First Steps on Brand-New Bruker DRX Spectrometers

Deformation Corrections (Solvent Effects on Molecular Structure in Liquid Crystals by NMR)

Position Available

1H/19F/13C Triple Resonance NMR of Fluoropolymers

Rinaldi, P. L., Ray III, D. G., and Li, L.

900 G/cm Self-Diffusion Measurements in a Narrow Bore 500 MHz Spectrometer

Antalek, B., Williams, T., Hewitt, M., Baltusis, L., Kilpatrick, J., Doty, F. D., and Wilcher, J.

What is the Smallest Volume One Can Measure?

Anklin, C., and Lin, A.

MAXY-NMR

Liu, M., Lindon, J. C., and Nicholson, J.

High Field Gradient Calibration in FT-PGSE; Equipment for Sale

Stilbs, P.

Position Available

Butler, L. G.

17O Experiments on Complexes of Dy(III) and Oxidized Carbohydrates

Johnson, L.

Magnetic Relaxation in Quadrupolar-Split Systems: Application to Nb in LiNbO$_3$

McDowell, A. F., Snyderman, D. M., Conradi, M. S., and Norberg, R. E.

Don't Swim With This One; 3D Structure of a Toxic Cyclopeptide from Water Blooms

Edlund, U.

Prosthetic Devices and Magnetic Fields

Riddell, F. G.

Bruker/TCPIP Error Log Files

Fagerness, P. E.

Annotation Acrobatics

Babcock, D. M., and Gmeiner, W. H.

Performance of a Nalorac 8mm PFG Triple Resonance Probe

Baldisseri, D., and Byrd, R. A.
TABLE 1 DEUTERATED SOLVENTS

<table>
<thead>
<tr>
<th>Cat. No.</th>
<th>Formula</th>
<th>Min. (bp)</th>
<th>Density</th>
<th>MP (°C)</th>
<th>BP (°C)</th>
<th>-X, X 10<sup>4</sup> @ (°C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>D-11</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.551 (22)</td>
</tr>
<tr>
<td>D-120</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.460 (20)</td>
</tr>
<tr>
<td>D-13</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.840 (20)</td>
</tr>
<tr>
<td>D-121</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.611 (20)</td>
</tr>
<tr>
<td>D-129</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.611 (20)</td>
</tr>
<tr>
<td>D-14</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.740 (20)</td>
</tr>
<tr>
<td>D-21</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.740 (20)</td>
</tr>
<tr>
<td>D-122</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.840 (20)</td>
</tr>
<tr>
<td>D-130</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.840 (20)</td>
</tr>
<tr>
<td>D-28</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.840 (20)</td>
</tr>
<tr>
<td>D-31</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.840 (20)</td>
</tr>
</tbody>
</table>

WILMAD GLASS COMPANY
Route 40 and Oak Road • Buena, NJ 08310 U.S.A.
609-697-3000 • TWX 510-687-8911
FAX 609-697-0536
TEXAS A&M NMR NEWSLETTER NO. 434, NOVEMBER 1994

AUTHOR INDEX

Anklin, C. . . 17
Antalek, B. 13
Bahbrook, D. M. 40
Baldisseri, D. 43
Baltusis, L. 13
Bigler, P. 2
Butler, L. G. 24
Byrd, R. A. 43
Conradi, M. S. . 31
Diehl, P. 5
Doty, F. D. 13
Edlund, U. 35
Fagenness, P. E. 39
Gmeiner, W. H. 40
Hewitt, M. 13
Johnson, L. 27
Kilpatrick, J. . 13
Li, L. 9
Liu, M. 19
Magnussen, S. H. 31
Murray, C. A. 13
Riddell, F. G. 36
Ray III, D. G. 9
Rinaldi, P. 6
Snydennan, D. M. . 31
Stilbs, P. . 23
Wilcher, J. . 13
Williams, T. . 13
Zax, D. . 6

TEXAS A&M NMR NEWSLETTER NO. 434, NOVEMBER 1994

ADVERTISER INDEX

Abbot Laboratories
American Microwave Technology
Bruker Instruments, Inc.
Buovights Wellcome Co.
Cryomagnet Systems, Inc.
The Dow Chemical Company
E. I. du Pont de Nemours & Company
Elm-ATT Ltd.
Isotex, Inc.
JEOL (U.S.A.) Inc., Analytical Instruments Division
JEOL

SPONSORS OF THE TAMU NMR NEWSLETTER

The Lilly Research Laboratories, Eli Lilly & Company
The Monsanto Company
Norrel, Inc.
Oxford Instruments
The Procter & Gamble Company, Miami Valley Labs
Programmed Test Sources, Inc.
Tecmag
Unifor Research
Union Carbide Corporation
The Upjohn Company
Varian, Analytical Instrument Division

FORTHCOMING NMR MEETINGS

36th ENC (Experimental NMR Conference), Boston, MA, March 26-30, 1995; Contact: ENC, 1201 Don Diego Avenue, Santa Fe, NM 87501; (505) 989-4573; Fax: (505) 989-1073.

International School of Biological Magnetic Resonance, 2nd Course: Dynamics and the Problem of Recognition in Biological Macromolecules, Erice, Trapani, Sicily, Italy, May 22-30, 1995; Contact: Prof. S. W. Fersht, Stanford Magnetic Resonance Laboratory, Stanford University, Stanford, CA 94305-3055; Phone: (415)723-6270; Fax: (415) 723-2230; or, Prof. J.-L. Lefevre, ESBS, CNRS-UPR9003, Univ. Louis Pasteur, Blvd. Sebastien Brant, F67400 Illkirch Graffenstaden, France; Phone: (+33) 88-655269; Fax: (+33) 88-655343. See TAMU NMR Newsletter 38.

37th ENC (Experimental NMR Conference), Asilomar Conference Center, Pacific Grove, California, March 17-22, 1995. Contact: ENC, 1201 Don Diego Avenue, Santa Fe, NM 87501; (505) 989-4573; Fax: (505) 989-1073.
FIRST STEPS ON BRANDNEW BRUKER DRX-SPECTROMETERS

Dear Dr. Shapiro

equipped with two brandnew BRUKER DRX-spectrometers we have made our first adventurous steps from our old AM 400 into the fascinating world of modern NMR. Among the various sophisticated techniques the very simple and "old-fashioned" 1D NOE experiment is still of some interest - at least here in Berne - to solve stereochemical problems, i.e. to measure and study the molecules 1H-NOE-response after irradiation of a few carefully selected target spins. The quality of NOE-difference spectra is of utmost importance especially to prove the presence/absence of the most meaningful but in most cases rather weak long-range NOEs. The series of NOE-difference spectra of a peracetylated trisaccharide (indeed a typical ROESY-case) with rather weak but still positive NOEs proves the excellent stability of our DRX-500 spectrometer. The spectrometer is equipped with the standard B-VT 2000 temperature controller and a set of 3 vibrations dampers. The sample was measured on a TBl-probehead (triple/1H,13C, BB/inverse).

The series demonstrates that reliable NOEs may be obtained with the accumulation of only a few scans (64). This is a real advantage compared to our former AM-times and improves the sample throughput dramatically.

Yours sincerely
Dr. Peter Bigler
Large volume probes for biomolecular research have always been preferred for NMR analysis. The low solubility of bio-molecules makes it necessary to use larger sample volumes to increase the measured sensitivity. By expanding the coil diameter, an increased number of molecules can reside in the coil region thus resulting in higher signal-to-noise performance. This allows extension of the NMR analysis to the micro molar concentrations.

Yet, as the diameter of the coil increases so does the difficulty in achieving excellent homogeneity over the sample volume (i.e. probe lineshape) and short $\pi/2$ pulse widths. These are important parameters since the lineshape directly impacts the probe’s water suppression capabilities, and a short $\pi/2$ pulse width increases the effective bandwidth covered by the pulse.

Now with Bruker’s latest generation 8mm probes, excellent lineshape and pulse widths are assured with the larger diameter samples.

Lineshapes typical of 5mm probes can now routinely be achieved on 8mm samples!!! In conjunction with Bruker’s high performance BOSS™ 2 shim system and the BSMS™ with Digital Lock, the 8mm probe can meet the highest performance standards for optimum water suppression. Figure 1 demonstrates the lineshape performance on an 8mm triple resonance inverse (TXI) at 750 MHz.

Additionally, typical $\pi/2$ pulse widths of \leq12 µsec ensure complete coverage of the entire 1H bandwidth.
The larger coil diameter allows consideration of concentrations previously unimaginable. An example is shown in Figure 2. A 1H-13C HSQC experiment was acquired on a doubly enriched sample of 170µM SH2 domain in 90% H$_2$O/10% D$_2$O with 350 NaCl (courtesy of Glaxo Research Institute). A total of 512 increments with 16 scans each were acquired in only 1 hour and 20 minutes on an AVANCE™ DMX 600 using an 8mm triple resonance inverse probe!!

Note, water suppression for this experiment consisted of presaturation instead of gradient solvent suppression since presaturation of the H$_2$O signal is much more rigorous test of the coil design.

Figure 3 demonstrates a 1H-15N HSQC on the same SH2 domain sample run on the AVANCE™ DMX 600. Again, total acquisition time was 1 hour and 20 minutes!!

Available for all field strengths, the 8mm family of probes can be produced in several configurations including:

- Selective 1H (SEH)
- Broadband Inverse (BBI)
- Triple Resonance Inverse (TXI)
- Quadruple Resonance Inverse (QXI)

Optional Z-gradient for all 8mm probes allows applications of most common GRAdient SPectroscopy (GRASP) techniques.
Properties of deformation corrections (solvent effects on the structure of molecules determined by NMR in liquid crystals)

Dear Barry,

Some years ago I wrote a short paper on the detection and localisation of solvent effects on the structure of molecules derived from NMR-spectra in anisotropic solvents (Mag. Res. in Chemistry 24, 667 (1986). In this paper I suggested to use three different liquid crystal solvents (LC_A, LC_B, LC_C) for molecules with one degree of order and to construct the 2-dimensional diagram of ratios of direct couplings $D_{\nu}(LC_B)/D_{\nu}(LC_A)$ versus $D_{\nu}(LC_C)/D_{\nu}(LC_A)$. In such a diagram there should be a single point independent of ν if there are no solvent effects. On the other hand the deviations from the single point corresponding to the equilibrium structure indicate the size of solvent effects (See the illustration).

Lately I have noted that in such diagrams all the points corresponding to the various couplings ν are on a straight line which passes through the equilibrium point. It can be shown that this is fulfilled as long as the deformation corrections are small. For the angle α we find the relation:

$$ I : \quad \tan \alpha = \left(\frac{S_B}{S_C} \right) \left(\frac{p_B^d - p_C^d}{p_B^d - p_C^d} \right) $$

where the p_ν's are defined by

$$ D_\nu^A = D_\nu^C (1 + p_\nu^h + p_\nu^d) $$

with:

- p_ν^h = harmonic vibration correction
- p_ν^d = percentage deformation correction for LC_A
- D_ν^e = equilibrium distance direct coupling
- D_ν^m = measured direct coupling in LC_A

Basel, September 21, 1994
(received 9/26/94)
As relation I is fulfilled independently of \(\nu \), there must exist relations between the various \(p_{\nu} \)’s which can only depend upon the molecular geometry. For small \(p_{\nu} \)'s and three different internuclear equilibrium distances \(r_1, r_2 \) and \(r_3 \) in molecules with one degree of order we find:

\[
II : \quad (p_1^R - p_1^I) (\frac{r_1}{r_2})^2 [1 - (\frac{r_1}{r_3})^3] = (p_2^R - p_2^I) (\frac{r_2}{r_3})^2 [1 - (\frac{r_2}{r_3})^3] + (p_3^R - p_3^I) (\frac{r_3}{r_2})^2 [1 - (\frac{r_3}{r_3})^3]
\]

Of course the relation is also valid if the data of \(LC^C \) are substituted for the ones of \(LC^B \).

This simple relation is quite surprising if we think of the very complex computer calculations for the determination of the \(p_{\nu} \)'s.

With best regards,

P. Diehl

Director of NMR Facility, Cornell University, Department of Chemistry, is seeking a Ph.D.-level NMR spectroscopist to manage its state-of-the-art NMR Facility. It is expected that the director will consult and/or work collaboratively with faculty, staff and students. Responsibilities will include supervision of facility staff, maintenance of equipment base, and user training and instruction. Demonstrated expertise in modern applications of NMR is expected. Applicants should send a resume, including a description of NMR experience, and arrange to have three letters of reference mailed to: Prof. David Zax, Department of Chemistry, Baker Laboratory, Ithaca, NY 14853. The committee will begin reviewing applications on November 15, 1994, and continue until the position is filled. An Affirmative Action Equal Opportunity Employer.
Can You Find All of the 13C-13C Bonds in this Spectrum?

FRED Can!

FRED (Full Reduction of Entire Datasets), Varian’s latest innovative software tool, finds peaks that other analysis methods can’t detect. Starting with data obtained by the powerful but inherently low-sensitivity INADEQUATE experiment, FRED applies advanced mathematical techniques to distinguish carbon-carbon correlations from spectral noise.

Unlike a spectroscopist, who looks only at the peaks in the absorption-mode spectrum, FRED uses all four quadrants of the two-dimensional hypercomplex dataset, and within each quadrant performs a complete lineshape fitting. By using every piece of available data, FRED finds peaks that previously were undetectable.

Combine FRED with Varian’s Nano·nmr™ probe to determine structures from quantities of material you never would have believed possible.

Both FRED and the Nano·nmr probe are available exclusively from Varian, the technology leader in small sample analysis.

For details, contact the Varian office nearest you.

Varian Associates 3120 Hansen Way, Bldg. 4, Palo Alto, CA 94304-1030, U.S.A. Tel: 1-800-356-4437 • Varian International AG Walter Hungerstrasse 30, CH-6303, Zug, Switzerland Tel: (41) 44-48 64 • Varian GmbH Alfelderstrasse 6, D-6100 Darmstadt, Germany Tel: (061 51) 70 30 • Varian Instruments Ltd. 3rd Matsuda Bldg., 2-2-6 Takanawa-Shinjuku, Tokyo, Japan Tel: (3) 3044-3211
Get the most out of your data by removing solvent peaks with time domain digital filtering.

The residual water signal in a first increment SSNOESY experiment, shown after (A) simple FT (B) low-frequency subtraction (LFS) and (C) zero-frequency subtraction (ZFS).

A non-excitation 2D sequence (SSNOESY) on 1 mm lysozyme, dramatically improved in (B) by zero-frequency subtraction processing in t_2. Note the peaks extremely close to the water in F_2.

Call your sales representative:
Australia (5) 563 8822, Austria (1) 69 33 400, Belgium (2) 73 9800, Brazil (1) 429 3444, Canada (516) 470 9230, Denmark (42) 94 4446, France (1) 40 96 26 30, Germany (61) 70 26 30, Italy (2) 739 3255, Japan (3) 3289 2222, Korea (2) 561 3276, Mexico (5) 533 9993, Netherlands (34) 390 9909, Norway (2) 59 74 70, Spain (6) 436 9464, Sweden (9) 54 02 30, Switzerland (42) 46 99 44, UK (0) 29 37 45. ID 800-356-4437. Other International (41) 800-4424.
October 13, 1994 (received 10/20/94)

Dr. Bernard L. Shapiro
Editor/Publisher
TAMU NMR Newsletter
966 Elsinore Ct.
Palo Alto, CA 94303

Dear Barry,

Subject: 1H/19F/13C Triple Resonance NMR of Fluoropolymers.

Since equipping our Unityplus-600 NMR with a third Rf channel having 1H to 15N irradiation capabilities this past summer, we have had tremendous success using 1H/19F/13C triple resonance experiments to characterize fluoropolymers. 19F/13C HMQC and HMBC experiments (with continuous 1H decoupling) have been among the simplest experiments we have used.

Figure 1 shows 19F/13C HMQC (Figure 1a-d) and 19F/13C HMBC (Figure 1e-g) spectra of 1-fluorohexane as an example. Owing to the high abundance and high magnetogyric ratio of 19F, there is no disadvantage to performing these experiments compared to the often used 1H/13C indirect detections experiments. They do offer some significant advantages; the most important being the large 19F chemical shift range and its sensitivity to minor changes in electronic environment.

Other advantages of 19F/13C over 1H/13C indirect detection are related to range of couplings with 13C. The two- and three-bond C-H couplings are relatively small and have overlapping ranges. It is often difficult to distinguish between two- and three-bond C-H couplings in HMBC experiments. Furthermore, longer range C-H couplings are not usually resolved. C-F couplings on the other hand are relatively large and there is little overlap of the ranges for two-bond (20-40 Hz), three-bond (5-20 Hz), and four-bond (0-5 Hz) C-F couplings. This not only leads to unambiguous assignments, but also provides structural information up to four-bonds from fluorine and enables us to detect crosspeaks from high viscosity polymer solutions in instances where 1H/13C HMBC experiments do not work.

We have found that it is usually preferable to perform 19F/13C HMQC experiments with delays optimized for the longer range couplings rather than using HMBC experiments to identify long range correlations. Figures 1a-d show 19F/13C HMQC spectra obtained with delays optimized for one-bond (160 Hz), two-bond (20 Hz), three-bond (5 Hz) and four-bond (1 Hz) C-F coupling, respectively. Figures 1e-g show 19F/13C HMBC spectra obtained with delays optimized for two-bond (20 Hz), three-bond (5 Hz) and four-bond (1 Hz) C-F coupling, respectively. By comparing successive HMQC spectra it is possible to identify new peaks in the spectra as longer delays are used. We have also found that we can usually detect crosspeaks from four bond C-F couplings from HMQC spectra (Figure 1e) when cross peaks from similar long range interactions are not evident in the HMBC spectra (Figure 1g). Also note the very large one-bond 13C isotope shift of carbon bound to fluorine (at F1=84 ppm) compared to the small isotope shift of 13C which is three bonds from fluorine (at F2=24 ppm) in Figure 1c.

Best Regards,

Peter L. Rinaldi
Professor of Chemistry

Dale G. Ray III
Res. Assistant Professor

Lan Li
Research Assistant
Figure 1. 13C/1H HMQC spectra with delays optimized for: a) $J_{CF} = 160$ Hz; b) $J_{CF} = 20$ Hz; c) $J_{CF} = 5$ Hz; d) $J_{CF} = 1$ Hz; and 19F/1H HMBC spectra with delays optimized for e) $J_{CF} = 20$ Hz; f) $J_{CF} = 5$ Hz; and $J_{CF} = 1$ Hz.
Specifying the wrong magnet could drive you round the bend.

The Oxford Instruments' pedigree is internationally renowned. For over 30 years we have been leading the way, creating the benchmarks for NMR magnet systems and transforming scientific ideas into usable, practical technology.

Our complete range of 100-750MHz magnets are designed, built in Oxford, the home of NMR technology, and are installed and serviced around the world, by our specialist engineers.

Working in partnership with our customers we are developing new products that will catapult NMR technology into the next millennium.

Innovation, and a commitment to create the very best, has made us the number one choice for so many. Our ability to deliver to the highest quality, time after time puts Oxford Instruments in a class of its own.

Talk to Oxford first - then decide!

Specify Oxford.
The Oxford Instruments Pedigree

Oxford Instruments are the pioneers of NMR magnet systems and associated cryogenic technology. After more than 30 years, we are still leading the way maintaining our worldwide reputation for transforming scientific ideas into usable, practical technology:

- Oxford was the first company to introduce NMR quality super-conducting magnets at 400, 500 and 600 MHz.
- We designed and built the world’s first compact superconducting storage ring for X-ray lithography.
- 20 Tesla magnets are routinely produced for physics research.

Making this happen are the people of Oxford instruments, their expertise and dedication makes them our greatest asset and a unique resource for our customers.

Our accumulated knowledge and experience is unparalleled and some of the best minds in research technology are consistently working in partnership with our customers, exploring new techniques and setting new standards in the design and manufacture of specialist research products.

But it does not stop there; supporting our customers day to day, and around the world, is a team of engineers and technical specialists. Always on hand, they keep Oxford products fully functional and equipped with the latest refinements to keep our customers at the leading edge.

New products such as the Oxford NMR™ are practical examples of our innovation so you can be sure of Oxford’s commitment to providing the very best in people and products for many years to come.

Standard specifications

<table>
<thead>
<tr>
<th>Magnetic Field Strength (kHz-MHz)</th>
<th>Room Temperature (°C)</th>
<th>Field Stability (kHz/Hour)</th>
<th>Maximum Helium Refill Interval (Days)</th>
<th>Minimum Operational Ceiling Height (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>750</td>
<td>51</td>
<td>15</td>
<td>60</td>
<td>3.8</td>
</tr>
<tr>
<td>600</td>
<td>51</td>
<td>10</td>
<td>120</td>
<td>3.4</td>
</tr>
<tr>
<td>500</td>
<td>51</td>
<td>10</td>
<td>150</td>
<td>3.2</td>
</tr>
<tr>
<td>400</td>
<td>54</td>
<td>8</td>
<td>365</td>
<td>2.8</td>
</tr>
<tr>
<td>360</td>
<td>54</td>
<td>8</td>
<td>365</td>
<td>2.8</td>
</tr>
<tr>
<td>300</td>
<td>54</td>
<td>3</td>
<td>365</td>
<td>2.8</td>
</tr>
<tr>
<td>270</td>
<td>54</td>
<td>3</td>
<td>365</td>
<td>2.8</td>
</tr>
<tr>
<td>260</td>
<td>54</td>
<td>2</td>
<td>365</td>
<td>2.8</td>
</tr>
<tr>
<td>200</td>
<td>54</td>
<td>2</td>
<td>365</td>
<td>2.8</td>
</tr>
<tr>
<td>100</td>
<td>54</td>
<td>1</td>
<td>365</td>
<td>2.8</td>
</tr>
<tr>
<td>500</td>
<td>89</td>
<td>15</td>
<td>120</td>
<td>3.4</td>
</tr>
<tr>
<td>400</td>
<td>89</td>
<td>10</td>
<td>180</td>
<td>2.8</td>
</tr>
<tr>
<td>360</td>
<td>89</td>
<td>10</td>
<td>365</td>
<td>2.8</td>
</tr>
<tr>
<td>300</td>
<td>89</td>
<td>3</td>
<td>365</td>
<td>2.8</td>
</tr>
<tr>
<td>270</td>
<td>89</td>
<td>3</td>
<td>365</td>
<td>2.8</td>
</tr>
<tr>
<td>200</td>
<td>89</td>
<td>2</td>
<td>365</td>
<td>2.8</td>
</tr>
<tr>
<td>100</td>
<td>110</td>
<td>1</td>
<td>119</td>
<td>2.8</td>
</tr>
</tbody>
</table>

We would be delighted to discuss your custom specification requirements for any specialist systems. For more information please contact your local Oxford Instruments sales and service organisation.

UK
Oxford Instruments
NMR Instruments,
Osney Mead, Oxford OX2 0DX,
England
Tel: +44 (0) 1865 269500
Fax: +44 (0) 1865 269501

France
Oxford Instruments SA
Parc Club-Orsay Universite,
91893 - Orsay Cedex,
France
Tel: (1) 6941 8990
Fax: (1) 6941 8680

Germany
Oxford Instruments GmbH
Kreuzberger Ring 38,
Postfach 4509, D-6200 Wiesbaden,
Germany
Tel: (611) 76471
Fax: (611) 764100

USA
Oxford Instruments Inc.
130A Baker Avenue, Concord,
MA 01742, USA
Tel: (508) 369 9933
Fax: (508) 369 6616

Japan
Oxford Instruments K.K.
8F, Second Funato Building,
1-11-11, Kodankita,
Chiyoda-ku, Tokyo 102
Japan
Tel: (3) 3264-0551
Fax: (3) 3264-0393 - 0626

Oxford Instruments, NMR Instruments
Osney Mead
Oxford OX2 0DX, England
Telephone +44 (0) 1865 269500 Fax +44 (0) 1865 269501
Dear Dr. Shapiro,

Recently the NMR group within Eastman Kodak Company (Rochester, NY) took delivery of a 5 mm, \(^{1}H/^{19}F\), air cooled, z-gradient probe built by Doty Scientific, Inc (Columbia, SC). The scientists at Varian Associates Inc. (Palo Alto, CA) have successfully integrated the probe with our Varian Unity 500, narrow bore (51 mm) spectrometer. A Highland DC amplifier enhanced to provide 20 amps (the 10 amp version is standard for Varian's PFG accessory) combined with a Sorensen VT power supply enable the probe to reach up to 900 Gauss/cm through a temperature range of -100 to +240 °C. Varian has also provided a comprehensive software package for fully automating the experiments, enabling ease of setup, processing and plotting. We use this system for pulsed gradient spin echo (PGSE) NMR experiments in order to measure self-diffusion coefficients (D) within a variety of chemical systems.

This diffusion system offers excellent measurement accuracy and precision. The following lists some standards which we have used for calibrating the instrument:

<table>
<thead>
<tr>
<th>Standard</th>
<th>(D \times 10^{-7} \text{ cm}^2/\text{s})</th>
<th>Literature reference and value</th>
</tr>
</thead>
<tbody>
<tr>
<td>50% w/w D_2O in H_2O</td>
<td>205 ± 1.8 (0.9%)</td>
<td>1) 208</td>
</tr>
<tr>
<td>10% w/w D_2O in H_2O</td>
<td>215 ± 2.5 (1.2%)</td>
<td>1) 223</td>
</tr>
<tr>
<td>99.9% D_2O</td>
<td>188 ± 2.1 (1.1%)</td>
<td>1) 190</td>
</tr>
<tr>
<td>neat n-dodecanol</td>
<td>5.74 ± 0.10 (1.7%)</td>
<td>2) 6.3</td>
</tr>
<tr>
<td>10% w/v poly(styrene)(\ddagger) in CCl_4</td>
<td>0.144</td>
<td>3) 0.150</td>
</tr>
<tr>
<td>25% w/v poly(styrene)(\ddagger) in CCl_4</td>
<td>0.0111</td>
<td>4) 0.0066</td>
</tr>
</tbody>
</table>

\(\ddagger\) \(D \pm \sigma\) for 14 measurements @ 25 °C
\(\ddagger\) \(D @ 30 °C\) for 212k MW monodisperse poly(styrene)

The eddy current problems as well as amplifier overdrive have been solved using ramped (trapezoidal shaped) gradients.\(^5\) For a ramp time of 200 \(\mu\)s the eddy ringdown times for a 900 G/cm gradient pulse on for 1 ms and 10 ms are less than 8 ms and 30 ms, respectively. Primarily, we employ the standard Stejskal-Tanner spin-echo pulse sequence with a three-gradient pulse train prior to the 90° pulse. The pulse train helps to provide a steady-state condition for the gradients so that the second gradient provides the same strength as the first.\(^6\) If a pulse train is not used, the eddy currents from the first gradient will superimpose upon the second gradient and lessen its strength by a slight amount. The result will be a slight phase difference among each of the acquired spectra. When large and long gradients are required, we employ the 5-pulse stimulated-echo pulse sequence with the long eddy current delay (LED).\(^6\) Another approach that should further reduce eddy current effects is multi-exponential compensation,\(^7\) although we have not attempted to implement this technique.

EASTMAN KODAK COMPANY • 1669 LAKE AVE. • ROCHESTER, NEW YORK 14650 • 716 458-1000
Figure 1 shows an example of a 25% w/v, 212k MW, monodisperse poly(styrene) in CCl₄. I will add that we share time on the instrument with the standard PFG probe for more general organic characterization problems. Despite the fact that each probe requires its own settings on the Oxford shim power supply in the cabinet, it only takes us about 45 minutes to successfully change probes in either direction (this includes shimming to linewidth specs but not a trip for coffee).

Sincerely,

Eastman Kodak Company: Brian Antalek
Michael Hewitt

Varian Associates, Inc.: Laima Baltusis
John Kilpatrick

Doty Scientific, Inc.: David Doty
James Wilcher

4) Callaghan, P.T; Pinder, D.N. Macromolecules, 17, 431 (1984); The predicted value for MW = 233k and T = 28 ºC is given. The measured value is 0.0052 ± 0.002.

Figure 1. Attenuation plot and spectra for 25% w/v monodisperse 212K MW poly(styrene) in CCl₄. The stimulated echo pulse sequence with LED was used with a diffusion time (Δ) of 82.1 ms, a gradient width (δ) of 6 ms (ramped gradients were used where the ramp time was 200 µs), and a gradient strength (g) which varied between 5 and 900 Gauss/cm. The integral for the aromatic region is plotted. The slope is -0.0229 and hence the diffusion coefficient is 1.11 x 10⁻⁹ cm²/s.
Shigemi’s high precision thin wall NMR sample tube has a unique construction. The wall thickness of this particular tube is reduced only around the position of the detection coil. The result of this new invention allows an increase in the sample volume and higher sensitivity without sacrificing its mechanical strength. Therefore, there is no need for special handling during routine usage of our Shigemi NMR tubes.

The spectra of 20mm sucrose in D$_2$O were obtained with a single scan without apodization prior to Fourier transformation on a Bruker AMX-600 spectrometer at 298 K. By using Shigemi high quality 5mm standard tube (Fig.1a) and the Shigemi highly sensitive thin wall 5mm tube (Fig.1b), the spectra confirms a sensitivity enhancement of about 10%.

<table>
<thead>
<tr>
<th>O.D. (mm)</th>
<th>Product Number</th>
<th>Wall Thickness (mm)</th>
<th>Concentricity/Camber (µ)</th>
<th>OD (mm)</th>
<th>ID (mm)</th>
<th>Price Each</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>PST-001</td>
<td>0.21</td>
<td>20/8</td>
<td>4.96 + 0.00 - 0.01 4.54 ± 0.01</td>
<td>$15.00</td>
<td>$13.50</td>
</tr>
<tr>
<td></td>
<td>PST-002</td>
<td>0.21</td>
<td>40/15</td>
<td>4.96 + 0.00 - 0.01 4.54 ± 0.01</td>
<td>$13.00</td>
<td>$12.00</td>
</tr>
<tr>
<td>8</td>
<td>STB-001</td>
<td>0.25</td>
<td>40/8</td>
<td>8.00 + 0.00 - 0.01 7.52 ± 0.01</td>
<td>$21.00</td>
<td>$20.00</td>
</tr>
<tr>
<td></td>
<td>STB-002</td>
<td>0.25</td>
<td>50/15</td>
<td>8.00 + 0.00 - 0.01 7.52 ± 0.01</td>
<td>$27.00</td>
<td>$25.00</td>
</tr>
<tr>
<td>10</td>
<td>ST10-001</td>
<td>0.25</td>
<td>40/8</td>
<td>9.98 + 0.00 - 0.01 9.52 ± 0.01</td>
<td>$36.00</td>
<td>$32.00</td>
</tr>
<tr>
<td></td>
<td>ST10-002</td>
<td>0.25</td>
<td>50/15</td>
<td>9.98 + 0.00 - 0.01 9.52 ± 0.01</td>
<td>$42.00</td>
<td>$38.00</td>
</tr>
</tbody>
</table>

SHIGEMI, INC.
Suite 21, 4790 Route 8 • Allison Park, PA 15101 • USA
Tel:(412)444-3011 • Fax:(412)444-3020
Shigemi has recently developed a unique alumina tube for ^{29}Si and ^{11}B NMR. The tube consists of a standard glass NMR tube connected to a highly densified alumina bottom which holds your sample. By using our alumina tube, the ^{29}Si spectrum is free from a broad ^{29}Si signal, and the spinning sidebands are suppressed to a minimum because of the tube's precision and quality. As of now, only Shigemi can offer you this very specialized and high quality tube for a reasonable price.

<table>
<thead>
<tr>
<th>Type</th>
<th>Length (mm)</th>
<th>OD (mm)</th>
<th>ID (mm)</th>
<th>OD (mm)</th>
<th>Camber (µ)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Si-005</td>
<td>180</td>
<td>4.965 + 0.005</td>
<td>4.0 ± 0.1</td>
<td>2.5</td>
<td>± 0.02</td>
</tr>
<tr>
<td>Si-010</td>
<td>190</td>
<td>10.0 + 0.01</td>
<td>9.0 ± 0.1</td>
<td>6.5</td>
<td>± 0.02</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Type</th>
<th>Diameter</th>
<th>Price for 5 tubes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Si-005</td>
<td>5 mm</td>
<td>$300.00</td>
</tr>
<tr>
<td>Si-010</td>
<td>10 mm</td>
<td>$400.00</td>
</tr>
</tbody>
</table>
What is the smallest volume one can measure?

Dear Barry,

Early in 1992 Bruker reintroduced their line of 2.5 mm microsample probes, which had been around for quite some time, but advances in probe technology now permitted a design, which gave comparable resolution and lineshape to a regular 5 mm probe. Using a standard 2.5 mm sample tube requires a volume of at least 70 microliters. The spectroscopist working with very small amounts wants to avoid any extra microliter of solvent, which would unnecessarily dilute the sample. Restricting the volume is a technique which has been applied in a variety of ways (vortex plugs, spherical and cylindrical samples or tubes with very thick walls). Shigemi now introduces the BMS-0025 sample tube system which, just like the well known 5,8 and 10 mm tubes, is a NMR sample tube with a thick bottom and a tight fitting insert (Fig 1). The sample tube is 100 mm in length. It can be used in a standard 5 mm spinner, if it is held in an inverted 5 mm tube by a teflon spacer. The sample height best matching the RF-coil for the 2.5 mm microsample probes is 12 mm and with the inner diameter of 1.9 mm, this results in a volume of 34 mm3 or 34 microliters. We prepared a sample of 2 mM Lysozyme in 90%H$_2$O/10%D$_2$O and transferred this solution to the BMS-0025 sample tube. All experiments were run on a Bruker AVANCE DMX-600 spectrometer equipped with a 2.5 mm 1H - 13C/15N triple resonance probe. The experiments shown in Fig 2 and 3 were run with a 10 mm sample height, corresponding to 28.35 microliters, containing 790 µg Lysozyme. Fig 2 is a 1D proton spectrum with presaturation for water suppression. Fig 3 is a 1H-13C HMQC spectrum. Experimental details are given in the figure captions. The insert was then lowered to a 3.5 mm sample height, corresponding to 10 microliters, containing 280 micrograms of Lysozyme. Fig 4 shows a 1D spectrum and Fig. 5 is a 2D NOESY with presaturation recorded at this volume. Finally the insert ended up only 0.7 mm above the sample bottom, resulting in the incredibly small volume of 2 (two)
microliters which contain only 56 micrograms of Lysozyme. Fig 6 shows the 1D proton spectrum obtained at this volume. Comparison of the different volumes shows that, although the resolution suffers somewhat, the quality of water suppression can be maintained over the entire range of volumes.

Figure 2: 28.35 microliter volume: 1D spectrum with 2 sec presaturation, 64 scans, 2 min experiment time

Figure 4: 10 microliter volume: 1D spectrum with presaturation, 64 scans, 2 min experiment time

Figure 6: 2 microliter volume: 1D spectrum with presaturation, 1024 scans, 22 minutes experiment time

Figure 3: 28.35 microliter volume: 2D HMQC with presaturation, 64 scans, 256 increments, 4 h 55 min experiment time

Figure 5: 10 microliter volume: 2D NOESY with presaturation, 150 msec mixing time, 64 scans, 512 increments, 11 hours experiment time
Dear Barry,

As in protein NMR spectroscopy, so for complex biofluid mixtures - the resonance assignment stage must come first, but usually without the benefit of stable isotope labelling. The molecular diversity and concentration range in biofluids is enormous and so we have been developing methods to help the assignment process and as these approaches are of general use we thought that we would share them with the TAMUNMR readership.

Using the principle of a maximum quantum filter which is different for $^{13}CH_3$, $^{13}CH_2$ and ^{13}CH groups, we have come up with maximum quantum spectroscopy (MAXY) for the separate detection of the 1H spectra of CH_3, CH_2 and CH groups. The approach can be used in 1-dimensional NMR and in n-dimensional NMR to produce pulse sequences for MAXY-TOCSY and MAXY-NOESY for example which show scalar and dipolar coupling connectivity from only the selected group of resonances (CH_3, CH_2 or CH). In the multi-dimensional version, data on all protons are collected simultaneously in one experiment, but the resonances of the CH_3, CH_2 or CH groups can be edited into different regions of the contour plot. Details of the pulse sequences, in which pulsed field gradients can also be used, will appear in three papers accepted for the Journal of Magnetic Resonance but a couple of examples are given here, where the first is of the MAXY-J-resolved spectrum of the bile salt sodium taurocholate in dms-o-d$_6$. This shows a small part of the 600 MHz proton NMR spectrum and the selective detection of CH and CH_2 JRES spectra in a crowded region.

The method has also been applied to heteronuclear correlation experiments using inverse detection as in MAXY-HMQC giving results similar to DEPT-HMQC (Kessler et al., J. Magn. Reson., 85, 400 (1989)) and for direct detection, MAXY-HETCOR, for instruments without inverse geometry probes. The second figure shows the MAXY-HETCOR result for sodium taurocholate with assignment of all of the protonated carbons.

Yours sincerely,

Maili Liu
John Lindon
Jeremy Nicholson

Dr B.L. Shapiro
TAMU NMR Newsletter
966 Elsinore Court
Palo Alto
CA 94303 USA

MAXY-NMR

Yours sincerely,

Maili Liu
John Lindon
Jeremy Nicholson

John Lindon
Jeremy Nicholson

Maili Liu

Yours sincerely,

Maili Liu

Yours sincerely,

Maili Liu

Yours sincerely,
600 MHz 1H MAXY JRES NMR spectrum of sodium taurocholate in dmsO-d$_6$ solution acquired using phase cycling

DEPT-45 spectrum
Now you have a third option for solution state NMR...

from Chemagnetics, a leader in solid state NMR.

Chemagnetics introduced the CMX in 1987; so unique in RF & digital technology that it forced the competition to emulate its design. Now Chemagnetics introduces the CMX Infinity, with more advanced features than any other commercial spectrometer, designed to meet the ever demanding science of solid and solution state NMR spectroscopy. Combined with solid state probes from Chemagnetics and solution state probes from Nalorac®, the CMX Infinity CPC-P/D design will let your imagination lead you to infinite possibilities.

For more information call
Chemagnetics
1-800-468-7852
CMX Infinity™ answers all of your questions for both solid state & solution state NMR.

For more information call Chemagnetics 1-800-468-7852
Dr. B.L. Shapiro
TAMU NMR Newsletter
966 Elsinore Court
Palo Alto
CA 94303
USA

October 18, 1994
(received 10/19/94)

Re: High field gradient calibration in FT-PGSE, equipment for sale

Dear Barry,

Thank you for your fluorescent Ultimatum. The field of self-diffusion measurements by FT-PGSE techniques continues to evolve at a rapid pace, and we believe that many more will start to use these methods, now that field gradient coils have become a standard feature of modern NMR probes - as a result of the booming interest in "pulsed field gradient NMR" among "multi-dimensional NMR spectroscopists". I still remember trying to persuade the very reluctant major Spectrometer manufacturers to provide a high resolution field gradient probe back in 1984; finally Varian agreed... By the way, Olle Soderman and myself have recently written a review on "NMR studies of Complex Surfactant Systems" for Progr. NMR Spectrosc., which we proofread some time ago, so it should be in print this autumn, we believe. For those interested, there is a fairly long section on the many diverse developments in PGSE techniques for self-diffusion measurements since 1985.

Going through the literature, one can note several reinventions of the PGSE wheel also among the new big majority of pulsed field gradient NMR spectroscopists (like previously in the field of medical NMR), Papers like those of Stejskal and Tanner are rarely cited. Starting with P.C.M. van Zijl and C.T.W. Moonen (JMR 87 (1990) 18-25), solvent suppression schemes based on the differences in diffusional rates of water and larger molecules have recently been presented. The basic effects, of course are a well-known phenomenon among those interested in NMR-based self-diffusion monitoring as such, and were discussed in some detail in the context of solvent suppression as well in my own review in Progr. NMR Spectrosc. 19 (1987) 1, section 7.1.1.2.

I would like to provide the readers with a procedure we sometimes use to check the calibration of field gradient strengths in PGSE. Basic calibration is commonly done in a relative way, on protons in water - using literature data for their self-diffusion (of the order of $2 \cdot 10^{-9}$ m2 s$^{-1}$)
at room temperature. Necessarily, the gradient strengths then have to be quite small. Can one extrapolate, and trust the linearity at very much higher gradient values or longer gradient pulse lengths? This will depend on the performance of the gradient driver, and the rest of the hardware used. If one is unsure, one would like to recalibrate with a substance with a diffusion rate more similar to that of the one under investigation. However, there do not really exist any established low-diffusion rate standards, except glycerol, which is a very poor choice, for reasons summarized in section 6.5.9.4 of my 1987 review. The last paragraph of that section also describes a multistep relative calibration procedure, which works fine, provided one has good secondary and tertiary standards. We have found that micellar poly(ethyleneoxide) alkyl ethers (C12E6, C12E8 etc.) in heavy water probably may be the best choice. The residual water peak provides a "water calibration signal", and the EO peak of the surfactant has a long transverse relaxation rate and is essentially singlet-like, at least at low fields. Note that due to fast intermicellar exchange and a very low CMC the CxEy diffusion rate will be monomodal, unlike that found for even highly fractionated PEO standards. We hope that this calibration procedure will be found useful by others in the PGSE self-diffusion area, and that this letter arrives before the dreaded deadline date.

- A friend of mine wants the world to know that he has some equipment for sale to those that need to repair or exchange their Varian CFT20 system: If you need spare parts to the CFT20; probes, boards, anything, send a fax to ASF, Sweden +46-87 32 93 88.

Yours Sincerely

Peter Stilbs

Postdoctoral Position. Available immediately for solid-state NMR studies of environmental science problems in the area of solidification/stabilization of hazardous waste in cement and other matrices. Requires Ph.D. in chemistry or physics with experience in solid-state NMR. The research will span across common solid-state NMR methods, field-swept NMR with an 18 T magnet, stray-field imaging, and synchrotron x-ray tomography. Please send a curriculum vitae, three letters of reference, and copies of pertinent publications to: Prof. Les Butler, Department of Chemistry, Louisiana State University, Baton Rouge, LA 70803-1804.
Introducing the NEW 3445/3446 Amplifiers from AMT

For High Performance NMR/NMRI Applications

Your NMR/NMRI requirements are pushing the leading edge of science and you need AMT RF power technology! Our NEW Models 3446 and/or 3445 operate from 10-130 MHz and are conservatively rated at 1000 watts for low field NMR and currently up to 2000 watts for NMRI applications up to 3 Tesla. AMT has brought together the highest possible RF performance at a most cost effective price. Nobody builds a better NMR/NMRI amplifier than AMT...

Call AMT today for a price that will really flip your spins!

Additional Features Include:
- 10-130 MHz bandwidth for use in systems up to 3T
- Up to 2000 watts of power for imaging
- CW power capability for decoupling
- Blanking delay time less than 1 µs for multi-pulse

3000 Enterprise Street • Brea, CA 92621 • (714) 993-0802 • Fax (714) 993-1619

Spectrian company
Models 3445/3446

10-130 MHz, pulsed, solid-state, RF power amplifier systems

Key Specifications:

<table>
<thead>
<tr>
<th>Models:</th>
<th>3445</th>
<th>3446</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frequency range</td>
<td>10-130 MHz</td>
<td>10-130 MHz</td>
</tr>
<tr>
<td>Pulse power (min.)</td>
<td>2000 W</td>
<td>1000 W</td>
</tr>
<tr>
<td>CW power (max.)</td>
<td>200 W</td>
<td>100 W</td>
</tr>
<tr>
<td>Linearity (±1 dB to 30 dB down from rated power)</td>
<td>1800 W</td>
<td>900 W</td>
</tr>
<tr>
<td>Pulse width</td>
<td>10 ms</td>
<td>20 ms</td>
</tr>
<tr>
<td>Duty cycle</td>
<td>Up to 10%</td>
<td>Up to 10%</td>
</tr>
<tr>
<td>Amplitude droop</td>
<td>5% to 10 ms typ.</td>
<td>5% to 20 ms typ.</td>
</tr>
<tr>
<td>Linearity</td>
<td>10° to rated power, typ.</td>
<td></td>
</tr>
<tr>
<td>Phase error overpulse</td>
<td>4° to 20 ms duration, typ.</td>
<td></td>
</tr>
<tr>
<td>Output noise (blanked)</td>
<td>< 10 dB over thermal</td>
<td>< 1 µs on/off, TTL signal</td>
</tr>
<tr>
<td>Blank delay</td>
<td>100% max.</td>
<td></td>
</tr>
<tr>
<td>Protection</td>
<td>1. Initial VSWR at rated power</td>
<td>2. Input overdrive, up to +10 dBm</td>
</tr>
<tr>
<td></td>
<td>3. Over duty cycle/pulse width</td>
<td>4. Over temperature</td>
</tr>
</tbody>
</table>

Other members of AMT’s NMR/NMRI Family:

<table>
<thead>
<tr>
<th></th>
<th>3205/3200</th>
<th>3415/3414</th>
<th>3304</th>
<th>3137/3135/3134</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frequency range</td>
<td>6-220 MHz</td>
<td>20-200 MHz</td>
<td>30-310 MHz</td>
<td>200-500 MHz</td>
</tr>
<tr>
<td>Power (W)</td>
<td>300/1000 W</td>
<td>4 kW/7 kW</td>
<td>400 W</td>
<td>50/150/300 W</td>
</tr>
</tbody>
</table>

Supplemental Characteristics:

<table>
<thead>
<tr>
<th>Indicators, front panel</th>
<th>1. AC power on</th>
<th>4. Overdrive</th>
<th>6. Over duty cycle</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2. CW mode</td>
<td>5. Over pulse width</td>
<td>7. LCD peak power meter</td>
</tr>
<tr>
<td></td>
<td>3. Overheat</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>System monitors</th>
<th>1. Forward/Reflected RF power</th>
<th>3. DC power supply fault</th>
<th>4. Thermal fault</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2. Over pulse width/duty cycle</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Front panel controls</th>
<th>1. AC power</th>
<th>2. Forward/Reflected power</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>AC line voltage</th>
<th>208/230 VAC, 10%, 10, 47-63 Hz</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>AC power requirements</th>
<th>3445</th>
<th>3446</th>
</tr>
</thead>
<tbody>
<tr>
<td>VA</td>
<td>1400 VA</td>
<td>700 VA</td>
</tr>
<tr>
<td>DC Power Source</td>
<td>8.75 x 19 x 24</td>
<td>8.75 x 19 x 24</td>
</tr>
<tr>
<td>Net weight</td>
<td>110 lbs.</td>
<td>75 lbs.</td>
</tr>
</tbody>
</table>

3080 Enterprise Street • Brea, CA 92821 • (714) 993-0802 • Fax (714) 993-1815
Dear Dr. Shapiro

We routinely carry out multinuclear NMR experiments using Ln(III) ions as model ions for Ca(II) in order to study the manner of binding in ligand-metal complexes. We were able to investigate with 17O NMR, the complexation behavior of an oxidized carbohydrate oligomer, dicarboxylic inulin (1) and that of its model compound, dicarboxy methyl α-fructofuranoside (2) by observing the induced 17O shifts of D$_2$O as a consequence of adding successive increments of Dysprosium(III) chloride to aqueous solutions of these ligands.

An 17O nucleus bound to a Lanthanide cation exhibits an induced shift for which only the contact contribution, i.e. the shift of the 17O nucleus coordinating to the DyIII ion is relevant. In addition to this, the exchange between bound and free D$_2$O is fast on the NMR time scale. The induced shift is independent of the nature of the coordinating ligand and knowing the hydration number of a Dy(III) cation to be 8-9, we are able to determine the number of bound D$_2$O molecules. Measurement of the DyIII induced 17O shifts as a function of DyIII concentration allows us to calculate the average shift contribution per D$_2$O molecule which is illustrated in figure 1, a plot of induced shifts as a function of molar DyIII concentration.

When a ligand coordinates to Dy(III) there is a reduction in binding sites available for D$_2$O molecules. This is illustrated in figure 2 where the initial slope of induced shift versus molar ratio Dy(III)/D$_2$O corresponds to two bound water...
molecules. The slope decreases sharply at molar ratio Dy(III)/D_{2}O =0.45E-3 indicating that significantly more D_{2}O molecules are coordinating to Dy(III). The complex stoichiometry may be deduced from a plot of induced shift as a function of the molar ratio Dy(III)/ligand as shown in figure 3. Figure 3 illustrates that at a molar DyIII/Ligand ratio of ≈0.5, there is a change in gradient corresponding to a change in composition of complex from a 1:2 Dy(III):ligand species to one predominantly 1:1 (Dy(III):ligand) in nature.

Successive amounts of Dysprosium(III) chloride were added to ligand solutions (±0.1M) with the intention of reaching a 1:1 Dy:ligand molar ratio. The latter was however not always possible due to precipitation taking place. The 17O experiments were carried out at 72 °C and 27.12 MHz using a Nicolet NT-200 WB spectrometer. Further studies on the complexation behaviour of oxidised carbohydrates are currently in progress and encompass lanthanide-induced 13C relaxation rate enhancement measurements as well as potentiometric experiments.

Yours Sincerely

Dr Louise Johnson

P.S. Please credit this to the account of Dr Joop A Peters.
Introducing Digital NMR.

Distortion-free performance, breathtaking dynamic range and unparalleled reliability — all at the touch of a button. That’s how digital technology transformed the audio world. Now, the revolutionary Bruker AVANCE DPX brings the same technology to the world of routine NMR. With the click of a mouse, the highly automated Bruker QuickNMR software places an extensive array of pre-tested experiments at your disposal, including 1D, 2D, and gradient accelerated methods. Or you can use the powerful UXNMR program to implement new experiments, and even design your own. Either way, the result is flat baselines, fewer artifacts, increased dynamic range and rock-solid stability — thanks to the DPX’s extensive use of AVANCE digital technology, including oversampling, digital filtering and a digital lock.

AVANCE DPX Spectrometer

So easy, everyone can use and enjoy it!

In short, the AVANCE DPX makes it almost as easy to obtain superior NMR results as it is to use a CD player (but don’t worry — you’ll get used to it)! And with an optional sample changer the DPX can analyze up to 120 samples completely unattended. Will the ease, precision and stability of digital NMR transform your lab’s future? See for yourself! Call your nearest Bruker representative for more information.

Once you’ve experienced the AVANCE, you’ll understand why we say: **Everything else is just analog!**

Bruker Instruments, Inc., Manning Park, Billerica, MA 01821

In Europe: Bruker Analytische Messtechnik GmbH, Silbertorstr. D-76227 Rheinstetten, Germany

Comprehensive Support for Innovative Systems
AVANCE™ DPX – The Digital NMR Spectrometer

- Digital Lock
- Digital Filtering with Oversampling
- Digital Signal Processing
- Digital Signal Routing
- Surface Mounted Devices
- UNIX Workstation Computer
- X-11 Windows and MOTIF
- Quick-NMR™ Interface
- Broadest Choice of Probes
- Extensive Pre-tested Experiment Library
- Comprehensive Applications Support

Digital, modular and flexible.
Now, the fundamentally superior precision and stability of digital signal processing is available from a precedent-setting series of NMR spectrometers. With its digital advantage, the Bruker AVANCE™ series sets revolutionary standards for performance, long-term reliability and ease of use, whether for routine applications or the most demanding research. The modular architecture of the Bruker AVANCE design makes extensive use of digital signal processing technology, incorporating high performance RISC-based processors into the lock, filters, timing control unit, gradient generation, and many other key areas of the system. The result is increased sensitivity, higher dynamic range, cleaner spectra, flat baselines and unprecedented stability.

The AVANCE Series of high performance spectrometers.
The comprehensive AVANCE family of NMR spectrometers was developed in direct response to the increasing demands of the NMR community for greater performance and stability in a highly automated, easy to use instrument. Within the AVANCE series of DPX, DRX, DMX and DSX systems there is a virtual continuum of configuration options from 200 to 750 MHz, including solids, liquids and imaging. Whatever the environment or application, there is an appropriate AVANCE model to choose from. Your Bruker representative will be happy to recommend a configuration that is optimum for your needs - today and tomorrow.

For complete details or to arrange a demonstration please contact your nearest Bruker representative.

Australia: BRUKER (Australia) PTY. LTD., Alexandria, New South Wales, Tel. (02) 550-6422
Belgium: BRUKER SPECTROSPIN S.A./N.V., Brussels, Tel. (02) 648 53 95
Canada: BRUKER SPECTROSPIN (Canada) LTD., Milton, Ontario, Tel. (416) 867-4844
P.R. China: BRUKER INSTRUMENTS, LTD., Beijing, P.R. China, Tel. 00861-2557531
England: BRUKER SPECTROSPIN, LTD., Coventry, Tel. (0203) 850500
France: SARL BRUKER SPECTROSPIN SA, Wessling, Tel. (08) 73 68 00
Germany: BRUKER ANALYTIK SPECTROSPIN GmbH, Rheinstetten, Tel. (0721) 516-0
BRUKER ANALYTIK SPECTROSPIN GmbH, Krefeld, Tel. (02151) 967-0
BRUKER-FRANKEN ANALYTIK GmbH, Bremen, Tel. (0421) 700-0
BRUKER-SADUNA, ANALYTIC GmbH, Leipzig, Tel. 0037-44-236-2453
India: BRUKER INDIA, SCIENTIFIC PVT. LTD., Anant (West), Bombay, Tel. (22) 626-2332
Israel: BRUKER SCIENTIFIC ISRAEL LTD., Rehovot, Tel. (972) 3 400-900
Italy: BRUKER SPECTROSPIN SRL, Milano, Tel. (2) 70 63 60
Japan: BRUKER-JAPAN CO., LTD., Ibaraki-ken, Tel. (0298) 51-1234
Belgium: BRUKER SPECTROSPIN NV, Wormer, Tel. (072) 28 52 51
Switzerland: SPECTROSPIN AG, Fallanden, Tel. (01) 82 59 111
USA: BRUKER INSTRUMENTS, INC., Billerica, MA 01821-3991, (508) 667-9580, Fax (508) 667-4300
Regional Offices in Chicago, IL, (703) 971-4300/Wilmington, DE, (02) 479 8110
Houston, TX (713) 292-2447/Fremont, CA (510) 683-4300
Magnetic Relaxation in Quadrupolar-split Systems: Application to Nb in LiNbO$_2$

Dear Dr. Shapiro:

During our recent study of LiNbO$_2$, we observed highly non-exponential Nb magnetization recovery curves. By scaling the magnetization and time axes of the recovery curves measured at different temperatures, we found it possible to superpose the data. The shape of these curves was clearly significant. Hence, we suspected that the non-exponential character of the observed relaxation was intrinsic to the spin $1\frac{1}{2}$ Nb nucleus and not due to sample inhomogeneity. The nearly linear temperature dependence of the Nb relaxation rate T_1^{-1} lead us to conclude that the relaxation mechanism was magnetic (dipole-dipole) interaction with conduction electron spins. As the literature did not contain the solution for magnetic relaxation of $1\frac{1}{2}$, we solved this case and found that we could calculate the observed shape of the recovery curves.

So that others may avoid the tedious linear algebra necessary to solve this problem, we present below the recovery curves appropriate for two common experiments. We also note some subtle pitfalls to avoid in conducting such experiments and in analyzing the data.

The solution to the rate equations that govern the population differences for the various observable transitions is straightforward, if somewhat tedious. The solution is the sum of exponential terms, and the decay rates have been known since Andrew and Tunstall. The difficulty lies in determining the weights of the individual exponential terms, which depend on the initial level populations. Hence, different magnetization recovery curves are observed for different preparation pulse sequences.

We present here the expected magnetization recovery curves for two common experiments. In both cases, we assume that the static quadrupole interaction is so large that only the central transition ($+\frac{1}{2} \leftrightarrow -\frac{1}{2}$) is directly perturbed and observed. The first case is "cw" saturation of the central transition, in which a long rf pulse is applied to the central transition. This pulse must be long enough to allow the satellite transitions to re-equilibrate amongst themselves and with the saturated central transition. This pulse must be long enough to allow the satellite transitions to re-equilibrate amongst themselves and with the saturated central transition. Alternatively, the same initial spin populations are achieved by using a long train of 90° pulses, if the train is long enough to allow satellite equilibration. Under conditions of "cw" saturation, the magnetization recovery curves are given by:

\begin{align*}
I=3/2: & \quad M(t)/M(\infty)=1 -0.4 \exp(-2Wt) -0.6 \exp(-12Wt) \\
I=5/2: & \quad M(t)/M(\infty)=1 -0.25714 \exp(-2Wt) -0.26667 \exp(-12Wt) -0.47619 \exp(-30Wt) \\
I=7/2: & \quad M(t)/M(\infty)=1 -0.15152 \exp(-2Wt) -0.13986 \exp(-12Wt) -0.19197 \exp(-56Wt) -0.36281 \exp(-90Wt) \\
I=9/2: & \quad M(t)/M(\infty)=1 -0.15152 \exp(-2Wt) -0.13986 \exp(-12Wt) -0.19197 \exp(-56Wt) -0.36281 \exp(-90Wt)
\end{align*}

The $I=3/2$ and $I=5/2$ results were first given by Andrew and Tunstall, and the $I=7/2$ result by Narath. We derived the $I=9/2$ result to compare to our Nb data. A second common experiment is the application of a single 90° pulse to the central transition. Since the satellite transitions are not allowed to equilibrate with the saturated central before recovery begins, the initial conditions are different. The recovery curves in this case are:

\begin{align*}
I=3/2: & \quad M(t)/M(\infty)=1 -0.1 \exp(-2Wt) -0.9 \exp(-12Wt) \\
I=5/2: & \quad M(t)/M(\infty)=1 -0.02837 \exp(-2Wt) -0.17778 \exp(-12Wt) -0.79365 \exp(-30Wt) \\
I=7/2: & \quad M(t)/M(\infty)=1 -0.01191 \exp(-2Wt) -0.06818 \exp(-12Wt) -0.20604 \exp(-30Wt) -0.71387 \exp(-56Wt)
\end{align*}
\[\frac{M(t)}{M(\infty)} = 1 - 0.00607 \exp(-2Wt) - 0.03357 \exp(-12Wt) - 0.09231 \exp(-30Wt) - 0.21501 \exp(-56Wt) - 0.65306 \exp(-90Wt) \]

For comparisons between the relaxation rate and other measurements (such as the Knight shift when considering conduction electrons and the Korringa relation), the appropriate value for \(T_1^{-1} \) is 2W. This is the rate that would be measured in the absence of quadrupole splittings, when only a single exponential would be observed.

\(\text{LiNb}_2 \text{O}_5 \) is a semiconductor with a hexagonal, layered structure. It has potential applications in battery technology, stemming from the Li ion mobility and the large cell potentials achieved when \(\text{LiNb}_2 \text{O}_5 \) is used as an electrode. The Li ions form planes separated by \(\text{NbO}_2 \) layers. The Nb atoms lie at the centers of trigonal prisms formed by O atoms. The non-cubic environment of the Nb gives rise to a large quadrupole interaction, \(u_Q \approx 1 \text{ MHz} \). Despite the large quadrupole interaction, we find that the Nb relaxation is magnetic, not quadrupolar, in nature. The reason is that the conduction electron spins (\(\text{LiNb}_2 \text{O}_5 \) is substoichiometric in Li and Li vacancies act as electron acceptors) interact strongly with the Nb nuclei. Hence, we have a quadrupole-split spin system in which the inter-level transitions (i.e. relaxation) are driven by a magnetic mechanism.

The magnetic nature of the Nb relaxation is reflected in the shape of the recovery curve, shown here. Magnetization recovery curves measured at several temperatures are shown. The values of \(T_1 \) listed are the 1/e points of the individual recovery curves. The time axis for each temperature has been scaled by the 1/e \(T_1 \) at that temperature. The solid line is the multi-exponential function for "cw" saturation. The dotted line is a single-exponential. The experiment consisted of twenty-four 90° pulses separated by 1 ms ("cw" saturation of the central transition) followed by recovery and inspection of the central transition. The data points follow the line calculated from the I=9/2 "cw" saturation equation given above. Deviations of the 4 K data from this line probably result from incomplete satellite equilibration, due to the slow relaxation at 4 K.

We note that there are two major sources of error in applying the above equations. The first source of error is in assuming the incorrect initial spin populations. In particular, if quadrupolar relaxation is important, then the \(\Delta m=\pm 2 \) transitions change the initial spin populations from those achieved in the magnetic case. Under these circumstances the initial conditions have to be calculated carefully. Recovery curves for quadrupolar relaxation have been calculated by Gordon and Hoch.

A second source of error is experimental, insidious, but easily avoided. An incorrect determination of the fully recovered magnetization \(M(\infty) \) can cause the "true" \(T_1^{-1} \), 2W, to be overestimated by an order of magnitude. The experimental recovery curves can look nearly single exponential in cases where the magnetization recovery is not followed to completion. These curves will overemphasize the initial fast decay. Care must be taken to allow for complete magnetization recovery.

Sincerely,

Andrew F. McDowell, David M. Snyderman, Mark S. Conradi, R.E. Norberg

The World’s First 10mm Triple Resonance PFG Probe

Providing the highest triple resonance sensitivity and high performance pulsed field gradients

Obtain the highest sensitivity in triple resonance PFG experiments with Varian’s new 10 mm $\text{H}^{13}\text{C}^{15}$N triprel-nmr PFG probe. This probe, designed for samples which have limited solubility or are susceptible to aggregation, provides:

- 2.2-fold increase in sensitivity relative to a 5 mm probe
- 5-fold reduction in data acquisition time relative to a 5 mm probe
- 25% more sensitivity than an 8 mm probe
- Actively shielded Z-gradient for unsurpassed 10 mm water suppression performance
- Unmatched 10 mm H^{1} lineshape when used with Varian’s unique Ultra-nmr shims

Look to Varian, the technology leader in biomolecular applications.

For details, contact the Varian office nearest you.
Ultrabroadband Decoupling

^{1}H-^{13}C Gradient HSQC

Obtain the maximum decoupling field strength with the minimum power using the powerful Unityplus waveform generator. Triple resonance spectra obtained utilizing (A) a GARP broadband decoupling sequence1 and (B) a MPF7 broadband decoupling sequence2 at a decoupler power 6dB less than that used in spectrum (A). Both spectra were acquired using a Unityplus 600 spectrometer equipped with a waveform generator and a Triple+nmr PFG probe.

Deuterium Decoupling with Deuterium Lock

Perform deuterium-locked quadruple resonance experiments such as ^{1}H[^{13}C, ^{15}N, 2H] with ease with Varian’s Triple+nmr probe, a four channel UNITYplus system, and the UNITYplus Adaptive Lock.

This plot displays the resultant sequential connectivities for helices A and B of the Trp-Repressor/DNA Complex. Utilizing the experiment above, L. Kay and co-workers* have obtained 100% of the intra-residue and 94% of the inter-residue correlations for the 37 kDa complex.

Spectrum provided by Toshio Yamazaki, Ween Tae Lee, Matt Revionton, Cheryl Arrowsmith and Lewis Kay from the University of Toronto and the Ontario Cancer Institute, Toronto, Canada.

Don't swim with this one; 3D structure of a toxic cyclopeptide from water blooms.

Dear Barry,

Together with some Finnish groups, we have been interested in the structure-activity relationships of a class of cyclic hepatotoxic heptapeptides formed during cyanobacterial blooms. In addition, these peptides, called microcystin-X,Y's (MC-X,Y) have been shown to work as potent inhibitors of protein phosphatases 1 and 2A and their promotion of hepatic tumors has recently been verified.

A knowledge of the 3D structure of MC-X,Y is thus of interest to understand the phosphatase inhibition process. Many MC-X,Y's are known, where the toxicity varies somewhat depending on the choice of the two variable L-amino acids X and Y. Besides unfavorable dynamics, the most tedious work from a modeling point of view has been the parameterization of the more unusual amino acids like the long conjugated ADDA, (2S,3S,8S,9S)-3-amino-9-methoxy-2,6,8-trimethyl-10-phenyldeca-4,6-dienoic acid. Especially important task, since the all-trans configuration of ADDA is essential for the toxicity and that a strongly related cyclic pentapeptide, nodularin, also containing ADDA shows identical binding and toxicity behaviour.

However, working in various aqueous cryoprotective media, we were able to get enough reliable distance (NOESY, MARDIGRAS) and dihedral angle constraints for a single 3D structure to be determined (SA). Contrary to some recent attempts using DMSO as solvent (DG) and giving three conformational families, we found a single saddle-shaped structure where the ADDA "tail" is sticking out from the ring (RMSD < 0.6 Å).

Best regards

Best regards

Mdha

ADDA

Arg

Dear Barry,

Prosthetic devices and magnetic fields

We have recently had an incident that may have been caused by the stray field from our MSL 500 magnet. A student passed about 16 metres away from our MSL 500 magnet and her prosthetic pain killing device that works on the same principle as a heart pacemaker was switched off. The wide bore 500 magnet does have an enormous stray field which is greater in the vertical than the horizontal direction. My estimate based on data supplied by Bruker is that she could only have experienced a maximum field of 1 gauss. On the other hand the device has never switched itself off before, so we are working on the assumption that it was the stray field that caused the incident.

This incident emphasises the importance of visible warning notices and careful instructions to janitorial staff concerning the possibility of such events. We have such notices at the entrances to our building but this did not stop the incident!

Thank goodness it was not a heart pacemaker!!!

Yours sincerely,

Frank Riddell
High Quality Precision Glass Fabricator

- Ultra Accurate Precision Bore (PB) Shrinking
- Glass Lathe Fabrication
 - Glass-to-Glass Seals
 - Glass-to-Metal Seals
 - Graded Seals
- Precision Glass Envelopes
- Precision Grinding and Polishing
 - Concentric Grinding
 - Centerless Grinding and Polishing
- Cutting and Special End Finishing
- Nuclear Magnetic Resonance (NMR)
 - Sample Tubes

Precision Electronic Glass, Inc.
1013 Hendee Road
Vineland, NJ 08360
(USA)

TEL 609/691-2234
FAX 609/691-3090
In the past year we have upgraded our three Bruker AM consoles to Bruker AMX consoles with AspectStation computers (MIPS in a box, not SGI, not X-32). These workstations were added to our divisional subnet of the corporate network to transfer data among the spectrometers and among several standalone SGI computers for external data processing. We soon found that the Bruker standard installation procedure and our corporate network standards created very large (60 MByte per week) errorlog files. This letter details the problem and our solution (not unique!), and also documents a security problem with the standard installation procedure.

Our corporate standards require the use of 255.255.255.0 for netmasks on workstations. Unfortunately this allowed packets from corporate subnet routers to reach our workstations; with the above netmask, the routers could not be recognized, and the message "routed: packets from unknown router" was created and placed in the files /usr/adm/console_log.X and /usr/adm/messages.X. These two files grew by about 4.2 MBytes per day for seven days, when a chron file then began to delete the last 24 hours of error messages at midnight, but wasting about 60 MBytes of disk space.

Our solution was short and brutal: we commented out the route daemon startup and killed the existing route daemon. A portion of the file /etc/init.d/netdaemons that is relevant follows:

```bash
# Check for existence of tcp first.
if [ ! -x /etc/havetcp ] || not /etc/havetcp
then
  exit 0
fi

echo "Internet daemons\n"
```

Now, as superuser, identify the existing daemon process ID with "ps", and then kill it with "kill -9 process_ID". Now the only IP addresses that can communicate with the workstation are detailed in /etc/hosts. With this deletion, we now average 2.5KBytes per day and 500 bytes per day in console_log.X and messages.X, respectively.

Since lots of things can go wrong, do not attempt the above unless you are, or have, an experienced UNIX system manager. A service contract with Bruker probably wouldn't hurt, either.

A second, annoying feature of the standard installation was discovered after the above modification. The tftp daemon can be started by an external user, and system files could be transferred to said external user. Since "you should not run the tftp daemon on your system unless it is absolutely required, and then only if it can be run in a secure mode (tftp -s) that restricts tftp access to a specific directory", this is an obvious security no-no. It can be rectified by commenting out the appropriate line in /etc/inetd.conf:

```
#tftp dgram udp wait root /usr/etc/tftp tftpd
```

Unfortunately, a reboot of the system is necessary to (in)activate tftp.

I hope that this information is of use to some subset of TAMUNMR newsletter readers. I must confess that a coworker, Ken Visscher, is our systems manager, and he tracked down and cured these and many other problems over the past year.

Sincerely yours,

Dear Barry,

A recent contribution to TAMU by Phil Bolton taught the utility of using Adobe Illustrator for the Macintosh to annotate files imported from VNMR. We considered using Silicon Graphic's Irix Showcase for annotation. This program is able to import graphic images captured from the SGI screen and allow annotation. The resultant "screen" resolution, however, was not acceptable for publication. Showcase is capable of using postscript files and retains high resolution but does not allow any alterations other than resizing the image (to our knowledge). We next sought out to use Adobe Illustrator (AI), but using a PC running windows rather than a Macintosh. As mentioned before, the VNMR plot file must be converted in order to be imported into AI. AI ver. 5.5 for Macintosh includes the conversion software, Acrobat Distiller, but the latest DOS version (4.02) does not include this feature. Our current protocol is to capture the a VNMR postscript file (earlier Magnetic Moments), bring it over to a PC via ftp and convert to AI format with Transverter Pro (ver. 1.03, Techpool Software, Cleveland, Ohio). The spectral image is then imported into AI and annotated. It can now be printed from AI or imported into a manuscript in a word processor (i.e. WordPerfect). The AI file can also be used to generate slides for presentation. An annotated ROESY spectrum illustrates the results obtained using this approach.

Sincerely yours,

Dave Babcock

William Gmeiner

University of Nebraska—Lincoln University of Nebraska Medical Center University of Nebraska at Omaha University of Nebraska at Kearney
A complete NMR data processing software package
for the IBM PC under Microsoft Windows 3.1 and Microsoft Windows NT. NUTS comes in 1D and a 1D/2D packages. In addition to all the standard NMR processing tools, both packages come with many well integrated NMR data processing tools often only available in separate software packages:

- Bitmap (paint) and metafile (draw) features for the Windows clipboard to allow easy incorporation of NMR data into presentations and reports. Text data such as peak lists and integrals can be placed directly into the clipboard for incorporation into spreadsheets and other Microsoft Windows data processing programs.

- NMR spin simulation for up to 10 spins. Easy comparison to actual data with zoom, intensity and linewidth adjustment without requiring recalculation. The NMR simulation package has the ability to iterate to experimental data for a better fit and to save the simulation data. It can also save a calculated fid of the simulation.

- Line deconvolution to determine intensity, position and area of overlapping lorentzian and gaussian lines.

- Auto-integration for single command determination of integral regions and relative areas. The integral values are displayed on the screen and printed on the plot at the end of the integral lines.

- Peak labelling on the plot with the chemical shift in hertz or ppm or a text comment entered by the operator.

- Digital high pass or low pass filtering of the time domain FID.

- Simultaneous operation from a Windows type menu and a command line with 2 letter commands allows experienced users to avoid repeatedly maneuvering through multiple levels of menus. The command structure allows user definable link and macro operation for one command automatic processing of repetitive operations. NUTS comes with sample macros for many tasks such as one command complete processing of 2D experiments.

- Advanced baseline correction routines for more accurate integrals and correction of "real world" baseline problems.

- Advanced tools for extracting data regions, time domain digital filtering of FIDs and lineshape correction algorithms.

- Easy to use dual display routines for detailed spectral comparisons.

- Automatic detection and importing from most NMR manufacturers data format to NUTS's Common Data File Format (CDFF) is included in the NUTS package. Data importing and the NUTS data files include, maintain and allow editing of dates.

NUTS 1D for IBM PC (math coprocessor required) on 3.5 inch HD floppy .. $ 499.00
NUTS 1D/2D for IBM PC (math coprocessor required) on 3.5 inch HD floppy .. $ 750.00
Shimming Ain't Magic

Is Shim a 4-letter word in your lab?

Then learn how to shim logically!

SAM - An NMR shimming simulation software package.

- Displays the NMR lineshape or FID and a lock level.
- Allows user adjustment of Z1 through Z8 gradients.
- Provides a controlled, perfect system for NMR operator training.
- Teaches what lineshape results from changes in which shim.
- Demonstrates a standard shimming procedure described in the manual.
- Demonstrates the "Z1 profile", a new approach to shimming which "images" the on axis homogeneity and adjusts the high order shims first. Helps set the Z3 and Z4 values correctly without long search procedures.
- Generates a random magnetic field for practice shimming. The ultimate real world NMR game. It even provides the correct answers on command.
- Describes and simulates probe susceptibility problems for practice and comparison.
- Includes a complete manual explaining the procedure for shimming a superconducting spectrometer as well as use of the program.
- IBM PC version tested on a Macintosh using "Soft AT" IBM PC emulator.

Find Out

- How your shimming procedure compares to the procedure described. Does your procedure works in all cases? Is your procedure better than the one described?
- How to tell if your probe has a magnetic susceptibility problem. How do you shim a probe with that kind of magnetic susceptibility?
- If the very high order shims really help. How do you adjust them? Do they help with certain types of probe susceptibility problems? How much?

SAM 1.1 for IBM PC (math coprocessor required) on 3.5 inch HD floppy ... $ 250.00
PERFORMANCE OF A NALORAC 8MM PFG TRIPLE RESONANCE PROBE

Dear Barry,

We report here some impressive results from a first generation 8mm PFG triple resonance probe provided to us by Toby Zens of Nalorac Cryogenics Corporation. The 8mm probe is an exciting development for the NMR studies of macromolecules since large diameter NMR tubes increase the feasibility of studying biomolecules with poor solubility or with tendencies towards aggregation at typical concentrations of ~1mM. The availability of pulsed field gradients in the 8mm probe is a significant advancement since it allows for the acquisition of gradient enhanced pulse sequences and very importantly, the suppression of water using gradient techniques. The improvement in sensitivity available with the 8mm probe can be realized in one of two ways: (1) data can be collected in a shorter period of time than with a 5mm probe, for the same concentration as a 5mm probe sample, or (2) the same sensitivity obtained with a 5mm probe can be realized on a sample of lower concentration. Specifically, the threefold increase in sample volume from a 5mm to an 8mm probe allows for a factor of three reduction in measuring time or a 1.7 reduction in concentration to that of a 5mm sample for comparable sensitivity.

Below shows a 600MHz gradient HSQC spectrum acquired at 37°C on a 123 uM sample of [(13C)(15N)]ASNase (Mol.Wt. ~ 18kDa) in 13 minutes. The 1H and 15N 90° pulse widths were 12.7 usec and 55 usec, respectively. The spectrum consists of 128 complex points, 2 scans per point, with an F1 sweep width of 2432 Hz and an acquisition time of 64 msec. The trace at the top is the full spectrum of the first t1 increment which shows the quality of the water suppression attainable with the gradient hardware. All observable backbone amides are detected under these conditions.
Shown below are the first H-C planes of a gradient enhanced CBCA(CO)NH experiment on a sample of 13C15N-labeled ASNase at 860 μM collected on a 5mm PFG triple resonance probe and on the Nalorac 8mm probe. 90° pulse widths for 1H and 15N were 10.55 usec and 45 usec for the 5mm probe and 14.1 usec and 57 usec for the 8mm probe. For both probes the 13C 90° pulse width was 50 usec. The 8mm sample data set consisted of 50, 32 and 512 complex points in t_1, t_2 and t_3 with acquisition times of 5.4 msec, 13.2 msec and 64 msec, respectively. The 5mm sample data set consisted of the first H-C plane with 50 and 512 complex points in t_1 and t_2. For the 5mm sample, 96 scans were collected for each FID and 32 scans for the 8mm sample. For the full 3D matrix, the total measuring time would be 185 hours with the 5mm probe. In a third of the measuring time, virtually all resonances in the spectrum acquired with the 8mm probe have at least the same intensity as in the 5mm probe spectrum and a majority have more. Two representative F_3 slices from the 8mm (top trace) and 5mm (bottom trace) CBCA(CO)NH data sets are compared.

The ability to use lower concentrations can be crucial if only limited amounts of material are available and may also circumvent problems relating to solubility or states of aggregation. A decrease in the measuring time, enhanced by the PFG hardware, may prove important for biomolecules with limited stability, particularly at 37° C. The clean performance of the PFG hardware for water suppression is invaluable in the implementation of all sequences designed to detect exchangeable protons. For these reasons, the use of the 8mm probe equipped with PFG will allow the examination of more dilute or less stable proteins in water, which is expected to be the norm rather than the exception. Our work was sponsored by the National Cancer Institute, DHHS, under contract no. NO1-CO-74101 with ABL.

Best regards,

Donna Baldisseri
R. Andrew Byrd
All Newsletter correspondence should be addressed to

Dr. B. L. Shapiro
966 Elsinore Court
Palo Alto, CA 94303 U.S.A.

(415) 493-5971 - Please call only between 8:00 am and 10:00 pm, Pacific Coast time.

Fax (anytime): (415) 493-1348: Do not fax technical contributions.

Deadline Dates

<table>
<thead>
<tr>
<th>No.</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>436</td>
<td>16 December 1994</td>
</tr>
<tr>
<td>437</td>
<td>27 January 1995</td>
</tr>
<tr>
<td>438</td>
<td>24 February 1995</td>
</tr>
<tr>
<td>439</td>
<td>24 March 1994</td>
</tr>
</tbody>
</table>

The Newsletter's fiscal viability depends very heavily on the funds provided by our Advertisers and Sponsors. Please do whatever you can to let them know that their support is noted and appreciated.

Mailing Label Adornment: Is Your Dot Red?

If the mailing label on your envelope of this issue is adorned with a large red dot or circle: this decoration means that you will not be mailed any more issues until a technical contribution has been received by me.
ECLIPSE NMR Advantage: Digital Filtering

This data shows the digital filtering capability of JEOL USA's ECLIPSE NMR workstation. Eclipse does digital filtering via software after the data is acquired, not via hardware during acquisition. This offers a significant advantage because with software digital filtering the acquisition is completed before you filter the data.

JEOL feels spectrometer time is best spent acquiring new data rather than repeating experiments because conditions were not optimized. It takes more time to write this kind of software, but JEOL took the time. Now you can use the ECLIPSE NMR Advantage to your advantage.

The Better Way!

JEOL USA, Inc.
11 Dearborn Road
Peabody, MA 01960
Tel: 508/535-5900
FAX: 508/536-2205
EMAIL: NMR@JEOL.COM