High Field, High Temperature Superconducting Probe
Rachocki, R., Ray III, D. G., and Rinaldi, P. L. 2

Danish Instrument Center for NMR Spectroscopy of Biological Macromolecules
Sørensen, O. W., Meissner, A., Schulte-Herbrüggen, T., and Sørensen, M. D. 5

"New Directions in NMR" and Old Reminiscences
Becker, E. D. 6

There’s No Business Like Our Business
Bothner-By, A. A. 7

Wind, R. A. 8

Temperature Control of 4mm MAS Rotors
Anandhi, K., and Gawrisch, K. 11

Amide Proton Exchange in Short Peptides
Minch, M. 13

In Vitro Endovascular NMR Imaging at 2 Tesla
Chaabane, L., Serfaty, J.-M., Marguet, C., Douek, P., and Briguet, A. 14

Correlation Between Deuterium Isotope Effects and Bond Order in Indole
Morales-Rios, M. S., Joseph-Nathan, P., and Escobar, I. S. 17

Setting Loop Filter, Gain and Time - a Macro for the Bruker BSM9 Digital Lock System
Fagerness, P. E. 19

The Use of Diffusion to Study Protein Aggregation
Tillett, M., Lian, L.-Y., Norwood, T., and Galbraith, V. 23

Equipment Available
Cotts, R. M., and Holcomb, D. 24

Influence of Sample Heating on 15N-T2 Measurements
Gagné, S. M., Spyropoulos, L., et Sykes, B. D. 25

ACCORD-HMBC
Wagner, R., and Berger, S. 29

Sharing Experiment Space Under VnmrX
Silver, S. K. 31

NMR at Queen’s University
Axelson, D. E., and Blake, S. 35

Position Available
Monsanto/Searle 39

Position Available
Tycko, R. 39

Position Available
Collier, H. 40

Position Available
Tjandra, N. 40

A monthly collection of informal private letters from laboratories involved with NMR spectroscopy. Information contained herein is solely for the use of the reader. Quotation of material from the Newsletter is not permitted, except by direct arrangement with the author of the letter, in which case the material quoted must be referred to as a “Private Communication”. Results, findings, and opinions appearing in the Newsletter are solely the responsibility of the author(s). Reference to The NMR Newsletter or its previous names in the open literature is strictly forbidden.

These restrictions and policies apply equally to both the actual Newsletter recipient/participants and to all others who are allowed access to the Newsletter issues. Strict adherence to this policy is considered essential to the successful continuation of the Newsletter as an informal medium for the exchange of NMR-related information.
NUTS
One program does it all

2D

1D

Relaxation analysis

Automated processing

Acorn NMR now has a T1 Internet connection, providing fast downloading of web pages, such as Help files and other NUTS information, and demo copies of NUTS.

Acorn NMR Inc.
46560 Fremont Blvd. #418
Fremont, CA 94538
(510) 683-8595
(510) 683-6784 FAX
info@acornnmr.com

ftp.acornnmr.com
http://www.acornnmr.com
THE NMR NEWSLETTER
NO. 470, NOVEMBER 1997
AUTHOR INDEX

Ananthi, K.	11	Douek, P.	14	Meissner, A.	5	Silber, S. K.	31
Axelson, D. E.	35	Escobar, I. S.	17	Minch, M.	13	Svendsen, M. D.	5
Becker, E. D.	6	Fagerness, P. E.	19	Monsante/Searle	39	Serensen, O. W.	5
Blake, S.	35	Galbraith, V.	23	Norwood, T.	23	Sykes, B. D.	25
Bohrner-Bay, A. A.	7	Gawrisch, K.	11	Rachocki, R.	2	Tillett, M.	23
Briguet, A.	14	Holcomb, D.	24	Ray III, D. G.	2	Tjandra, H.	40
Chiabane, L.	14	Joseph-Nathan, P.	17	Rinaldi, P. L.	2	Tycko, R.	39
Collier, H.	40	Lian, L.-Y.	23	Schulte-Hoster, T.	5	Wagner, R.	29
Coits, R. M.	24	Marguet, C.	14	Serfaty, J.-M.	14	Wind, R. A.	8

THE NMR NEWSLETTER
NO. 470, NOVEMBER 1997
ADVERTISER INDEX

- Acorn NMR, Inc.
- AMT
- Bruker Instruments, Inc.
- Doty Scientific, Inc.
- JEOL
- Oxford Instruments, Ltd.
- Varian NMR Instruments
- Wilmad Glass Company, Inc.

SPONSORS OF THE NMR NEWSLETTER

- Abbott Laboratories
- Aldrich Chemical Company, Inc.
- AMT
- Angen, Inc.
- Anasazi Instruments, Inc.
- Astra AB
- Bruker Instruments, Inc.
- Cambridge Isotope Laboratories
- Cryomag Services, Inc.
- The Dow Chemical Company
- E. I. du Pont de Nemours & Company
- Eastman Kodak Company
- Hewlett-Packard Company
- Isopec, Inc.
- JEOL (U.S.A.) Inc. , Analytical Instruments Division
- Kontes Glass Company
- The Lilly Research Laboratories, Eli Lilly & Company
- Merck Research Laboratories
- Nalorac Cryogenics Corporation
- Osaka Electronics USA Inc.
- Oxford Instruments
- Pharmacia and Upjohn, Inc.
- Programmed Test Sources, Inc.
- SINTEF Unimed MR Center, Trondheim, Norway
- Tecmag
- Unilever Research
- Union Carbide Corporation
- Varian NMR Instruments

FORTHCOMING NMR MEETINGS

- 39th ENC (Experimental NMR Conference), Asilomar Conference Center, Pacific Grove, CA, March 22-27, 1998. Contact: ENC, 1201 Don Diego Avenue, Santa Fe, NM 87505; (505) 989-4573; Fax: (505) 989-1073; Email: enc@enc-conference.org. See Newsletter 470, 8.
- NATO ARW "Applications of NMR to the Study of Structure and Dynamics of Supramolecular Complexes", Sitges (Barcelona), Spain, May 5-9, 1998. Contact: Prof. M. Pons, Dept. Quimica Organica, U.Iav. de Barcelona, Mart I Franques 1, 08028 Barcelona, Spain; http://www.ub.es/nato/nato.htm; e-mail: miguel@guille.qo.ub.es
- Sixth Scientific Meeting and Exhibition, International Society for Magnetic Resonance in Medicine, Sydney, Australia, April 18-24, 1998. Contact: International Society for Magnetic Resonance in Medicine, 2118 Milvia St., Suite 201, Berkeley, CA 94704; 510-841-1899.
- XIIIth International Conference on Phosphorus Chemistry, Cincinnati, OH, July 12-17, 1998. For details, see Newsletter 468, 40.
- NMR Symposium at the 40th Rocky Mountain Conference on Analytical Chemistry, Denver, CO, July 27-30, 1998. Contact: Dr. Robert A. Wind, Battelle/Pacific Northwest National Laboratory, P.O. Box 999, MS K8-98, Richland, WA 99352; (509) 376-1115; Fax: (509) 376-2303; Email: ra_wind@pnl.gov. See Newsletter 470, 8.

Additional listings of meetings, etc., are invited.
Dear Barry: Subject: High field, high temperature superconducting probe.

Last spring, Varian and Conductus delivered a high temperature superconducting probe for our 600 MHz spectrometer. Many were dubious about the potential for sensitivity gains at this high field. We would like to report that the probe met most of our expectations, especially with F-19.

The probe which we received contains inner H-1 and outer F-19 superconducting coils. We wanted this geometry to accommodate both H-1 and F-19 NMR with a single probe. Our 600 has a broadband lock channel, so that we can lock on F-19 or H-1 while observing H-1 or F-19, respectively. The sensitivity of the H-1 channel is such that we are also able to lock on the residual protons in 99.8% CDCl₃. With our Varian software, we are able to play some games with control of the lock channel so that we can both decouple and lock on the same nucleus, permitting heteronuclear decoupling experiments.

On our 5 year old instrument we were able to improve sensitivity 5-fold compared to standard probes optimized for H-1 detection. On newer instruments, perhaps the 500:1 for 0.1% ethyl benzene sensitivity gains might not be so large. We have been able to obtain reasonable F-19 spectra from as little as 12 ng of low MW material in 4-12 hours. While the sensitivity gains are greater for H-1 NMR (the filling factor for the H-1 coil is much better than for the F-19 coil), a background signal from the probe combined with additional signals from solvent impurities has prevented us from doing H-1 NMR with less than ca. 100 ng of material. A combination of better sample handling techniques, purer deuterated solvents and a background free probe should permit us to do NMR on 1-10 ng of material in overnight experiments.

After the first couple of times, setup has become routine. Operation of the probe, sample changes, shimming, etc. is not too different from standard probes. We are encouraged with the future prospects for low temperature probe technology.

Best regards,

Robert Rachocki Dale G. Ray III Peter L. Rinaldi
Absolute Power

For All Biomolecular Applications

Experience the power and reliability of superior RF system design. Only UNITYNOVA™ delivers the accurate, precisely-timed RF pulses and highest-quality Pulsed Field Gradients needed for complex biomolecular experiments.

Providing unprecedented linearity and precision in a wide array of instrument configurations, all UNITYNOVA systems are customized and completely upgradeable to suit your needs now and in the future.

Enjoy complete confidence in all NMR applications at all field strengths. Contact the Varian sales office nearest you for more information on the world’s most powerful NMR spectrometer.

GC • GC/MS/MS • HPLC • AAS • ICP-AES • ICP-MS • UV-Vis-NIR • NMR • Sample Preparation • Vacuum Products
HCCH-TOCSY samples of 1 µM [13C,15N]-labeled ubiquitin in 90% H2O/10% D2O. Data acquired using a 5 mm 1H[13C/15N] X,Y,Z PFG Triple Resonance probe, a 600 MHz [UNITY/NOVA spectrometer, and a) INEPT 13C-1H polarization transfer and b) Hartmann-Hahn 13C-1H polarization transfer (yb = 7 kHz 13C and 1H). Both sets of spectra employed a 13C-13C DIPSI spin look of 15 ns at 40 watts. Z-gradient strengths of up to 70 gauss/cm were utilized. No presaturation or post-acquisition solvent suppression was used to remove the residual water.

High Power 13C-13C and 13C-1H Spin Lock and Gradient-Based Water Suppression

Many of today's most demanding biomolecular experiments use multiple-pulse sequences and multiple high-power spin locks for magnetization transfer, combined with gradient-based water suppression for observation of peaks resonating near the resonance frequency of water. Varian's family of PFG Triple Resonance probes deliver superior experimental sensitivity in these experiments through intelligent optimization and balance of probe power handling capability, sensitivity, RF homogeneity, temperature stability, and gradient performance.

Dear Barry:

This letter initiates the subscription of Carlsberg Laboratory. Carlsberg Laboratory hosts the Danish Instrument Center for NMR Spectroscopy of Biological Macromolecules currently equipped with a 750 MHz Varian Unity Inova spectrometer to be replaced by a corresponding 800 MHz instrument once it becomes available. A special building housing the equipment is placed in a quiet corner in the garden of Carlsberg Research Center. The spectrometer is owned by the Danish Natural Science Research Council and is open for academic and industrial users in Denmark.

I have established a research group of currently three postdocs here working on spin engineering and assisting internal and external users of the Instrument Center with their applications. In future contributions to the Newsletter you will learn about the work of other groups at Carlsberg Laboratory using NMR.

Below I want to give you a little appetizer of two ongoing projects.

A source of systematic error in measurement of J coupling constants in proteins by E.COSY-type methods is passive spin flips during mixing times where passive spins were supposed to not change their state. That leads to additional unresolved cross talk peaks at the positions of the dashed contours. If the J coupling constant is determined as the horizontal displacement of the two (main) peaks too small a value is measured and the error is easily in the 10-20% range. We have found a way to suppress the undesired peaks causing this error.

Ambiguity in the Karplus relations for three-bond coupling constants makes it insufficient with just one J for the determination of dihedral angles. We have designed 2D and 3D NMR experiments where $3\,^1J(\text{HN}-\text{H}_{\alpha})$ and $3\,^1J(\text{C'}-\text{H}_{\alpha})$ relevant for the angle ϕ in the protein backbone can be determined with high sensitivity from a single spectrum. These two coupling constants are the coordinates of 2D displacement vectors and the two peaks of such doublets are edited into two subspectra that can be overlaid (full line and dashed contours).

Sincerely yours,

Ole W. Sørensen
Axel Meissner
Thomas Schulte-Herbrüggen
Morten D. Sørensen

Carlsberg Laboratory
Department of Chemistry
G Lynæsgade 5
DK-2900 Hørning, Denmark
Email: kbo@crc.dk
Tel.: +45 33 27 52 20

Email: jd@crc.dk
Tel.: +45 33 27 52 07

Email: fmp@crc.dk
Tel.: +45 33 27 53 48

Email: ows@crc.dk
Tel.: +45 33 27 52 09
Fax: +45 33 27 47 08
"New Directions in NMR" and Old Reminiscences

Dear Barry:

A large group of NMR devotees gathered in the Mellon Institute auditorium on September 20 for New Directions in NMR: A Symposium Honoring Aksel A. Bothner-By, Josef Dadok, Irving J. Lowe and Robert T. Schumacher. The four honorees have spent most of their careers at either Carnegie Mellon University or the University of Pittsburgh, and the symposium was arranged by Chien Ho and his colleagues at the Pittsburgh NMR Center for Biomedical Research, which is a joint Pitt-CMU laboratory.

As a former Mellon Institute researcher, you would have been interested in the meeting, which interspersed much discussion of early NMR developments in Pittsburgh and elsewhere with innovative ideas that are pointing the way for future advances. There was a stellar list of speakers, headed by Richard Ernst, who dug into his apparently boundless collection of old NMR documents to describe a number of contributions over the years that were developed or described in Pittsburgh, often at the ENCs that were held there for 10 years or so. He reminded us that at the Mellon Institute you and Aksel had begun the Monthly Ecumenical Letters from Laboratories Of NMR. What fraction of current readers of The NMR Newsletter know its original name?

Many other eminent speakers covered a wide range of topics. Among the historical names in NMR were Charlie Slichter, John Waugh, Paul Lauterbur, Ray Freeman, Erwin Hahn and John Pople, while John Markley, Jim Prestegard, Lila Gierasch and Ad Bax represented a younger generation. I thought all the talks were excellent, and the atmosphere at the symposium and an evening banquet was delightful.

Each of the four honorees gave a short talk referring to some aspects of his work, but only Aksel [known as A2B2 to us early NMR types interested in analysis of spin systems] set some of his remarks to music. Perhaps he can supply the complete lyrics for interested Newsletter readers.

Best wishes.

Sincerely,

Edwin D. Becker
Dear Barry,

On the 20th of September some of my good friends threw a party for me, and for Joe Dadok, Irving Lowe, and Bob Schumacher, in the form of a Symposium held at Pittsburgh, celebrating 40 years of work on NMR in Pittsburgh. We all had a glorious time, and sentimental reminiscences were flowing like wine. We were treated to some spectacular talks, too, with impressive new ideas and accomplishments in applying NMR to all sorts of new things.

As I am just about to bow out of this business, I was rash enough to compose some lyrics to an old show tune, and actually sing it to the assembled multitude at the end of the proceedings. The idea was to convey to all of them my feelings about the joys, satisfactions, and occasional problems in spending most of my life working in this field. It went over pretty well, and in fact, Ted Becker suggested (as you know) that I send the words to you for the NEWSLETTER. So here they are. I do not expect to get credit for a technical contribution for this letter.

THERE'S NO BUSINESS LIKE OUR BUSINESS

There's no business like our business, like no business I know -
There you sit a-staring at the ceiling
Wondering why the damn thing will not go
All at once you get this marvelous feeling
You understand it, and so.....

You can do things, all sorts of new things, things that none have ever done before
You can make those nuclei turn somersaults, do the WALTZ, refocus faults,
You can bring precession to six complete halts,
Then go on with the show.

And, Oh! the wonderful feeling, you know you'll soon be a star.
You send the nuclei a-reeling, then you're talking at Asilomar
You can name it what you find appealing,
(Well camelspin might be too far).

Still there's no business like our business
It gives me an inward glow -
Everybody sitting here has seized the chance,
To join the dance, and make them prance.
Just write a few proposals and you'll soon get grants
To go on with the show!

Best,

Aksel
October 9, 1997

Dr. Barry L. Shapiro
The NMR Newsletter
966 Elsinore Court
Palo Alto, CA 94303

NMR Symposium at the 40th Rocky Mountain Conference on Analytical Chemistry

Dear Barry:

The NMR Symposium at the 40th Rocky Mountain Conference on Analytical Chemistry will take place Monday, July 27, to Thursday, July 30, 1998 at the Hyatt Regency Denver in downtown Denver, Colorado. The program’s emphasis is on developments and applications of solid state NMR, and will consist of invited lectures and contributed papers for oral and poster presentations. In 1997, we had a record attendance of 170 participants and 124 oral and poster contributions.

Each year, we dedicate a half-day session of the NMR Symposium to the memory of Professor Robert Vaughan. We are fortunate to have as the Vaughan Lecturer for 1998 Professor Shimon Vega of the Department of Chemical Physics, The Weizmann Institute of Science, Rehovot, Israel.

The NMR Symposium is being organized by Robert Wind - chair, Jeff Reimer - co-chair, Lucio Frydman, Clare Grey, John Hanna, Gina Hoatson, and Steve Sinton. The sessions will include the areas of macromolecules (including bio-), inorganic materials including glasses, new techniques and applications, a combined NMR/EPR session, and a session about computing NMR parameters. Further information about the program, including the abstracts of talks and posters, will appear as available at our Web site: http://india.chem.berkeley.edu/~rmc/

Those who have attended previous meetings should be on the mailing list for the Conference, and will receive abstract forms, both by regular mail and by e-mail. To be added to the mailing list, or for further information, please contact me at: Battelle/Pacific Northwest National Laboratory, P.O. Box 999, MS K8-98, Richland, WA 99352, USA. Phone: (509) 376-1115, Fax: (509) 376-2303, E-mail: ra_wind@pnl.gov

Sincerely yours,

Robert A. Wind
Model 3445/3446
Amplifiers from AMT

10-130 MHz Bandwidth
1000 and 2000 watt Models available

For High Performance NMR/NMRI Applications

Your NMR/NMRI requirements are pushing the leading edge of science and you need AMT RF power technology! The 3446 and 3445 operate from 10-130 MHz and are rated at 1000 watts for low field NMR and up to 2000 watts for NMRI applications up to 3 Tesla. AMT has brought together the highest possible RF performance at a most cost effective price. Nobody builds a better NMR/NMRI amplifier than AMT...

Additional Features Include:
- 10-130 MHz bandwidth for use in systems up to 3T
- Up to 2000 watts of power for imaging
- CW power capability for decoupling
- Blanking delay time >1 μs for multi-pulse
Key Specifications:

<table>
<thead>
<tr>
<th>Models:</th>
<th>3445</th>
<th>3446</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frequency range</td>
<td>10-130 MHz</td>
<td>10-130 MHz</td>
</tr>
<tr>
<td>Pulse power (min.) into 50 ohms</td>
<td>2000 W</td>
<td>1000 W</td>
</tr>
<tr>
<td>CW power (max.)</td>
<td>200 W</td>
<td>100 W</td>
</tr>
<tr>
<td>(down from rated power)</td>
<td>1500 W</td>
<td>800 W</td>
</tr>
<tr>
<td>Pulse width</td>
<td>20 ms</td>
<td>20 ms</td>
</tr>
<tr>
<td>Duty cycle</td>
<td>Up to 10%</td>
<td>Up to 10%</td>
</tr>
<tr>
<td>Amplitude droop</td>
<td>5% to 20 ms</td>
<td>5% to 20 ms</td>
</tr>
<tr>
<td>Phase change/output power</td>
<td>10° to rated power, typ.</td>
<td></td>
</tr>
<tr>
<td>Phase error overpulse</td>
<td>4° to 20 ms duration, typ.</td>
<td></td>
</tr>
<tr>
<td>Output noise (blanked)</td>
<td>< 10 dB over thermal</td>
<td></td>
</tr>
<tr>
<td>Blanking delay</td>
<td>< 1 μs on/off, TTL signal</td>
<td></td>
</tr>
<tr>
<td>Blanking duty cycle</td>
<td>Up to 100%</td>
<td></td>
</tr>
<tr>
<td>Protection</td>
<td>1. Infinite VSWR at rated power</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2. Input overdrive</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3. Over duty cycle/pulse width</td>
<td></td>
</tr>
<tr>
<td></td>
<td>4. Over temperature</td>
<td></td>
</tr>
</tbody>
</table>

Supplemental Characteristics:

<table>
<thead>
<tr>
<th>Indicators, front panel</th>
<th>1. AC power on</th>
<th>2. CW mode</th>
<th>3. Over drive</th>
<th>4. Over pulse width</th>
<th>5. Over duty cycle</th>
<th>6. Over temperature</th>
</tr>
</thead>
<tbody>
<tr>
<td>System monitors</td>
<td>1. Forward/Reflected RF power</td>
<td>2. Over pulse width/duty cycle</td>
<td>3. DC power supply fault</td>
<td>4. Thermal fault</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Front panel controls</td>
<td>1. AC power</td>
<td>2. Forward/Reflected power</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AC line voltage</td>
<td>208/230 VAC, 10%, 47-63 Hz</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AC power requirements</td>
<td>3445 1400 VA</td>
<td>3446 700 VA</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Size (H x W x L, inches)</td>
<td>8.75 x 19 x 24</td>
<td>8.75 x 19 x 24</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Net weight</td>
<td>110 lbs.</td>
<td>75 lbs.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Other members of AMT’s NMR/NMRI Family:

- **3205/3200**: 6-220 MHz, 300/1000 W
- **3304/3303**: 30-310 MHz, 400/700 W
- **PowerMaxx™ series**: 25-175 MHz, 4kW/7 kW
- **3137/3135/3134**: 200-500 MHz, 50/150/300 W

FOR ADDITIONAL INFORMATION, PLEASE CALL:

- **AMT United States**
 - Ph: (714) 993-0802
 - Fx: (714) 993-1619

- **Goes Scientific Europe**
 - Ph: 44 1245 478441
 - Fx: 44 1245 473227

- **ISATEL Emietc AG SWITZERLAND**
 - Ph: 44 4174 88010
 - Fx: 44 4174 85055

- **JEOL Trading Co. Japan**
 - Ph: 813 3342 1921
 - Fx: 813 3342 1944

- **Qualis Scientific New Zealand, Australia**
 - Ph: 64 3385 6973
 - Fx: 64 3385 6949
Dear Dr. Shapiro,

Many of our investigations on polyunsaturated lipids make use of high resolution magic angle spinning NMR. Because some of the lipid NMR parameters are very sensitive to temperature changes, the experiments must be conducted with accurate temperature control. Warned by recent reports of sample heating in MAS experiments (1,2), we calibrated the temperature inside the MAS rotor using the well known main phase transition temperatures of the lipids dimyristoylphosphatidylcholine and dipalmitoylphosphatidylcholine. Experiments were conducted on a DMX500 spectrometer equipped with a widebore 11.7 Tesla magnet, a BVT-2000 variable temperature accessory, a MAS control unit, and a triple resonance variable temperature CPMAS probe, all purchased from Bruker Instruments, Inc. The bearing gas (compressed nitrogen) was chilled to a temperature of 5 - 10 °C and then heated inside the probe. Gas temperature is controlled by a sensor placed in the bearing gas stream before the gas enters the MAS stator. The drive gas temperature was approximately 22 °C. The lipids (1-3 mg) were dispersed in water, transferred to a home-built Kel-F insert, and sealed in a 4 mm Zirconia rotor with a Kel-F spinner cap. The lipid sample fills a small spherical volume in the center of the rotor. The temperature of the bearing gas when the lipids went through their phase transition was recorded. The figure below demonstrates the difference between the sample temperature in the rotor and the temperature of the compressed bearing gas.

![Graph showing temperature difference between rotor and bearing gas](image)

Temperature Control of 4 mm MAS Rotors

DMPC main transition 24.5 °C

DPPC main transition 41.6 °C
At low spinning speed the true sample temperature was always a few degrees lower than the temperature of the bearing gas due to the Joule-Thompson effect of the expanding gas. However, at spinning speeds above 5 kHz sample temperature increased significantly because of friction between the rotor and the bearing gas. Most of the heating takes place at the two bearings at each end of the rotor while the center of the rotor is still chilled by the expanding gas, causing significant temperature gradients across the sample. As a result, at 14 kHz spinning speed, the width of the transition increased by several degrees despite small sample size and location in the center of the rotor, far away from the bearings. The centrifugal forces at higher spinning speed may raise the phase transition temperature of lipid near the rotor walls somewhat. However, using the known densities of lipid and water, we calculated that this effect broadens the transition by less than 1 °C.

We noticed that the sample heating caused by the friction from the bearing gas while spinning at 14 kHz is not very reproducible. Sample temperature depended on bearing gas pressure, the rotor, the sample, the length of the experiment, the time of the day, the phase of the moon, etc., etc. Therefore, experiments which require precise temperature control with minimal temperature gradients are difficult to conduct at higher spinning speed. The encouraging news is that, in particular, the polyunsaturated lipid proton resonances have incredible resolution at spinning speeds as low as 2.5 kHz where sample heating has not been observed.

Sincerely yours,

Krishnamurty Anandhi
Klaus Gawrisch

Laboratory of Membrane Biochemistry and Biophysics
12420 Parklawn Dr., Rm. 158
phone: (301) 594-3750, fax: (301) 594-0035

Dear Barry

It has only been a few months since I have been out of hospital and most of my time has been spent with getting ready for Fall semester and catching up on a few manuscripts initiated before Mr. C. raised his ugly visage on my career. Some very good Stanford oncologists and a bone marrow transplant have put me back in action but I am not sure I have anything worthy of the infamous “pink ultimatum” sent to me recently. Forgive me if I may merely pass on an observation of a recent reviewer who pointed out that the choice of water suppression method used to observe the amide resonances of a peptide may critically depend on the pH.

The following spectra are of a seven amino acid peptide (N-acetyl AKRHRKV) in 90% H₂O taken with 1 1 water suppression at 500 MHz either without (left) or with presaturation (right hand spectra, tₚₚ =1.5 sec). It is clear that for acidic solutions, where the exchange rate is minimal, the methods give equivalent results. In more alkaline solutions where the exchange rate is faster, the presaturation method leads to saturation transfer to the more rapidly exchanging amide protons (arrows) and that these doublets are suppressed. What is most surprising is the marked difference between the behavior of individual amide N-H groups in a peptide too short to have any traditional secondary structural elements. The use of presaturation for various pulse-lengths before a 1 1 1 pulse sequence is still be a useful 1D method for exploring individual exchange rates for amide resonances in peptides as a function of pH (16 scans per pH). One can extract kᵦ₀ rate data from the selective diminution of amide resonances as a function of pH.

3601 Pacific Avenue, Stockton, California 95211 • (209) 946-2271
In-vitro endovascular NMR imaging at 2 Tesla

Dear Professor Shapiro,

For atherosclerotic lesions characterization, experiments have been recently performed on our 2 Tesla Oxford magnet (310 mm bore) using a SMIS console and home made radiofrequency dedicated coils. We have developed different shapes of receiver coils with a diameter of 1.1 mm to 4 mm. Human arteries taken out post mortem were placed in a saline solution and imaged by NMR with a receiver probe inserted inside the artery. Using spin-echo sequence, we got 2D images with a field view of 34 mm and a spatial resolution of 273 µm. The sensitivity depth was sufficient to see the artery layers (media and adventitia). On T1 weighted images, calcified lesions could be delineated.

This approach provides high-resolution images useful to determine the stenosis level and to observe the arterial wall layers including atherosclerotic lesions. In-vivo, endovascular imaging is now on the way.

Sincerely Yours,

Linda CHAABANE Jean-Michel SERFATY Christine MARGUET Philippe DOUEK André BRIGUET
Oxford Instruments, NMR Instruments are the pioneers of superconducting magnet technology for NMR spectroscopy and are widely regarded by the world's research community as the foremost manufacturer and supplier. A worldwide base of over 4500 successfully installed magnet systems serves as testament to an innovative magnet design approach and quality manufacturing processes. As an integral part of a high resolution NMR spectrometer, Oxford Instruments magnets are recognized around the world for their superior performance in chemical, pharmaceutical, biological, and materials research applications.

Advanced Design and Manufacture
State of the art superconducting magnet and cryostat designs provide superior NMR performance, as demonstrated in lineshape, resolution, magnetic field stability, and system siting:

- Advanced electromechanical modelling and system design tools optimise magnetic field homogeneity (to at least eighth order, on-axis) while at the same time minimising residual transverse gradients
- Designed for optimal system siting, minimising ceiling height, weight, service access, stray field and system footprints
- High efficiency room temperature shims provide optimal field homogeneity with low heat dissipation
- Rigorous magnet system testing in Oxford Instruments' extensive cryogenic and NMR test facilities ensure that optimal magnet performance is achieved on site
- All systems supplied with a wide range of safety features, providing worry-free operation at all field strengths
- All manufacturing processes certified to the internationally recognised ISO 9001 quality standards

Performance Excellence
Oxford Instruments magnet and room temperature shim systems provide outstanding performance in a complete range of NMR applications. Sample sizes from 37 μl magic-angle-spinning (MAS), 10 mm high-resolution biomolecular to 60 mm microimaging, as well as all other commonly used NMR sample types, are supported:

- Exceptionally low magnetic-field drift rates provide superior stability
- Full range of room temperature shim options for all magnet systems deliver unparalleled lineshape and resolution for both large and small samples
- Minimal cryogen usage provides the lowest possible cost of operation with a range of standard or year hold helium cryostat options available
- All Oxford Instruments magnets feature a virtually unlimited lifetime (with proper maintenance and cryogen service)

See reverse for full technical specifications
Specifications

<table>
<thead>
<tr>
<th>Specification</th>
<th>System Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>Magnet</td>
<td>200/89</td>
</tr>
<tr>
<td>Operating Field (Tesla)</td>
<td>4.7</td>
</tr>
<tr>
<td>NMR Operating Frequency (MHz/Hz)</td>
<td>200</td>
</tr>
<tr>
<td>Field Stability (Hz/hour 'H)</td>
<td><2</td>
</tr>
<tr>
<td>Axial 5 Gauss Stray Field Contour (Metres)</td>
<td>2.6</td>
</tr>
<tr>
<td>Radial 5 Gauss Stray Field Contour (Metres)</td>
<td>2.0</td>
</tr>
</tbody>
</table>

Cryostat

<table>
<thead>
<tr>
<th>Specification</th>
<th>System Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>Standard Cryostat Minimum Helium Refill Interval (Days)</td>
<td>203</td>
</tr>
<tr>
<td>Standard Cryostat Helium Refill Volume (Litres)</td>
<td>68</td>
</tr>
<tr>
<td>Year Hold Cryostat Option Available</td>
<td>✓</td>
</tr>
<tr>
<td>Nitrogen Refill Interval (Days)</td>
<td>14</td>
</tr>
<tr>
<td>Nitrogen Refill Volume (Litres)</td>
<td>61</td>
</tr>
<tr>
<td>Nominal Room Temperature Bore Diameter (mm)</td>
<td>89</td>
</tr>
<tr>
<td>Minimum Operational Ceiling Height (Metres)</td>
<td>2.9</td>
</tr>
<tr>
<td>System Weight (kg) Including Cryogen's</td>
<td>391</td>
</tr>
</tbody>
</table>

Customer Support

Oxford NMR Instruments provides a worldwide network of subsidiary companies and representatives available to provide technical siting, service and sales support.

UK
Oxford Instruments
NMR Instruments,
Doney Mead,
Oxford OX2 0DX,
England
Tel: +44 (0)1865 269500
Fax: +44 (0)1865 269501
email: info.nmr@oxinst.co.uk

France
Oxford Instruments SA
Parc Club-Orsay
Universite,
27, rue Jean Rostand,
91893 - Orsay Cedex,
France
Tel: +33 1 6941 8990
Fax: +33 1 6941 8680

Germany
Oxford Instruments GmbH
Kreuzberger Ring 38,
Postfach 4109,
D-6200 Wiesbaden,
Germany
Tel: +49 611 76471
Fax: +49 611 764100

Japan
Oxford Instruments K.K.
Haseman Building,
2-11-8 Kotoku,
Tokyo,
Japan 135
Tel: +81 3 5245 2361
Fax: +81 3 5245 4472

USA
Oxford Instruments Inc
45950 Industrial Street
Fremont CA 94538
USA
Tel: +1 510 573 9900
Fax: +1 510 573 9909
email: info.nmr@oxinst.co.uk

Version: 003 Issue: B May 1997
Correlation Between Deuterium Isotope Effects and π-Bond Order in Indole

Dear Professor Shapiro:

Superconducting NMR spectrometers, due to their high stability, have enabled in recent years very precise determination of small changes in chemical shifts (in the ppb range) induced by isotopic substitution in a molecule. Studies related with the structural features that influence deuterium-induced isotope effects (2H/1H) on 13C NMR chemical shifts \[n.Li = \delta (13C-2H) - \delta (13C-1H) \] have revealed interesting correlations. In a previous study we have shown a dependence of the 13C NMR methoxy substituent chemical shift values on π-bond order of fused aromatic compounds. To investigate the dependence of isotope effects on π-bond order in indole, we have prepared a series of monodeuteriated 4-d, 5-d, 6-d, and 7-d indoles.

All 13C NMR spectra were recorded on a Varian Gemini 300 spectrometer operating at 75.4 MHz using DMSO-d6 as solvent. Mixtures of deuteriated and non-deuteriated indoles in ca. 4:1 ratio were used for the determination of nLi isotope shifts (Table). Deuteriated indoles were synthesized by reduction of the corresponding brominated indoles with NaBD4 in the presence of PdCl2/MeOD.

Effects over one (1Δ) and two-bonds (2Δ) in the series 1a-d are similar in magnitude to those observed in other conjugated systems. However, 2Δ at the quaternary C-7a atom in 1d is considerably smaller (Table). The 1Δ and 2Δ effects are negative, i.e. the respective carbons are shielded.

As shown in the Figure the effects over two-bonds (2Δ) for carbons ortho to deuterium correlate well with the π-bond order, with the exception of that owing to C-7a, neighbor to the heteroatom, yielding a correlation coefficient of 0.812. Elimination of the C-7a point improves the correlation coefficient to 0.962.
Table. Isotope Effects $\Delta^{13}C(D)$ of Indole (in ppb).

<table>
<thead>
<tr>
<th>Comp.</th>
<th>1Δ</th>
<th>2Δ</th>
<th>3Δ</th>
</tr>
</thead>
<tbody>
<tr>
<td>la</td>
<td>-276 (C-4)</td>
<td>-86 (C-3a)</td>
<td>-37 (C-3)</td>
</tr>
<tr>
<td></td>
<td>-117 (C-5)</td>
<td>-9 (C-6)</td>
<td></td>
</tr>
<tr>
<td>lb</td>
<td>-267 (C-5)</td>
<td>-112 (C-4)</td>
<td>-16 (C-3a)</td>
</tr>
<tr>
<td></td>
<td>-99 (C-6)</td>
<td>-10 (C-7)</td>
<td></td>
</tr>
<tr>
<td>lc</td>
<td>-270 (C-6)</td>
<td>-101 (C-5)</td>
<td>-7 (C-4)</td>
</tr>
<tr>
<td></td>
<td>-108 (C-7)</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>ld</td>
<td>-257 (C-7)</td>
<td>-112 (C-6)</td>
<td>8 (C-3a)</td>
</tr>
<tr>
<td></td>
<td>-64 (C-7a)</td>
<td>-13 (C-5)</td>
<td></td>
</tr>
</tbody>
</table>

aPoint excluded from the correlation

Dear Dr. Shapiro,

Bruker spectrometers equipped with the BSMS digital lock system are a great improvement over the previous Bruker lock system, and they provide a much more stable spectrometer system. The digital filter in the field/frequency lock loop is a central element in the improved system, providing great flexibility to the user who might use a variety of deuterated lock substances. In particular, the loop gain, loop filter, and loop time are three parameters whose optimized values are important to good quality spectra. Conversely, poor choices for these parameters can cause severe problems -- just try to obtain the CHCl₃ lineshape specifications with these three parameters grossly mismatched!

I have obtained good values for loop filter, gain, and time over the typical range of values for lock gain (84 dB to 120 dB), and parameterized the results with Jandel's TableCurve software. The values obtained can be entered from the command line for each new sample, but one quickly tires of this. So I wrote a small AU program which automates the process. The program interrogates the BSMS for the value of lock gain, and, based on that alone, it loads an interpolated value of loop filter, loop gain, and loop time back into the BSMS. These equations are empirical; they could be determined exactly if the source code were known. I think that the digital filter was designed so that small deviations from true optimal values do not seriously degrade lock performance.

For repetitive samples the "edlock" command could be used to enter these values in the table for each solvent and each probe, but I am constantly changing probes and solvents so that Bruker's table lookup method is not very effective for my work. The default values set into the edlock tables at instrument installation time are useable, but not optimal, especially for mixed solvents.

I list below the AU program lfgt. All space and some comments have been removed. Also, I did not attempt to optimize the code once it worked. This code compiles within the edau command of XwinNMR version 1.3, using an SGI INDY R5K under IRIX 5.3. For widely varying samples such as I receive, it is convenient to lock, touch up the shims, use "AUTO GAIN", and then just type lfgt at the command prompt to optimize the lock digital filter behavior. Of course if one does not set up the lock power and lock phase correctly in each instance, this optimization doesn't do much good.

```
BSMS_PROGRAM /* must be the first statement *****/
#define USE_SXUTIL
double lockgain, loopfilter, loopgain, looptime, a, b, c, d, e, x;
GETBSMSVAL(BSN_LOCK_GAIN, lockgain);
x = lockgain;
if ( (x > 120.0) || (x < 84.0) )
    STOPMSG("lfgt failed: Lock Gain out of range.'");
    /* y = (a+cx+exx)/(l+bx+dxx) */
a = 0.004789085;
b = -0.024171996;
c = 0.27679452;
d = 0.0001466775;
e = -0.002023549;
loopfilter = (a+c*x+e*x*x)/(1.0+b*x+d*x*x);
PUTBSMSVAL(BSN_LOOP_FILTER, loopfilter);
```

Pharmacia & Upjohn
7000 Portage Road
Kalamazoo, MI 49001-0199
USA

Pharmacia & Upjohn
October 2, 1997 (received 10/6/97)

lfgt -- a macro for the Bruker BSMS
Note that the double precision variables are necessary, due to the complex forms for some of the equations, and changing the given values for the a, b, c, d and e parameters even slightly can have a huge (bad) effect on the results. For lock gains outside the range of 120 dB to 84 dB, these equations fail badly to optimize the digital filter behavior. Having issued the above warnings, I find the program very useful in the process of getting good NMR spectra.

Sincerely yours,

Paul Fagerness

E-mail Addresses Wanted

Please include your e-mail address on all correspondence, including technical contributions, or send me an e-mail message. This will make it more convenient - and economical - to contact you. Thanks.

BLS

shapiro@nmrnewsletter.com
Take a hard look at the difference.

Meet high-field AVANCE™ systems include GRASP™ III 6.0 or 2.5 mm probes with 3 shielded gradients, a compact 3x10 amp ACUSTAR™ supply, and a revolutionary digital gradient controller which calculates and shapes all 3 gradients on the fly. While others have made promises for years, Bruker has installed over 150 complete GRASP III setups all over the world, as a seamlessly integrated, effortless everyday reality. Why wait?

It's your call.

What can GRASP™ III do for your lab? 3-gradient technology has increased the flexibility of novel NMR experiments by avoiding gradient echoes, providing stronger gradients, etc. Many experiments, like magic-angle gradient NMR, MEGA, MRI and others require 3 gradients. Perhaps the best news for NMR users is that the art of shimming has finally been relegated to NMR history. Isn't it about time?

http://www.bruker.com

Innovation for customers delivered with Integrity
Magic Angle Gradient Applications

Using the Bruker GRAdient SPectroscopy II (GRASPTM-II) accessory with x,y,z-gradients, an effective gradient at the magic angle can be easily produced by applying three gradients simultaneously. This greatly improves the elimination of residual water by coherence selection in multiple-quantum filtered COSY experiments.

Both experiments were acquired on the Bruker AVANCE 500 equipped with a 5 mm inverse triple resonance (TXI) probe with GRASPTM-II. The sample is 1.5 mM BPTI in 90% H2O/10% D2O. The experiment is DQF-COSY.

Results with the z-gradient only... residual water ridge is clearly visible and overlaps crosspeaks of interest.

Results with magic angle gradient... residual water ridge is eliminated! Crosspeaks previously overlapped by the water can be observed and used for correlation assignment.

For complete details or to arrange a demonstration please contact your nearest Bruker representative.

Austrailia: BRUKER (Australia) PTY., LTD., Alexandria, New South Wales, Tel. (02) 550-6422
Belgium: BRUKER SPECTROSPIN S.A., Bruxelles, Tel. (02) 720 76 76
Canada: BRUKER SPECTROSPIN Canada Ltd., Milton, Ont., Tel. (905) 876-4641
P.R. China: BRUKER INSTRUMENTS, LTD., Beijing, P.R. China, Tel. (010) 2557330
England: BRUKER SPECTROSPIN, LTD., Coventry, Tel. (01203) 80200
France: SAGI BRUKER SPECTROSPIN SA, Wissousen, Tel. (01) 80 00 00
Germany: BRUKER ANALYTISCH-MESSTECHNIK GMBH, Rheinstetten, Tel. (0721) 5161-0
BRUKER ANALYTISCH-MESSTECHNIK GMBH, Karlsruhe, Tel. (0721) 9389-0
BRUKER-FRANZEN ANALYTIK GMBH, Greven, Tel. (0421) 2005-0
BRUKER-BAKONIA ANALYTIK GMBH, Leipzig, Tel. (0341) 2431-00
India: BRUKER INDIA, SCIENTIFIC PVT., LTD., Andheri West, Bombay, Tel. (22) 635-2222
Israel: BRUKER SCIENTIFIC ISRAEL LTD., Rehovot, Tel. (03) 98429 890
Italy: BRUKER SPECTROSPIN SRL, Milano, Tel. (02) 70 62 63 70
Japan: BRUKER JAPAN CO., LTD., Kodan-ken, Tel. (03) 52-12-1234
Netherlands: BRUKER SPECTROSPIN N.V. ARNHEM, Tel. (078) 62 62 51
Scandinavia: BRUKER SPECTROSPIN AB, Tronsberg, Sweden, Tel. (040) 878-03-35
Spain: BRUKER ESPAÑOLA S.A., Madrid, Tel. (1) 540 62 54
Switzerland: SPECTROSPIN AG, Fellanden, Tel. (01) 62 59 11
USA: BRUKER INSTRUMENTS, INC., Billerica, MA 01821-3991, (508) 667-9580
Regional Offices: Chicago, Il, (708) 897-4200, Lexington, KY (502) 478-8110
Houston, TX (713) 299-2447, Fremont, CA (510) 663-4300
The Use of Diffusion to Study Protein Aggregation

Dear Dr. Shapiro,

The measurement of diffusion is a very well established technique in NMR. Until lately research has been concentrated on the study of restricted diffusion. Recently though, studies have sought to relate the diffusion coefficient to the conformation and oligomeric state of proteins. The study of proteins in aqueous solution using diffusion presents a number of problems such as eddy currents which are generated by the magnetic field gradients, though the use of shielded gradients eliminated this problems. Further problems due to water suppression and gradient linearity have also been identified and remedies have been proposed (1).

This technique has many possibilities but one of the most useful many prove to be as a quick and accurate check of the state of aggregation of the protein, so that the most concentrated sample possible can be made whilst the protein remains a monomer. This technique has already been demonstrated (2) for BPTI (Bovine Pancreatic Trypsin Inhibitor) which was shown to form a monomer only at very low concentrations.

We have measured the diffusion coefficient at a range of concentrations for a domain of an SH3 (Src Homology 3) protein consisting of 63 amino acids. This domain is observed to dimerise at a concentration of approximately 1.5 mM. As can be seen in Figure 1 there is a dramatic decrease in the diffusion coefficient at concentrations above 1.5 mM which is due to dimerisation. We envisage that the method developed here could be used routinely to check the solution states of new protein systems.

References.

Yours sincerely,

Marcus Tillett
Lu-yun Lian
Timothy Norwood
Vicky Galbraith

P.S. We hope that this contribution will revive Gordon Roberts' subscription to the NMR Newsletter.
The following two ELECTROMAGNET SYSTEMS ARE AVAILABLE at no cost:

1. Walker Scientific system -- 12 inch flat pole faces, 3 in gap, 1.0 T maximum field, field regulation to a few parts per million, built-in sweep system -- also has a set of tapered caps with 2 inch gap to reach 1.3T or so. All solid-state power supply. Orientation of magnet frame can be adjusted over 90 degrees. Magnet weighs about 4800 lbs.

2. Varian 12-in system -- V-7300 Magnet with 2.125 in gap, 1.1 T maximum field, with V-7800 Power Supply, all solid-state, current-regulated to 10 parts per million. Can be NMR-controlled for tighter regulation. Orientation of magnet frame can be adjusted over 90 degrees. Magnet weighs about 6000 lbs.

Contact: Robert Cotts, rmcs6@cornell.edu; 607-255-3446; FAX:607-255-6428, or Donald Holcomb, dfh1@cornell.edu; 607-255-8158; FAX:607-255-6428
Influence of sample heating on 15N-T_2 measurements

Cher Dr. Shapiro,

Measurement of 15N-T_2 relaxation data for proteins in solution requires the application of a large number of 15N pulses for various relaxation decay time periods. Depending on various factors such as decay time duration, power level used, delay between scans, and sample conditions, T_2 experiments are prone to sample heating. In particular, ionic strength, solvent, and δB^2 magnitude can have profound effects on sample heating. Sample heating can lead to inaccurate data in two ways. First, it can directly affect the dynamic properties of the protein which are temperature dependent. Second, since each data point requires a different spin-lock period, the amount of sample heating will vary between data points and adversely affect the observed exponential decay. Care must therefore be taken to avoid or minimize sample heating.

A simple way to reduce heating is to increase the relaxation delay between scans, and we looked at the dependence of the observed T_2 on the relaxation delay. T_2 data was obtained using five different relaxation delays: 1.0, 1.5, 2.0, 2.5 and 3.0s. The precision of each of the T_2 values was estimated from the exponential fit. The accuracy of the different T_2 measurements was estimated by assuming that the data obtained with the longest relaxation delay (3.0s) gave the ‘correct’ $T_2 (T_{2c})$:

$\text{accuracy} = \frac{1}{N} \sum \frac{\Delta T_2}{T_{2c}}$

where ΔT_2 is the absolute difference between the T_2 at a given relaxation delay and T_{2c}. The average is over all 74 characterized residues (N). The relation between accuracy of the observed T_2 and the relaxation delay is shown in figure 1.

Figure 1. Effect of sample heating and length of the relaxation delay on the precision (○) and accuracy (+) of the measured 15N-T_2. For each delay, the average of all 74 measured T_2 is used. Precision and accuracy were evaluated as described in the text.
Although the precision of the various T_2 is nearly constant at -1%, the accuracy of those values is very poor when using short relaxation delays. For this sample3 and the experimental conditions described below4, a relaxation delay of 2.5s was necessary to obtain an accuracy of the order of -1%. The 1.5s experiment was repeated twice, two weeks apart, and showed that the inaccuracy of 4.5% was reproducible ("precise") to 1%. These data clearly demonstrate that one can obtain inaccurate T_2, although very precise, if care is not taken to minimize sample heating. In our experience, dielectric heating of the NMR samples due to the electric component of the r.f. field is an insidious problem which is easily avoided by either choosing a long relaxation delay (≈ 3 s) or ensuring that the relaxation delay is optimized for the conditions. A relaxation delay of 3s was used in the present study. Note that a longer relaxation delay also reduces potential problems related to partial water saturation.

3 The NMR sample was prepared by dissolving 10mg of metal-free N-domain of troponin C (NTnC) in 0.5 ml of 100 mM KCl in 90% H$_2$O/10% D$_2$O. To the sample was added 5 µL of 100 mM DSS and 5 µL of 1.3% NaN$_3$ • EDTA was also added to a concentration of 10 mM to ensure that the sample was completely in the apo form. The pH was adjusted to 6.7 with HCl and or NaOH prior to transfer to the NMR tube.

4 15N relaxation experiments were performed at a temperature of 29.6°C on Varian UNITY Inova 500 spectrometers equipped with z-axis pulsed field gradient, triple resonance probes. The 15N-T_2 experiment was performed using the pulse sequences from Farrow et al.1. The T_2 was acquired using 15N relaxation delays of [17, 33, 50, 66, 83, 99, 116, 132, 149, 165, and 182 ms]. A field strength of 3.8 kHz was used for the 15N hard pulses. WALTZ-16 decoupling of 15N during acquisition was performed using a field strength of 1.2 kHz. The spectral widths were 7000 and 1300 Hz for 1H and 15N, respectively. The acquisition times in t_1 (15N) and t_2 (1H) were 74 and 73 ms, respectively. Other various delays and gradient strengths were as described in Farrow et al.1.

Sincerely,

Stéphane M. Gagné
Leo Spryacopoulos
Brian D. Sykes
Nothing But Accurate!

DOTY SUSCEPTIBILITY PLUGS EXCLUSIVELY FROM WILMAD

Over the workstation, off the console, through the magnet stacks, down the bore, into the Wilmad sample tube, between the Doty Susceptibility Plugs, long-term acquisition, Nothing but Accurate!

Huh!

Under the magnet, off the cabinet, around the workstation, off the New Wilmad NMR Catalog, down the bore, into the Wilmad sample tube, between the Doty Susceptibility Plugs, long-term acquisition, Nothing but Accurate!

Here's why you'll find Doty Susceptibility Plugs better than those other Glass Microcells

SAVE RESEARCH DOLLARS
• Less costly than the susceptibility altered glass option
• Use them with standard Wilmad NMR tubes

EASE OF USE
• Simple bubble removal
• Store samples in screw cap tubes

BETTER MATCHING
• More plug materials match more solvents
• Doty plug susceptibility more consistent than glass alternative

Structure and coordinates of sex determining factor (SRY)-DNA complex kindly provided by Drs. G. M. Clore and A.M. Gronenborn

Critical Applications
Need All-Star Accuracy!

WILMAD
No. 1 In NMR Worldwide!
1-800-220-5171 • www.wilmad.com
IT’S YOUR CHOICE

Wilmad leads the way with NMR Catalogs.
Now available on the world wide web and in full color print format!
[Look for updated product and technical information on our internet version]

WILMAD®
No. 1 in NMR World Wide!

Printed Version

Susceptibility Plugs for 3 & 5mm NMR tubes
RotoTec Zirconia MASS Rotors
RotoTec Spinner Turbines for Varian & Bruker Sample Changers
High Quality Aldrich Deuterated NMR Solvents
Universal NMR Tube Washers

Internet Version

A Sample of the New Products
in the all New Wilmad NMR Catalog!

YES! Send me your all new printed NMR Catalog

Co. Name: ___________________ Name: ___________________
Address: ___
City: ___________________ State: ___________ Zip: ___________
Phone: ___________ Fax: ___________ E-Mail: ___________

Call 1-800-220-5171 ask for catalog fulfillment or
Fax Back to... 1-800-220-1081 • International Fax... 1-609-697-0536
Dear Barry,

You and your readers may note from the new letterhead that I have moved to the university of Leipzig. Leipzig is an exciting city in the new German East and the university has a long standing tradition in NMR.

One of our last methodological efforts at Marburg was the development of a pulse sequence which we dubbed ACCORD-HMBC. It combines the ACCORDION principle [1] of Ernst and Bodenhausen with the HMBC technique. The idea is that using this principle, one is not bound to one fixed delay and can sample cross peaks from all long range C,H connectivities. Thus the HMBC polarization delay d_2 is varied within the sequence spanning the range of C,H spin coupling constants from 4-20 Hz.

Another feature which we have built in the sequence is the dual stage low pass filter [2] by Soerensen, which really works very efficiently if applied twice. Since there is no more breakthrough of 13C,H cross signals 13C GARP decoupling can be used, which yields an even higher sensitivity of the sequence. Of course the whole thing is gradient selected. We show in this letter the actual pulse sequence and the result for sucrose.

Sincerely yours

[signatures]

\[\Delta_1: \frac{1}{2} (U_{\text{max}} + 0.146 (U_{\text{max}} - U_{\text{min}})) \]

\[\Delta_2: \frac{1}{2} (U_{\text{max}} + 0.146 (U_{\text{max}} - U_{\text{min}})) \]
September 11, 1997 (received 9/26/97)

Sharing Experiment Space under VnmrX

Dear Barry,

As you know, we have a fairly large number of users on the various instrument systems here at Texas A&M, and with the increasing desires/requirements for user disk space it becomes something of a problem to provide sufficient disk space for all the various user needs. Especially troublesome are the space requirements for 3D experiments.

In order to maximize the use of disk space, I have implemented a distributed resources approach. Each of the seven Sparc stations in the NMR facility has several gigabytes of disk space available, and this disk space is divided up by research group. Each disk drive has home directory space for 2 or 3 different research groups. These directories are shared, using NFS and the Solaris automount facilities, by all of the Unix computers. Thus, each user has one home directory, which is available as needed on any of the spectrometers. This eliminates the duplication of files and the problems associated with keeping track of the location of a given spectrum. Also simplifying both user administration for me, and convenience for the users, is the use of the NIS+ management tools. This package permits administration of a single password and group file, along with the various automount maps, across the entire set of workstations, eliminating problems in keeping multiple copies of the same file in sync.

While this approach maximizes the use of the available disk space, it does not solve the problem of storing very large experiments, especially since the Varian software does not have provision for creating an experiment file larger than a single disk partition. Given the limited number of SCSI addresses available on a SCSI controller card, and the finite number of S-bus slots available to add SCSI controllers, it is not practical to add sufficient disk space to let anyone run one of these large experiments. We solved this problem by adding a single large 9 gigabyte drive to the UnityPlus 500, where the 3D experiments were being performed. Instead of giving each user a portion of this large disk, I simply created two experiment files on this disk and wrote a series of scripts and macros that automatically link and unlink these experiments to a user's vnmrsys directory. This makes the large disk available for any user on the system, while he is logged on and using the system, but not available when he is logged on remotely for data processing or for operation on one of the other spectrometers. This concept could be extended by sharing the 9 Gigabyte drive, mounting it on a remote system, and then linking the experiments on that system. Our experience has been that there does not appear to be any appreciable performance penalty associated with using NFS-mounted directories for NMR.
experiment files, perhaps because the acquisition processor is effectively buffered by several megabytes of HAL memory. The only issue to resolve in exporting the large drive to multiple spectrometers is in defining a protocol that permits only one user to link the experiments at any one time.

We have also extended this idea to providing for archival data storage to machines outside of the NMR facility. If a user exports a disk directory from a remote workstation, we will add that directory name to an automount table so that it is mounted under /nmrdata on any of the local systems as needed. In this way, users can have more control over the amount of disk space available to them for data storage, simply by exporting a larger disk partition. It is also possible to use this foreign-system disk space to store and link additional experiments, if desired.

While linking a single experiment to any one of several users is conceptually very simple, there are several things that need to be done to make it work properly. One issue is that of file ownership, in that VnmrX expects the experiment file to be owned by the person using it. Since only the root user can make an arbitrary change in file ownership, this posed something of a problem to implement in an automatic fashion. The obvious approach of setting the SUID mode bit on a root owned file is not normally permitted on script files under Solaris. This can only be done in a csh script using the special -b option flag. In the scripts I wrote, the file ownership command was factored out of the bourne shell script into a short csh script called /vnmr/bin/vchown, which must have the suid bit set in the permission modes. The /vnmr/bin/makelink script then calls this script to change ownership after it has created the necessary links. The unlink script has no special permission mode requirements and can be run by any user with no restrictions. This procedure is implemented by adding a shell call to the makelink script from the bootup macro, creating the links when a user logs in, and adding a shell call to the unlink script in the exit macro to remove them when he logs out.

The other major problem that presents itself is that of defining which user has access to the linked experiments. We have addressed this by permitting access to these experiments only to the user who is logged on to the system console and presumably in a position to collect a large data set. The obvious problem with this approach is that it may be a problem to find sufficient time to process and manipulate this data after it is collected. Local practice however is to use 3rd party software on remote systems for data processing. With a remote directory automounted under /nmrdata, it becomes trivial to save a data set directly to the remote machine for further processing.

Copies of the scripts and macros involved, along with more detailed information on their operation, are available in the software section of our web site at http://wwwchem.tamu.edu/services/NMR. The implementation is straightforward and should not require extensive modifications to work on other Varian systems.

Best Regards,

Steven K. Silber
Doty Announces...

22 kHz 5 mm and 15 kHz 7 mm CPMAS
Upgrade old probes with new rotors and caps!

If you have a 5 mm or 7 mm Doty SuperSonic MAS probe, you can upgrade its spinning performance by simply ordering new turbine caps and rotors. You can expect a dramatic improvement in spinning stability at all speeds. Moreover, you should be able to exceed the original spinning speed specification for your probe by about 10% unless other problems are present. For example, we routinely spin moderately dense samples, such as KBr, in excess of 20 kHz with our new 5 mm SS silicon nitride rotors and caps in old, well-used SuperSonic probes.

The improved turbine cap design is fully compatible with the original spinner assembly and rotors. The new caps are immediately available in all of the old options for thick wall or thin wall rotors: short, long, Aurum (polyimide), Kel-F. Drive efficiency is improved about 15%, while axial bearing stability is dramatically improved, thereby eliminating critical drive balance requirements, which were the source of most spinning difficulties in the past.

Drive pressure must be limited when using the new turbine caps (shipped after Oct. 1, 1997) with silicon nitride rotors shipped prior to 1997 or with any zirconia rotors or with thin-walled silicon nitride rotors, as it is possible to exceed their burst speed. Zirconia rotors may be used at low speeds, but silicon nitride rotors reduce thermal gradients by a factor of three to eight (depending on spinner design), permit 30% to 60% higher spinning speeds, and improve Q.

If seeing is believing, call and ask for a free pair of turbine caps (with an order, limit one free pair per institution) for your Supersonic probe — but be sure you’re using our new silicon nitride rotors before you try to break the sound barrier. (How long has it been since an NMR instrument company offered to give you something you could really use?)

If your supersonic probe needs service, you may consider having its stator and coil replaced with the latest version for improved B\textsubscript{s} homogeneity and lineshape. No, it won’t perform like the XC5 (liquids-like resolution and lineshape), but it will be three times better than the original supersonic design. While our turbine cap upgrade applies only to 5 mm and 7 mm SuperSonic probes (and probably to DOR in a few months), resolution upgrades are available at modest cost for all solids probes. In some cases, decoupling upgrades are also available.

Doty Scientific, Inc. 700 Clemson Rd. Columbia, SC 29229 USA
Phone: (803) 788-6497 Fax: (803) 736-6495 E-Mail: Sales@doty.usa.com
Website: http://www.dotynmr.com
The Doty XC5 Takes Decoupler Heating of Biological Samples to a New Low

in Solids, Semi-solids, and Liquids
Double-Tuned, H-F, Triple-Tuned, Quad-Tuned, Even Quad-Tuned with Lock

Results from a Quad-tuned XC5 VAS Probe - H-F-X-N XC5 for a 500 MHz Wide Bore

- 2.5 µs π/2 pulses were obtained on all channels except 15N on a 1.0 molar salt solution.
- Proton linewidth was 2.5 Hz, with excellent line shape.
- 80 kHz decoupling was obtained with 1H and is expected with 19F.
- Max. spinning speed: 18 kHz.
- Active sample volume: 110µL.
- B inhomogeneity ~5%, all channels, for 70 µL.
- No fluorine backgrounds were detectable.
- Temperature range: -150°C to 200°C.
- Angle adjustment range: 0 to 90 degrees.
- Thermal gradients were determined to be less than 0.7°C for a 70 µL sample of lead nitrate spinning at 13 kHz at 65°C and for 120 W dec. at 10% duty cycle.

The next time someone tries to convince you that active sample volume, filling factor, thermal gradients, and rf efficiency aren’t all that important, ask for a S/N spec for high-field REDOR, HR Fast MAS, and CPMAS.‘

<table>
<thead>
<tr>
<th>REDOR Probes</th>
<th>Rotor dia./speed</th>
<th>Linewidth</th>
<th>Thermal Grad.</th>
<th>VAS</th>
<th>S/N, *nt=4 (500 WB)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Doty</td>
<td>5 mm, 19 kHz</td>
<td>3/30/60</td>
<td>1.2°C</td>
<td>Yes</td>
<td>>400</td>
</tr>
<tr>
<td>Vendor 2</td>
<td>4 mm, 15 kHz</td>
<td>~300/6000'</td>
<td>~30°C</td>
<td>No</td>
<td>~150°</td>
</tr>
<tr>
<td>Vendor 3</td>
<td>2.5 mm, 35 kHz</td>
<td>?</td>
<td>~30°C</td>
<td>No</td>
<td>~30°</td>
</tr>
</tbody>
</table>

*HMB, CP. *Estimates based on available, related data.

Why silicon nitride stators? Compared to zirconia, silicon nitride has an order-of-magnitude higher thermal conductivity (allowing much lower thermal gradients), is an order-of-magnitude more wear resistant, and has an order-of-magnitude lower dielectric loss factor for higher Q.

Why is HF balancing necessary? The only satisfactory approach to stable HF tuning, low decoupler noise, and high salt tolerance is balanced HF.

Why is S/N so much higher than in competitors’ designs? Larger sample volume helps most. Also, there are severe manufacturing limits on minimum wall thickness in hard ceramics and physical limits on coil leads. Filling factor and Q both drop rather sharply as rotor diameter drops below 5 mm. External (transmission line) tuning usually reduces LF and/or MF filling factor (as rigorously defined) by a factor of 2 to 4 in high-field REDOR probes. Note that some competitors quote S/N for 12 scans instead of 4 scans.

Above: Cholesterol Acetate, 1H-13C CPMAS, WB 500 MHz, 64 scans in 5-mm REDOR probe. 90 kHz 1H decoupling for 51 ms, 50 kHz CP for 4ms, LB=0. 40+ resonances appear resolved. Spectra courtesy of K. Zilm and B. Tounge, Yale.

Above: WHWLLKLPGOPNLeY REDOR, 300 MHz WB, 95 kHz 1H during evolution. 13C π pulses on alternate cycles. Spectra courtesy of Ruth Stark, CUNY, College of Staten Island.
Dear Barry,

With this communication we would like to initiate our subscription to the NMR Newsletter. To that end we would like to briefly describe the instrumentation situation (and hopes) and conclude with some specific overviews of two areas of personal interest, solids NMR and new methods of data analysis in complex systems.

The department itself is currently equipped with an ACF200, an AM400 and a CX200. Earlier this year we initiated a program to ensure that offline NMR processing is available to all, which has included the purchase of an Acorn NMR NUTS site license (which I think has proven to be very successful) and the installation of an SGI O2 workstation as a server for the NMR users in the department. Eventually all users should have seamless access to both PC and UNIX-based software and related NMR utilities. I should note that the user base is of the order of 100-120 persons at the moment, including faculty, graduate students, post-docs and some outside industrial users. Various processes are in the works that should ensure that NMR use/capabilities increase significantly. The 18-year old CX200 (still running after all these years with a magnet that has never quenched and never been pumped down... is this a record?) will become a TECMAG/Bruker hybrid instrument some time this fall with the replacement of the original console with an Apollo console with related all digital electronics.

In the 'hopes' category we are now looking at 500+ MHz instrumentation to complement/replace existing instrumentation.

With respect to the solids situation Dr. Gang Wu has recently joined the faculty and will be involved in the development of the NMR of quadrupolar nuclei in the solid state. Our primary research interests are concerned with the development of novel solid-state NMR techniques in studying molecular structure, dynamics, and chemical bonding in chemical and biological systems. Currently, we are focused on the development and application of solid-state quadrupolar NMR with the emphasis on probing metal ion environments in biological systems including naturally occurring and synthetic cation-transport antibiotics, metalloproteins, nucleic acids and biomimetic models. A large number of biologically important nuclei such as ^{17}O, ^{23}Na, ^{43}Ca, and ^{67}Zn are quadrupolar (i.e., their spin numbers are greater than 1/2), and are difficult to study in solution media where rapid quadrupole relaxation times often lead to broad NMR lines. In contrast, molecular motions are significantly restricted in solids resulting in rather long relaxation times. This permits the possibility of obtaining high-resolution NMR spectra for quadrupolar nuclei in solids. However, to develop solid-state NMR techniques that can yield high-resolution spectra for quadrupolar nuclei has been a challenging problem in the field for many years.

An important breakthrough was made in 1995 by Frydman and co-workers with the invention of multiple-quantum magic-angle-spinning (MQMAS) NMR spectroscopy [1,2]. We have been actively involved in this new exciting frontier of solid-state NMR [3-6]. For example, we were able to obtain ^{17}O triple-quantum MAS spectra from a typical crystalline hydrate, Ba(ClO$_3$)$_2$·^{17}O, which has a large ^{17}O quadrupole coupling constant, $eQq/h = 6.8$ MHz [6]. It is seen from Figure 1 that the resolution in the ^{17}O MQMAS spectrum is approximately 150- and 500-fold higher than found in the MAS and static spectra, respectively. We are currently applying this new technique to study metal ion binding to biomolecules.

In other areas my interests have encompassed the application of neural networks and multivariate (principal component) image analysis to more complex NMR-related problems spanning time domain, solution, solid state and imaging applications. For instance, Y. Hiltunen, E. Heinerni, and M. Ala-Korpela, J. Magn. Reson. B 106, 191 (1995) first reported quantitative neural network analysis of NMR spectroscopic data of lipoproteins. Neural network were trained to relate part of the 1H spectra of plasma samples to lipoprotein lipid values obtained by biochemical assays. 1H NMR spectroscopy was used to quantify lipoprotein lipids.
directly from plasma samples with no pretreatment and no isolation or decomposition of lipoprotein particles. The method does not require fasting samples and samples are not destroyed. We can use lipoprotein lipid methyl and methine resonance regions to derive absolute concentrations of VLDL (very low density lipoprotein), LDL (low density lipoprotein) and HDL (high density lipoprotein) and IDL (intermediate density lipoprotein) as well as selected apo-lipoprotein species. Table 1 illustrates some results. For the training data sets correlation coefficients are quite high (although this is not necessarily the best or optimum variable on which to base goodness of fit in these applications). Similarly, most test data sets (i.e., predicted values using NMR data that the networks had never seen before) exhibited high correlation coefficients. In those instances where the more traditional backpropagation feed forward neural networks have proven to be inadequate, we have successfully investigated the application of other methods / topologies (general regression neural networks, polynomial nets). The lesson here is that in complex data sets involving significant non-linear relationships for which we have little prior knowledge (or even understanding) one can quite successfully devise realistic and useful predictive models.

Similarly, these methods are (successfully) being applied to correlate solid state 13C NMR analyses of food (cattle feed) to metabolism in animals, solid state NMR relaxation times in polymer systems as related to properties in pharmaceutical products, classification of breast cancer tumors from both dynamic contrast magnetic resonance imaging studies and in-vivo MRS (i.e. non-invasive) spectroscopic studies of tumors from which classifications and models can be derived...again all studies related in some way to the application of neural networks.

References
Table 1 Neural Network Analysis Results

<table>
<thead>
<tr>
<th>TRAINING DATA:</th>
<th>Variable</th>
<th>Std Dev</th>
<th>Max Error</th>
<th>Correlation Coeff</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
<td>0.043</td>
<td>0.103</td>
<td>0.992</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>0.021</td>
<td>0.050</td>
<td>0.985</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>0.172</td>
<td>0.419</td>
<td>0.979</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>0.047</td>
<td>0.113</td>
<td>0.988</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>0.080</td>
<td>0.155</td>
<td>0.987</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>0.016</td>
<td>0.038</td>
<td>0.936</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>0.021</td>
<td>0.054</td>
<td>0.988</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>0.007</td>
<td>0.024</td>
<td>0.986</td>
</tr>
<tr>
<td></td>
<td>9</td>
<td>0.026</td>
<td>0.083</td>
<td>0.994</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>0.049</td>
<td>0.121</td>
<td>0.973</td>
</tr>
<tr>
<td></td>
<td>11</td>
<td>0.058</td>
<td>0.146</td>
<td>0.986</td>
</tr>
<tr>
<td></td>
<td>12</td>
<td>0.068</td>
<td>0.182</td>
<td>0.987</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>TEST DATA:</th>
<th>Variable</th>
<th>Std Dev</th>
<th>Max Error</th>
<th>Correlation Coeff</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
<td>0.299</td>
<td>0.726</td>
<td>0.971</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>0.092</td>
<td>0.184</td>
<td>0.932</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>1.450</td>
<td>4.722</td>
<td>0.387</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>0.286</td>
<td>0.562</td>
<td>0.759</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>0.658</td>
<td>1.387</td>
<td>0.961</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>0.069</td>
<td>0.218</td>
<td>0.807</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>0.134</td>
<td>0.402</td>
<td>0.867</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>0.056</td>
<td>0.094</td>
<td>0.162</td>
</tr>
<tr>
<td></td>
<td>9</td>
<td>0.188</td>
<td>0.415</td>
<td>0.794</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>0.381</td>
<td>1.258</td>
<td>0.636</td>
</tr>
<tr>
<td></td>
<td>11</td>
<td>0.434</td>
<td>1.408</td>
<td>0.843</td>
</tr>
<tr>
<td></td>
<td>12</td>
<td>0.385</td>
<td>0.737</td>
<td>0.593</td>
</tr>
</tbody>
</table>

Variables:
1. VLDL_chol, 2. IDL_chol, 3. LDL_chol, 4. HDL_chol, 5. VLDL_tg, 6. IDL_tg, 7. LDL_tg, 8. HDL_tg, 9. LDL_ApoA1, 10. LDL_ApoB, 11. plasma_ApoB, 12. plasma_ApoA1, where chol= cholesterol,
tg=triglycerides

Coworkers on these projects include: Prof Jostein Krane, NTNU, Trondheim, Norway and Ingrid S. Gribbestad, SINTEF Unimed, Trondheim, Norway.

On the following page we summarize the figures.

Figure 1(top) 17O NMR spectra of a solid sample of Ba(ClO$_3$)$_2$-17O (with 50% 17O enrichment) obtained at 9.4 T. The sample spinning frequency was 19.8 kHz in both the MAS and MQMAS experiments; (bottom) 500 MHz 1H NMR spectrum of human blood plasma showing high field region of interest used in analyses.
TECHNICAL SUPPORT POSITION IN SOLID STATE NMR

A position is available in the Laboratory of Chemical Physics, National Institutes of Health in Bethesda, Maryland, to provide scientific and technical support in the research group of Dr. Robert Tycko. Research in Dr. Tycko's group centers on the development of solid state nuclear magnetic resonance (NMR) and optically-pumped NMR techniques for structural studies of biopolymers, and on the application of these techniques to problems in biophysics and structural biology. Responsibilities include the maintenance and operation of solid state NMR spectrometers, the configuration and upkeep of computer systems, and the design and fabrication of novel experimental apparatus. Applicants should have a bachelor's or master's degree in physical science or engineering, experience with electronics and other complex scientific equipment, and good computer skills. Applicants with more advanced degrees or additional experience are welcome. The appointment will be at the GS-7 or GS-9 level, depending on qualifications. Interested parties should contact Dr. Tycko by e-mail (tycko@helix.nih.gov) as soon as possible for further details.

The future of life on earth is in some very capable hands.

Yours.

AT MONSANTO, we're researching the world's most ground-breaking innovations. We're a global Life Sciences company on a mission—to develop solutions for a sustainable planet. That's why our entire organization, from agricultural biotechnology to pharmaceuticals to food ingredients, is dedicated to improving life on our planet. We've already strengthened a plant's natural resistance to insects. We've discovered new treatments to relieve arthritis pain and control high blood pressure. With some of the best professionals in the industry, we're developing the breakthroughs that will revolutionize the entire field of biotechnology.

Our Pharmaceutical Sector, Searle, is bringing to the world increasingly innovative and important pharmaceutical products that satisfy unmet medical needs. We are currently seeking candidates for an opening in the Chicago area for the following position:

NMR Spectroscopist

Join a team of NMR professionals responsible for providing support to drug Discovery and Development. The NMR team maintains and operates both full service and open access NMR laboratories equipped with a variety of high resolution spectrometers, providing routine analyses, as well as designing and performing experiments for the solution of special problems, and investigating and implementing new technology. LCNMR will be implemented at 600 MHz in early 1998.

The successful candidate will have a Ph.D. in Chemistry and a strong theoretical and experimental background in ID and 2D NMR. Good problem solving and communication skills and the ability to work in a team environment are musts. Electronics, HPLC, and UNIX skills are definite pluses.

If you think you can make an impact, here's your chance to prove it. Please send your resume and three references to: Monsanto Life Sciences Company, c/o Searle, Job Code: NMR, 4901 Searle Pkwy, Skokie, IL 60077. EEO/AA Employer M/F/D/V. To learn more about Monsanto, please visit our website at www.monsanto.com

Monsanto

SEARLE
THE UNIVERSITY OF MISSOURI-ROLLA, DEPARTMENT OF CHEMISTRY, invites applications from individuals with expertise to oversee all aspects of its NMR facility operation, maintenance, training and related academic course activity. The successful candidate will also participate in the oversight of departmental utility development projects. Ph.D. degree in Chemistry or Physics is required with a strong background in both solution and solid state NMR. Send applications with vitae to Dr. Harvest Collier, Interim Chair, Department of Chemistry, University of Missouri-Rolla, Rolla, MO 65409-0010. Review of applications will begin November 1, 1997 and continue until the position is filled. UMR is an AA/E0 employer.

POSTDOCTORAL POSITION

A postdoctoral position is available in the Laboratory of Biophysical Chemistry at the National Heart, Lung, and Blood Institute. Our interests cover a broad range of NMR applications towards protein and protein-nucleotide structure determinations. Incorporating anisotropic diffusion as well as anisotropic susceptibility information in protein structure calculation are just a few examples of what this laboratory is currently undertaking. Anyone who is interested in practical implementation of newly developed NMR techniques in structure determination are encouraged to apply.

Please direct all inquiries to Dr. Nico Tjandra
Laboratory of Biophysical Chemistry
National Heart, Lung, and Blood Institute
National Institute of Health
9000 Rockville Pike
Building 3, Room 418
Bethesda, MD 20892-0380
U. S. A.

email: nico@helix.nih.gov
Address all Newsletter correspondence to:

Dr. B. L. Shapiro
The NMR Newsletter
966 Esinore Court
Palo Alto, CA 94303.
650-493-5971* - Please call only between 8:00 am and 10:00 pm, Pacific Coast time.

Deadline Dates

No. 471 (Dec.) 21 Nov. 1997
No. 472 (Jan.) 19 Dec. 1997
No. 473 (Feb.) 23 Jan. 1998
No. 474 (Mar.) 27 Feb. 1998
No. 475 (Apr.) 27 Mar. 1998

* Fax: 650-493-1348, at any hour. Do not use fax for technical contributions to the Newsletter, for the received fax quality is very inadequate.
E-mail: shapiro@nmmnewsletter.com
http://www.nmmnewsletter.com

The Newsletter’s fiscal viability depends very heavily on the funds provided by our Advertisers and Sponsors. Please do whatever you can to let them know that their support is noted and appreciated.

Mailing Label Adornment: Is Your Dot Red?

If the mailing label on your envelope is adorned with a large red dot: this decoration means that you will not be mailed any more issues until a technical contribution has been received.
How To Run JEOL's Eclipse+ Spectrometer

Step 1: Enter your sample name and the solvent.
Step 2: Click the mouse button on the data you want.
Step 3: Walk away with your data.

JEOL's Eclipse Spectrometer will automatically do everything else for you.
✓ Auto Probe Tuning (with AutoTune Broad Band Probe)
✓ Auto-sample Control (with AutoSample Changer)
✓ Auto Selection of Spectrometer Conditions
✓ Auto Baseline Correction
✓ Auto Data Presentation
✓ Auto Phase Correction
✓ Auto Digital Filtering
✓ Auto S/N Monitoring
✓ Auto Queue Control
✓ Auto Receiver Gain
✓ Auto Data Storage
✓ Auto Referencing
✓ Auto Processing
✓ Auto Peak Picks
✓ Auto Integration
✓ Auto Plotting
✓ Auto Shim
✓ Auto Lock