.sigma-aldrich.com.

<table>
<thead>
<tr>
<th>Cat. No.</th>
<th>Isotopic Purity</th>
<th>Name</th>
<th>Pkg. Size</th>
<th>Package</th>
<th>Price ($)</th>
</tr>
</thead>
<tbody>
<tr>
<td>19,170-1</td>
<td>100.00%</td>
<td>Deuterium oxide</td>
<td>10g</td>
<td>ampule</td>
<td>54.40</td>
</tr>
<tr>
<td>19,234-1</td>
<td>100.0%</td>
<td>Deuterium oxide</td>
<td>10g</td>
<td>septum bottle</td>
<td>42.00</td>
</tr>
<tr>
<td>15,189-0</td>
<td>100.0%</td>
<td>Deuterium oxide</td>
<td>10g</td>
<td>ampule</td>
<td>26.10</td>
</tr>
<tr>
<td>26,978-6</td>
<td>100.0%</td>
<td>Deuterium oxide</td>
<td>10 x 0.5mL</td>
<td>ampule</td>
<td>18.90</td>
</tr>
<tr>
<td>44,136-8</td>
<td>100.0%</td>
<td>Deuterium oxide</td>
<td>10 x 0.75mL</td>
<td>ampule</td>
<td>27.70</td>
</tr>
<tr>
<td>42,345-9</td>
<td>100.0%</td>
<td>Deuterium oxide</td>
<td>25g</td>
<td>screw-cap bottle</td>
<td>19.40</td>
</tr>
<tr>
<td>15,188-2</td>
<td>99.9%</td>
<td>Deuterium oxide</td>
<td>100g</td>
<td>screw-cap bottle</td>
<td>53.30</td>
</tr>
<tr>
<td>34,716-7</td>
<td>99.9%</td>
<td>Deuterium oxide</td>
<td>100g</td>
<td>screw-cap bottle</td>
<td>81.30</td>
</tr>
<tr>
<td>26,979-4</td>
<td>99.9%</td>
<td>Deuterium oxide</td>
<td>10 x 1.0mL</td>
<td>ampule</td>
<td>12.80</td>
</tr>
<tr>
<td>29,384-0</td>
<td>99.9%</td>
<td>Deuterium oxide</td>
<td>25g</td>
<td>screw-cap bottle</td>
<td>25.90</td>
</tr>
<tr>
<td>45,051-0</td>
<td>99.9%</td>
<td>Deuterium oxide</td>
<td>100g</td>
<td>screw-cap bottle</td>
<td>73.00</td>
</tr>
<tr>
<td>34,377-3</td>
<td>99.9%</td>
<td>Deuterium oxide</td>
<td>25g</td>
<td>screw-cap bottle</td>
<td>23.60</td>
</tr>
<tr>
<td>43,576-7</td>
<td>99%</td>
<td>Deuterium oxide</td>
<td>100g</td>
<td>screw-cap bottle</td>
<td>65.60</td>
</tr>
<tr>
<td>43,577-5</td>
<td>90%</td>
<td>Deuterium oxide</td>
<td>25g</td>
<td>screw-cap bottle</td>
<td>19.00</td>
</tr>
<tr>
<td>19,519-4</td>
<td>0%</td>
<td>Water, deuterium-depleted</td>
<td>10g</td>
<td>ampule</td>
<td>22.10</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>25g</td>
<td>ampule</td>
<td>46.50</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>100g</td>
<td>screw-cap bottle</td>
<td>110.00</td>
</tr>
</tbody>
</table>

Sure/Seal™ is a trademark of Sigma-Aldrich Co.

ALDRICH® chemists helping chemists in research & industry

P.O. Box 355, Milwaukee, WI 53201 USA Telephone: 414-273-3850 • 800-558-9160 Fax: 414-273-4979 • 800-962-9591 Web Site: www.sigma-aldrich.com

Aldrich is a member of the Sigma-Aldrich family.
Aldrich now has our most popular NMR solvents available in Sure/Seal™ bottles. Our well-known, exclusive packaging system safeguards against leakage and exposure to moisture and oxygen. In addition, it virtually eliminates the loss of TMS in our chloroform listings. The Sure/Seal™ bottle system allows for easy storage, handling, and dispensing of product using standard syringe transfer techniques. You are assured of a quality product, from the first time you open the package to the final product usage.

To cover all your needs, we offer all of our NMR solvents in a number of other packaging options as well, including screw-cap bottles and individual ampules. For more information and a complete list of our deuterated solvents, please see our 1998-99 Catalog/Handbook of Fine Chemicals, call us at 800-558-9160, or visit us on the Web at www.sigma-aldrich.com.

Please call us today to get a competitive quotation for your annual NMR solvents requirements.

<table>
<thead>
<tr>
<th>Cat. No.</th>
<th>Name, Isotopic Purity</th>
<th>Unit Size and Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>44,486-3</td>
<td>Acetone-(d_6), 99.9 atom % D</td>
<td>100mL $175.10</td>
</tr>
<tr>
<td>15,179-3</td>
<td>Acetone-(d_6), 99.5 atom % D</td>
<td>100g $146.20</td>
</tr>
<tr>
<td>15,180-7</td>
<td>Acetonitrile-(d_3), 99.6 atom % D</td>
<td>100g $228.60</td>
</tr>
<tr>
<td>15,181-5</td>
<td>Benzene-(d_6), 99.6 atom % D</td>
<td>100g $175.10</td>
</tr>
<tr>
<td>15,182-3</td>
<td>Chloroform-(d), 99.8 atom % D</td>
<td>150g $31.90</td>
</tr>
<tr>
<td>22,578-9</td>
<td>Chloroform-(d), 99.8 atom % D (contains 0.03% v/v TMS)</td>
<td>150g $31.90</td>
</tr>
<tr>
<td>43,487-6</td>
<td>Chloroform-(d), 99.8 atom % D (contains 0.1% v/v TMS)</td>
<td>150g $31.90</td>
</tr>
<tr>
<td>15,183-1</td>
<td>Chloroform-(d), 99.8 atom % D (contains 1.0% v/v TMS)</td>
<td>150g $31.90</td>
</tr>
<tr>
<td>15,189-0</td>
<td>Deuterium oxide, 100.0 atom % D</td>
<td>125g $169.90</td>
</tr>
<tr>
<td>15,188-2</td>
<td>Deuterium oxide, 99.9 atom % D</td>
<td>125g $72.10</td>
</tr>
<tr>
<td>15,194-7</td>
<td>Methyl-(d_3) alcohol-(d), 99.8 atom % D</td>
<td>100g $451.10</td>
</tr>
<tr>
<td>15,187-4</td>
<td>(Methyl sulfoxide)-(d_6), 99.9 atom % D</td>
<td>100g $142.10</td>
</tr>
<tr>
<td>17,594-3</td>
<td>(Methyl sulfoxide)-(d_6), 99.5+ atom % D</td>
<td>100g $133.90</td>
</tr>
</tbody>
</table>

Sure/Seal is a trademark of Sigma-Aldrich Co.
Teflon is a registered trademark of E.I. du Pont de Nemours & Co., Inc.

Aldrich is a member of the Sigma-Aldrich family.
Dear Dr. Shapiro:

We have a Bruker 500MHz DMX spectrometer equipped with a BCU 05 refrigeration unit that refrigerates the air supplied to the NMR probe to approximately -40C. In the probe, this refrigerated air is typically reheated to the desired working temperature via a heater in the probe. On our system, an aqueous NMR sample left in the probe can accidentally freeze when the air supplied to the NMR console and cooling unit is unexpectedly shut off (due to a compressor failure, e.g.) and then resumed. Such freezing results because a sensor in the console VT unit shuts off power to the probe heater once the air flow stops. Since this heater remains off even after the air supply resumes (unless manually turned back on), the probe air is quite cold since the BCU 05 stays on despite the fact that the probe heater is now off.

To avoid NMR sample freezing and tube fracture due to an air supply interruption, we designed an electronic device that monitors the supply air pressure and automatically shuts off power to the BCU 05 unit as well as air flow to the probe once the air pressure drops below a preset value. Below is a functional diagram of the device we have designed. We call it the “Cooler Interrupt System”. It has been demonstrated to work successfully and is currently installed on our DMX-500 spectrometer. This device gives both an audible and visual alarm when triggered by a sudden loss of air flow. It requires a manual reset to turn the cooling unit and air flow to the probe back on. In general, cooling units similar to the Bruker BCU 05 are typically used to pre-cool the probe supply air in order to regulate the NMR probe and sample temperature. It is therefore likely that air supply failures of this sort can also potentially lead to NMR sample freezing and related problems with other, similarly configured NMR systems.

Further information and details regarding this device can be requested by contacting us at the address above or at the phone numbers and email addresses below. Please credit this to the account of Prof. Mark Rance.

Sincerely,

Pearl Tsang
513 556-2301, pearl.tsang@uc.edu

Elwood Brooks
513 556-9211, elwood.brooks@email.uc.edu

Robert Voorhees
513 556-9297, robert.voorhees@uc.edu

Paul MacKenzie
513 556-9296, paul.mackenzie@uc.edu
Voltronics non-magnetic trimmer capacitors:

The first choice for NMR and MRI probes

Features
- They're truly non-magnetic, with magnetic field distortion less than 1 part per 600 million.
- Lifetime is far greater and RF power handling capability higher thanks to our non-rotating piston design.

Specifications

<table>
<thead>
<tr>
<th>Feature</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frequency range</td>
<td>to 1.5 GHz</td>
</tr>
<tr>
<td>Working Voltage</td>
<td>to 20 kV</td>
</tr>
<tr>
<td>Capacitance range</td>
<td>0.45 pF min. to 120 pF max.</td>
</tr>
<tr>
<td>Sizes</td>
<td>From 0.12 in. to 1 in. dia.</td>
</tr>
<tr>
<td>Mounting styles</td>
<td>All common types</td>
</tr>
<tr>
<td>Magnetic field distortion</td>
<td><1 part per 600 million</td>
</tr>
</tbody>
</table>

Custom is Standard at Voltronics

Every NMR and MRI system has unique requirements, and we address them all. In fact we built our entire line of non-magnetic trimmers based on specific requests from our customers. We'll gladly modify an existing trimmer design or create a new one to meet the exact needs of your system.

So if you're building NMR or MRI systems, you should be talking to Voltronics. For 25 years, we've delivered the best-performing, most reliable non-magnetic trimmer capacitors available.

Call (973) 586-8585 and discuss your needs with one of our applications engineers.

Voltronics Corporation
The Trimmer Capacitor Company
"Methods for Structure Elucidation by High-Resolution NMR"

Edited by

Gy. Batta, K. E. Kövér and Cs. Szántay, Jr.

Reading the editorial preface of this volume I could not help but get suspicious. The editors aimed at "presenting 16 loosely connected papers,... different from basic educational texts, hard-core scientific papers and regular reviews" and with "slight overlap in the topics". What are we really getting after spending $244, which is not a trivial amount of money? We do get formally 347 pages with an additional subject index: taking into account the generous layout with an empty cover page and back page for each article the largest chapter has 37 printed pages and the smallest just 5 pages. Checking further into the content of these 16 articles, I find that about the half of the chapters may essentially be considered as reprints from the original literature of the authors. A lot of the articles deal with selective pulses and there is not only "slight" but considerable overlap. Although in the editorial it is claimed that much emphasis has been given to pulsed field gradients, I find only two contributions, which address them. Thus, from a first glance through this book I have to admit I was very disappointed.

There are, however, some very nice short reviews or personal accounts in this book, which are indeed worth reading. Some of these really make the impression of having been newly written for this particular volume, e.g., the report by G. Otting on high power spin-lock purge pulses. Also very well written is the account on chemical exchange measurements by A. Bain and G. J. Duns, who address specifically the regions outside the traditional line shape measurements. Finally, I might mention the review on ROESY type measurements by Jurani, Zolnai and Macura, which is a timely report on the pertinent questions.

Thus, this volume leaves for me a very mixed impression. Duplication of known features interleaves with some more original reports. Why put this together in a rather expensive book? There is no visible editorial concept with respect to NMR methods or the chemistry involved. In times of severe tightening of library budgets publishers must adopt a different attitude towards scientific publishing.

Stefan Berger
Institut für Analytische Chemie
Universität Leipzig
Linnéstr. 3
04103 Leipzig
Germany.
Join us at ENC '99

at our hospitality suite in Salon 11

STOP BY
to discuss your stable isotope requirements, or find out what's new in Protein NMR:

<table>
<thead>
<tr>
<th>Minimal Media Substrates</th>
<th>Bio-Express®</th>
</tr>
</thead>
<tbody>
<tr>
<td>Amino Acids • Sugars</td>
<td>Cell Growth Media</td>
</tr>
<tr>
<td>RNA/DNA Products</td>
<td>Bacterial Cells</td>
</tr>
<tr>
<td>Buffers</td>
<td>Insect Cells</td>
</tr>
<tr>
<td>Detergents</td>
<td>Yeast Cells</td>
</tr>
<tr>
<td>Deuterated NMR Solvents</td>
<td>Mono-Express™</td>
</tr>
</tbody>
</table>

Depleted Cell Growth Media

PIZZA, BEER & WINE

FREE CIL t-shirt!

proven leadership
demonstrated commitment
Cell Growth Media

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
<th>Volume</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>CGM-1500</td>
<td>Mono-Express™ Cell Growth Media (U-¹³C, 99.95%; U-¹⁵N, 99.97%) (10X concentrate)</td>
<td>10ml</td>
<td>$250</td>
</tr>
</tbody>
</table>

Buffers and Detergents

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
<th>Quantity</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>DLM-4341</td>
<td>DL-α-Phosphatidylcholine, Dihexanoyl (D₆, 98%) (DHPC)</td>
<td>0.1g</td>
<td>$1300</td>
</tr>
<tr>
<td>DLM-4533</td>
<td>DL-α-Phosphatidylcholine, Dimyristoyl (D₇, 98%) (DMPC)</td>
<td>Request Price</td>
<td></td>
</tr>
<tr>
<td>DLM-4528</td>
<td>Bis-Tris (D₆, 98%)</td>
<td>0.5g</td>
<td>$420</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1g</td>
<td>$650</td>
</tr>
<tr>
<td>DLM-4363</td>
<td>2-(N-Morpholino)ethanesulfonic Acid (D₆, 98%) (MES)</td>
<td>0.5g</td>
<td>$750</td>
</tr>
<tr>
<td>DLM-3786</td>
<td>N-2-Hydroxyethylpiperazine-N' -2-ethanesulfonic Acid (D₆, 98%) (HEPES)</td>
<td>0.25g</td>
<td>$450</td>
</tr>
</tbody>
</table>

Modified Nucleics

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
<th>Quantity</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>CNLM-4510</td>
<td>5,6-Dihydrouracil (¹³C₆, 99%; ¹⁵N₂, 98%)</td>
<td>25mg</td>
<td>$1200</td>
</tr>
<tr>
<td>CNLM-3916</td>
<td>5-Fluorouracil (¹³C₆, 99%; ¹⁵N₂, 98%)</td>
<td>Request Price</td>
<td></td>
</tr>
</tbody>
</table>

Alpha, Beta-Deuterated Amino Acids and Precursors

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
<th>Quantity</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>CDLM-4611</td>
<td>α-Ketobutyric Acid, Sodium Salt (¹³C₆, 99%; 3,3-D₃, 98%) (contains 5% dimer)</td>
<td>0.1g</td>
<td>$815</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.25g</td>
<td>$1250</td>
</tr>
<tr>
<td>CDLM-4418</td>
<td>α-Ketoisovaleric Acid, Sodium Salt (U-¹³C₆, 97-98%; 3-D₃, 98%)</td>
<td>0.25g</td>
<td>$990</td>
</tr>
<tr>
<td>CDNLM-4280</td>
<td>L-Leucine (U-¹³C₆, 95-97%; ¹⁵N, 96-99%; 2,3,3-D₃, 97%+)</td>
<td>0.1g</td>
<td>$900</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.25g</td>
<td>$1600</td>
</tr>
<tr>
<td>CDNLM-4281</td>
<td>L-Valine (U-¹³C₆, 95-97%; ¹⁵N, 96-99%; 2,3-D₃, 97%+)</td>
<td>0.1g</td>
<td>$750</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.25g</td>
<td>$1300</td>
</tr>
</tbody>
</table>

Uniformly Labeled ¹³C, ¹⁵N F-MOC protected Amino Acids

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
<th>Quantity</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>CNLM-4226</td>
<td>L-Arginine-N-FMOC, PMC (U-¹³C₆, 98%+; U-¹⁵N₆, 96-99%) (contains 7% isopropyl ether)</td>
<td>Request Price</td>
<td></td>
</tr>
<tr>
<td>CNLM-4722</td>
<td>L-Cysteine-N-FMOC, S-trityl (U-¹³C₆, 98%+; ¹⁵N, 96-99%)</td>
<td>0.1g</td>
<td>$1200</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.25g</td>
<td>$2000</td>
</tr>
</tbody>
</table>
Dr. B. L. Shapiro
The NMR Newsletter
966 Elsinore Court
Palo Alto, CA 94303

January 19, 1999

Dear Barry,

In 1997, Long Island University took possession of a Varian INOVA 400 MHz NMR, obtained through NSF grant HRD 9628573. As originally configured, this machine was supplied air through a Jun-Air 12-20 (1HP) quiet (49 dB) oil based compressor, with the feed air being dried by a combination of Balston oil/particulate filters and a Balston membrane filter. After much use, this system proved to be very high maintenance, especially with regard to oil mist contamination. Therefore, as part of a large, multi-instrument Department of Defense grant (F49620-98-1-0464), a new, oil free scroll type compressor was purchased. This system was designed to not only supply air to the NMR, but also to eliminate the need for compressed air for all instruments in the LIU instrumentation facility.

The compressor system is graphically represented above and contains the following components. The heart of the system is a 5 HP Powerex model SES050821 scroll compressor (A). This compressor delivers 14 cfm at 100 p.s.i. while generating less than 50 dB of noise. This rate of supply is more than four times the air flow required to perform solid state NMR, leaving ample capacity for the remainder of the machinery. The scroll unit itself is fully enclosed, with the enclosure containing the compressor, a ten gallon expansion tank, and a magnetic starter valve which is preset to turn on at 90 p.s.i and off at 110 p.s.i. The air is dried to a dew point of -100°F through a combination active/passive system. After leaving the expansion tank, the air passes through a Deltech model HX25 refrigerated air dryer (B). This component, which has a capacity of drying up to 25 cfm, reduces the air to a dew point of -40°F. The air then passes through a Deltech model D0020 CF coalescing filter (C) which removes any condensation, as well as particulates. After
this, the -100°F dewpoint is achieved by passing the air through a Deltech model HB51-6 heatless desiccant system (D). This desiccant unit consists of two twenty four inch long, eight inch wide, canisters containing a mixture of activated alumina and molecular sieves. These tandem desiccant beds cycle automatically at three minute intervals. At all times, one cartridge is absorbing moisture from the inlet air while the other is regenerated by a portion of the dry air from the active bed. No heating is required in this process. The final purification is achieved by then passing the now dry air through a Deltech D0020PF (E) which is designed to remove any particulate dust from the desiccant bed at a flow rate of up to 20 cfm. The air then passes into an eighty gallon holding tank (F), which can be isolated at both ends and contains a 200 p.s.i. pressure relief valve as well as a pressure gauge. The unit contains one-way check valves between each component to prevent back-flow damage. In addition, each leg of the tee’d outlet is also protected by a check valve. Finally, a 2.5 HP Thomas oil free compressor, in place as an emergency back-up, is mounted atop the main storage tank and is connected by means of a tee to the drying system before the refrigerator.

This compressor system has been operational for six months without a breakdown. Besides supplying air to the NMR, it also supplies air to three gas chromatographs, a TGA/DTA/DSC thermal analysis cluster, a GC/MS, an HPLC, an AA, and an FTIR whose optical bench requires a constant purge of dry air. The use of this system has eliminated the need for no less than seven compressed air tanks, a fact which not only saves money but also greatly improves the aesthetics of the instrument room. While performing all of these tasks, the compressor maintains a leisurely 11% duty cycle. In addition, the system is much more compact than the schematic indicates. The compressor itself has a footprint of approximately 3' x 2'. The refrigerator is approximately 18" on a side and all of the filters and desiccants are mounted on a dexion frame above the refrigerator, saving additional space. Routine maintenance consists of draining the ten gallon expansion tank daily, dumping the condensation bucket weekly, and lubricating the compressor every 500 hours of operation. In addition, tests have indicated that the back-up compressor, which is actually stripped from a portable pneumatic station, can handle the same load, albeit at a 50% duty cycle and nearly four times the noise.

All plumbing consists of 3/8" copper tubing and there is a pressure regulator at each station. The original Balston membrane filter remains in the loop, as it was already wall-mounted in the NMR room. The entire compressor system as assembled cost approximately $7,000 and took about 2 days to set up and plumb. Also, it should be noted that the placement of the main receiving tank after the desiccant eliminates the possibility of rust, thereby extending the life of the tank and greatly simplifying the task of removing particulate.

Below are the addresses of the vendors mentioned in this letter:

Powerex, Inc: 150 Production Drive, Harrison, OH, 45030; (800) 544-0350

Deltech, A United Dominion Co., 344 Churchmans Road, P. O. Box 667, New Castle, DE, 19720-0667; (302) 328-1345

Balston, Inc: 260 Neck rd., Box 8223, Haverhill, MA 01835; (800)343-4048

Sincerely,

Fernando Commodari, Ph.D.
Fern@hornet.liunet.edu

Edward J. Donahue, Ph.D.
Edonahue@hornet.liunet.edu

Chemistry Department
Long Island University
Brooklyn, NY 11201
You Need Full-Service Professionals For All Your NMR/MRI Needs.

Let CRYOMAG Be Your Single Source For Superconducting Magnet Services

We live up to our reputation for the fast, efficient, professional service you demand—and expect.

CRYOMAG has been providing a complete line of NMR/MRI services to clients for 13 years throughout the United States.

Our clients include: Schering Plough • Merck, Sharp & Dohme • Hoffman-La Roche • Bristol-Myers Squibb • Smith Kline Beecham • Novartis • Pfizer • Johnson & Johnson • University of Akron • Isotec • DEA • Texas A&M

- We have experienced, fully insured, specially trained professionals who understand cryogenic magnets.
- We offer complete, cost effective, routine, Cryogen servicing that many times is less than your current Cryogen costs.
- We offer turnkey system relocations—from across the street or across the nation.
- We provide 24-hour emergency service response for cryogen and quenches.
- We can help you plan and design your new or remodeled facility.
- We offer cold magnet pumping and vacuum integrity testing.
- We tailor our service to meet your needs.
- We tailor our contract to fit your budget.
- Major OEMs rely on CRYOMAG to solve their difficult problems, why don't you?
What CRYOMAG Professionals Can Do For You:

<table>
<thead>
<tr>
<th>CRYOFIL PROGRAM</th>
<th>EMERGENCY SERVICES</th>
<th>SYSTEMS MOVES</th>
<th>SERVICE MENU</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Fill magnets on a prearranged schedule</td>
<td>• Service Within 24 Hours</td>
<td>• Complete Turnkey NMR/MRI Relocations</td>
<td>• Magnet Shimming</td>
</tr>
<tr>
<td>• Monitor levels and flows</td>
<td>• Cryogen Supply</td>
<td>• Deinstallation</td>
<td>• Magnet Mapping</td>
</tr>
<tr>
<td>• Order and deliver cryogen</td>
<td>• Cryogen Transfill</td>
<td>• Storage</td>
<td>• Magnet Energizing</td>
</tr>
<tr>
<td>• Maintain transfer lines (FREE under 1-year contract)</td>
<td>• Magnet Energizing</td>
<td>• Reinstallation</td>
<td>• Vacuum Pumping and Leak Testing</td>
</tr>
<tr>
<td>• Clear ice from Cryostat</td>
<td>• Quench Service</td>
<td>• Magnet Recommissioning</td>
<td>• Magnet Commissioning and Recommissioning</td>
</tr>
<tr>
<td>• 10% discount for magnet repairs, vacuum service, magnet mapping/shimming and magnet accessories</td>
<td></td>
<td>• Facility Planning and Design</td>
<td>• Vibration Isolation</td>
</tr>
</tbody>
</table>

Let us show you how our services can meet your needs.

Call (908-281-0331), fax (908-281-0731), or mail this response coupon and we’ll call you.

Company: ____________________________
Address: ____________________________

Phone: () Fax: ()
Contact: ____________________________
Title: ______________________________

We currently have ______ magnets
Our transfilling is being done by □ OEM □ In-house Staff
□ Other: ____________________________

We are interested in:
□ Cryofil Program
□ Emergency Services
□ Systems Moves
□ Service Menu
□ Other: ____________________________

Come visit us at our Vendor Suite while attending the ENC and register for free nightly giveaways!

Your Single Source For All Superconducting Magnet Services
Address all Newsletter correspondence to:

Dr. B. L. Shapiro
The NMR Newsletter
966 Elsinore Court
Palo Alto, CA 94303.
650-493-5971* - Please call only between 8:00 am and 10:00 pm, Pacific Coast time.

Deadline Dates

No. 486 (Mar.) 19 Feb. 1999
No. 487 (Apr.) 26 Mar. 1999
No. 488 (May) 23 Apr. 1999
No. 489 (June) 21 May 1999
No. 490 (July) 25 June 1999

* Fax: 650-493-1348, at any hour. Do not use fax for technical contributions to the Newsletter, for the received fax quality is very inadequate.

* E-mail: shapiro@nmrnewsletter.com

The Newsletter's fiscal viability depends very heavily on the funds provided by our Advertisers and Sponsors. Please do whatever you can to let them know that their support is noted and appreciated.

Mailing Label Adornment: Is Your Dot Red?

If the mailing label on your envelope is adorned with a large red dot: this decoration means that you will not be mailed any more issues until a technical contribution has been received.

Forthcoming NMR Meetings, continued from page 1:

"Applications of NMR to Complex Systems", Symposium at the American Chemical Society Meeting, New Orleans, LA, August 22-26, 1999; Contact: R. E. Botto, Symposium Chair, Chemistry Division, Argonne National Laboratory, 9700 South Cass Ave., Argonne, IL 60439; 630-252-3524; Fax: 630-252-9288; E-mail: robert_botto@qmgate.anl.gov

41st ENC [Experimental NMR Conference], Asilomar Conference Center, Pacific Grove, CA, April 9-14, 2000; Contact: ENC, 1201 Don Diego Avenue, Santa Fe, NM 87505; (505) 989-4573; Fax: (505) 989-1073; E-mail: enc@enc-conference.org.

Additional listings of meetings, etc., are invited.
How To Run JEOL's Eclipse+ Spectrometer

Step 1: Enter your sample name and the solvent.

Step 2: Click the mouse button on the data you want.

Step 3: Walk away with your data.

JEOL's Eclipse Spectrometer will automatically do everything else for you.

✓ Auto Probe Tuning (with AutoTune Broad Band Probe)
✓ Auto-sample Control (with AutoSample Changer)
✓ Auto Selection of Spectrometer Conditions
✓ Auto Baseline Correction
✓ Auto Data Presentation
✓ Auto Phase Correction
✓ Auto Digital Filtering
✓ Auto S/N Monitoring
✓ Auto Queue Control
✓ Auto Receiver Gain
✓ Auto Data Storage
✓ Auto Referencing
✓ Auto Processing
✓ Auto Peak Picks
✓ Auto Integration
✓ Auto Plotting
✓ Auto Shim
✓ Auto Lock