Collective Motion Along the Long Side-Chain of a Polypeptide
Hiraoki, T., and Kitazawa, S. 2

13C Differential Broadening of Thioredoxin
Kemple, M. D., and Yuan, P. 5

Progress Towards 750 MHz - Update
Proctor, W., and Killoran, N. 7

Long-Range 13C-1H Coupling Constants in Carbohydrates
Gitti, G., and Bush, C. A. 11

Oxygen Tension Mapping with 19F Echo Inversion-Recovery Imaging
Dardzinski, B. J., and Sotak, C. H. 13

Novel Heteroarotinoids
Berlin, K. D. 14

First High Resolution Spectrum at 750 MHz
Laukien, G., and Roth, G. 17

QCC and Asymmetry Parameters of Phenyllithiums Using Solid State 7Li NMR
Edlund, U., and Johnels, D. 19

NMR of 3He in Vitreous Silica
Diehl, P., Mazitov, R., and Seydoux, R. 20

Squeezing More Out of FT-PGSE Self-Diffusion Experiments - Blood from a Turnip (?)
Morris, K., Johnson, C. S., Jr., and Stilbs, P. 23

1H NMR Studies of E- and Z-2-hydroxyindolenines
Morales-Rios, M. S., and Joseph-Nathan, P. 25

Varian Obtains NMR Results at 750 MHz

Positions Available
Varian 32

Triple Resonance Experiments for Determining Resonance Assignments in Small Proteins
Lyons, B. A., Tashiro, M., and Montelione, G. T. 35

Accurate Multieponential Analysis of Relaxation Decays
Lin, Y.-Y., Ge, N.-H., and Hwang, L.-P. 37

Continued on Inside Back Cover
TABLE 1 DEUTERATED SOLVENTS

<table>
<thead>
<tr>
<th>Cat. No.</th>
<th>Description</th>
<th>formula</th>
<th>Min. No.</th>
<th>Min. Temp.</th>
<th>Mel</th>
<th>Boil.</th>
<th>BP (°C)</th>
<th>(\chi, \times 10^2 (°C))</th>
</tr>
</thead>
<tbody>
<tr>
<td>D-11</td>
<td>Acetone-d$_6$</td>
<td></td>
<td>1.10</td>
<td>1.095</td>
<td>0.68</td>
<td>0.66</td>
<td>0.55 (32)</td>
<td></td>
</tr>
<tr>
<td>D-120</td>
<td>Acetone-d$_6$ + 1% TMS</td>
<td></td>
<td>1.10</td>
<td>1.095</td>
<td>0.68</td>
<td>0.66</td>
<td>0.46 (20)</td>
<td></td>
</tr>
<tr>
<td>D-13</td>
<td>D$_2$O</td>
<td></td>
<td>1.10</td>
<td>1.095</td>
<td>0.68</td>
<td>0.66</td>
<td>0.74 (20)</td>
<td></td>
</tr>
<tr>
<td>D-121</td>
<td>DMSO-d$_6$</td>
<td></td>
<td>1.10</td>
<td>1.095</td>
<td>0.68</td>
<td>0.66</td>
<td>0.74 (20)</td>
<td></td>
</tr>
<tr>
<td>D-129</td>
<td>Tetrachloroethane-d$_2$</td>
<td></td>
<td>1.10</td>
<td>1.095</td>
<td>0.68</td>
<td>0.66</td>
<td>0.74 (20)</td>
<td></td>
</tr>
<tr>
<td>D-14</td>
<td>Octane-d$_8$</td>
<td></td>
<td>1.10</td>
<td>1.095</td>
<td>0.68</td>
<td>0.66</td>
<td>0.74 (20)</td>
<td></td>
</tr>
<tr>
<td>D-122</td>
<td>Trifluoroacetic Acid-d</td>
<td></td>
<td>1.10</td>
<td>1.095</td>
<td>0.68</td>
<td>0.66</td>
<td>0.74 (20)</td>
<td></td>
</tr>
</tbody>
</table>

Cost-conscious quality NMR solvents offered by Wilmad, such as CDCl$_3$, are frequently priced lower than more traditional sources. Included in this offering are the most common solvents, like Acetone-d$_6$, Benzene-d$_6$, D$_2$O, and DMSO-d$_6$, as well as some of the unusual solvents for specialty applications, like 1,1,2,2-Tetrachloroethane-d$_2$, Octane-d$_8$, and Trifluoroacetic Acid-d.

VARIAN

BOX/500 SHEETS

<table>
<thead>
<tr>
<th>Cat. No.</th>
<th>Description</th>
<th>Size</th>
<th>Document Model</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>WCV-100 (G-S-100)</td>
<td>Gridded - Two Color</td>
<td>11" x 24"</td>
<td>CFT-20, FT-80A</td>
<td>All Model</td>
</tr>
<tr>
<td>WCV-60 (G-S-60)</td>
<td>Gridded - Two Color</td>
<td>11" x 24"</td>
<td>CFT-20, FT-80A</td>
<td>All Model</td>
</tr>
<tr>
<td>WCV-XL (G-S-XL)</td>
<td>Gridded - Two Color</td>
<td>11" x 24"</td>
<td>CFT-20, FT-80A</td>
<td>All Model</td>
</tr>
<tr>
<td>WCV-XL-200 (G-S-XL)</td>
<td>Gridded - Two Color</td>
<td>11" x 24"</td>
<td>CFT-20, FT-80A</td>
<td>All Model</td>
</tr>
</tbody>
</table>

We provide the largest variety of paper and pens for NMR recorders or plotters available anywhere. Included in these listings are the newest spectrometers from Varian, Bruker, (and IBM), General Electric and JEOL, as well as the latest models, such as the Hewlett-Packard 7475A, 7550A, and Thinline 2225A, Zeta 8 or 8A, and Western Graphite 4730 plotters and printers.

Searching for the Unusual Requirement?

WILMAD HAS YOUR ANSWER!

The most comprehensive offering of "widgets, gadgets and specials" for NMR spectroscopy, including:

- Spatula for 5mm NMR Tubes
- Three types of Valve NMR Tubes
 (including the new J. Young Valve Tube)
- Solvent Jet NMR Tube Cleaners
- pH Electrode for 5mm NMR Tubes
- Taperlok ® NMR Tubes
 A multitude of Coaxial Inserts
 Alumina NMR Tube for Si-29 Studies
- Ultra-thin wall NMR Tubes
- Throwaway "THRIFT" and "ECONOMY" NMR Tubes

Serving the Spectroscopic Aftermarket

WILMAD GLASS COMPANY
Route 40 and Oak Road • Buena, NJ 08310 U.S.A.
609-697-3000 • TWX 510-697-8911
FAX 609-697-0636
Additional listings of meetings, etc., are invited.

FORTHCOMING NMR MEETINGS

International Symposium on Solid-State NMR Spectroscopy of Polymers. Keystone, Colorado; February 28 - March 3, 1993; Contact: Barbara D. Hogan, Du Pont, E.I., P.O. Box 80356, Wilmington, Del. 19880-0356; Phone: (302) 695-4394; Fax: (302) 695-8207.

PITCON93. Atlanta, Georgia. March 8-12, 1993; Contact: Dept. 60, Suite 332, Park Center Blvd., Pittsburgh, PA 15235-5503; Phone: (412) 825-3228; Toll-free: 1-800-822-3221; Fax: (412) 825-3224.

In Vivo Magnetic Resonance Spectroscopy VI. Symposium on In Vivo Magnetic Resonance Spectroscopy. Focus on Spectroscopic Techniques. St. Louis, Missouri. March 13-14, 1993; Contact: Radiology Postgraduate Education, Room C-324, University of California School of Medicine, San Francisco, CA 94143-0628; Phone: (415) 476-5808; Fax: (415) 476-9213.

24th ENC (Experimental NMR Conference). St. Louis, Missouri. March 14-18, 1993; Contact: ENC, 815 Don Gaspar, Santa Fe, New Mexico 87501; Phone: (505) 989-4573; Fax: (505) 989-5073. See TAMU NMR Newsletter 408, 45.

Advanced School on Magnetic Resonance and Protein Dynamics. Erice, Sicily, Italy. March 13-24, 1993; Contact: Prof. Oleg Jurvetzky or Stanford Magnetic Resonance Lab., Stanford Univ., Stanford, CA 94305-5055; Phone: (415) 723-2223; See TAMU NMR Newsletter 412, 50.

High Resolution NMR Spectroscopy (a residential school). University of Sheffield, England. April 1993; Organizer: Dr. B. L. Mann (Sheffield); For information, contact Ms. M. Hart, The Royal Society of Chemistry, Burlington House, Piccadilly, London W1V 0BN, England; Tel: 071-437-8656.

Gordon Research Conference: Magnetic Resonance. Wolfeboro, NH. July 11 - 16, 1993; Contact: Dr. A. M. Cruikshank, Gordon Research Center. University of Rhode Island, Kingston, RI, 02881-8080; (401) 783-4011 or -3372; FAX: (401) 783-7644.

12th Annual Scientific Meeting and Exhibition of the Society of Magnetic Resonance in Medicine. New York, NY. August 14-19, 1993; Contact: SMRM, 1918 University Ave., Suite 2C, Berkeley, CA 94704; Phone: (510) 841-1899; FAX: (510) 841-2340.

1993 FACS Meeting. Detroit, Michigan. October 17-22, 1993; Contact: H. H. Cheng, Hercules, Inc., Research Center, 500 Hercules Road, Wilmington, DE 19808; Phone: (302) 995-3505; Fax: (302) 995-4117. See TAMU NMR Newsletter 411, 10.
"Collective motions along the long side chain on polypeptide"

Dear Professor Shapiro,

As usual it takes your reminder notice to prompt us into submission. In our continuing studies of the side-chain dynamics of polypeptides, we have been finding the collective motions along the long side chain on polypeptides in the solid state.

The main chain of poly(γ-benzyl L-glutamate)(PBLG) forms an α-helical conformation, and this rod-like molecule packs into hexagonal in the crystalline state. On the other hand, the structure of the side chain of PBLG has not been clarified yet, and the glass-like transition is observed at above the room-temperature. We have measured T_1 and line-shape of the solid state 2H-NMR(30.7 MHz) for three PBLGs deuterated in γ, ζ, and κ positions, respectively, in the side chain. T_1 values obtained are shown in Figure 1, with the side chain structure of PBLG. The values show almost same temperature dependence for three samples, indicating same correlation times. This finding implies that same molecular motions exist in the different positions along the side chain, for the deuteron T_1 is mainly dominated by the quadrupole interaction. The Pake powder pattern is destroyed out to a singlet, due to the fast and larger-amplitude reorientations in this temperature range.

Sincerely,

Toshifumi Hiraoki

So Kitazawa

Figure 1

\[T_1(\text{s}) \]

\[1000/T \,(K^{-1}) \]
The unique channel modularity design of the Chemagnetics™ CMX spectrometer gives you the NMR flexibility you need for solids, liquids and microimaging. The CMX offers the range of capabilities required for today’s wide variety of experiments by supporting multiple channels. And the CMX design allows new channels to be added easily and affordably. All this adds up to a “no-compromise” approach to experimental capability.

Chemagnetics utilizes the latest technology to put multi-channel flexibility in the hands of the spectroscopist. Dual 16 bit, 1 MHz digitizers offer maximum dynamic range over the widest bandwidths. And each RF channel in the CMX is equipped with its own pulse programmer, so experiments are never limited by pulse programmer capacity.

The CMX is designed to start small and grow, providing the whole spectrum of NMR capabilities as they evolve, when you need them. Multi-channel capability with the CMX - flexibility for tomorrow, available today from Chemagnetics.

CMX Multi-Channel Applications

<table>
<thead>
<tr>
<th>One Channel</th>
<th>Solids</th>
<th>Liquids</th>
<th>Imaging</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>MAS</td>
<td>NOESY</td>
<td>H/HOC/ noc</td>
</tr>
<tr>
<td></td>
<td>DOS</td>
<td>TOCSY</td>
<td>H/TOCSY</td>
</tr>
<tr>
<td></td>
<td>WIDLINE</td>
<td>COBY</td>
<td>X/Decoupled</td>
</tr>
<tr>
<td></td>
<td>CHAMPS</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Two Channels

<table>
<thead>
<tr>
<th>Imaging</th>
<th>Solids</th>
<th>Liquids</th>
<th>Liquids+Imaging</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>MAS</td>
<td>HOC/COXY</td>
<td>H/19F, Gradient Field Spectroscopy</td>
</tr>
<tr>
<td></td>
<td>DOS</td>
<td>Spectrum Detection</td>
<td></td>
</tr>
<tr>
<td></td>
<td>WIDLINE</td>
<td>HETOCY</td>
<td></td>
</tr>
<tr>
<td></td>
<td>CHAMPS</td>
<td>X/Decoupled</td>
<td></td>
</tr>
</tbody>
</table>

Three Channels

<table>
<thead>
<tr>
<th>Solids</th>
<th>Liquids</th>
<th>Liquids+Imaging</th>
</tr>
</thead>
<tbody>
<tr>
<td>REDOR</td>
<td>Triple Resonance</td>
<td>H/X Gradient Field Spectroscopy</td>
</tr>
<tr>
<td></td>
<td>H, 13C, 19F, HMQC/TOCSY</td>
<td></td>
</tr>
</tbody>
</table>

Four Channels

<table>
<thead>
<tr>
<th>Liquids</th>
<th>Liquids+Imaging</th>
</tr>
</thead>
<tbody>
<tr>
<td>Advanced 4-channel, Solution State</td>
<td>Multi-Channel Gradient Field Spectroscopy</td>
</tr>
</tbody>
</table>

Chemagnetics

Dedicated to Design Excellence
Double Resonance DOR from Chemagnetics

Double rotation has revolutionized the study of quadrupolar nuclei by providing structural information previously hidden by 2nd order quadrupolar broadening. When applied with proton decoupling, broadening from proton dipolar coupling is eliminated, and resolution is greatly improved. Cross polarization also enhances the signal from strongly coupled octahedral hydrated sites compared with weakly coupled tetrahedral sites.

These spectra of AlPO-11 below illustrate these effects. The top spectrum shows single resonance DOR at 625 Hz spinning. The bottom trace shows significant improvement at 980 Hz; note especially the appearance of the octahedral peak at 30 ppm. The middle trace shows 625 Hz DOR with proton decoupling; the peaks are narrower than at 980 Hz, especially the octahedral signal.

The Double Resonance DOR probe from Chemagnetics is available today to help you achieve the best possible resolution of chemical shifts. Call now for our latest application note on this exciting new technique.
Differential Broadening of Thioredoxin

Dear Barry,

For some time we have been using 13C NMR relaxation measurements to study internal motions in 13C-labeled peptides and proteins in liquid solution. Normally we measure T_1, T_2, and the steady state NOE of 13C nuclei that have attached protons. The relaxation rates are subsequently interpreted in terms of overall rotational motion and internal motion of the molecule. It is also true that useful dynamical information can be obtained from proton-coupled 13C spectral lines. Consider, for example, the case of a 13C nucleus with a single attached proton. Because of interference between the chemical shift anisotropy and the dipolar interactions, the individual components of the 13C doublet generally will have different widths provided the CSA of the particular 13C is sufficiently large. In fairly big molecules such as proteins, the more restricted the internal motion at the site of the 13C, the larger this so-called differential broadening will be. The requirement on the size of the CSA is readily met by aromatic 13C nuclei (for example in tryptophan) at typical frequencies of 75 MHz and above. Examples of differential broadening that we have observed in 13C-tryptophan in thioredoxin (TRX) are described below.

Escherichia coli TRX is a low molecular weight (11,700), almost spherical redox protein. The "active site" of E. coli TRX consists of cysteine residues at positions 32 and 35 while TRX has trp residues at positions 28 and 31. X-ray and NMR work have shown that trp-31 lies on the surface of the protein and that trp-28 is partially buried and spatially proximate to the pair of cysteines. We have studied two single trp variants of E. coli TRX, W28F and W31F, in which phenylalanine replaces trp-28 and trp-31 respectively by incorporating into those proteins two, different, isotopically labeled trp residues, one with 13C at the δ1 (or 2) position of the indole ring and one with 13C at the ε3 (or 4) position of the indole ring.

From the relaxation measurements we found that the trp side chain motion is quite restricted in W28F and W31F. To see if the motion of the trp rings could be made less restricted, we performed relaxation measurements on urea denatured W28F and W31F. Indeed at 8-9 M urea, the internal motion of the trp side chains became substantially less restricted. As the urea concentration was titrated in W28F and W31F, two 13C NMR signals in slow exchange became apparent for each label, one from the native, folded forms and one from the denatured forms. Differential broadening measurements gave dramatic evidence of the contrast in the native and denatured forms as shown in the figure (next page) for reduced W28F. In the native protein the differential broadening is substantial for both 13Cδ1 and 13Cε3-trp while there was essentially no differential broadening in the denatured proteins. It is clear that measurements of differential broadening can be quite informative in the study of molecular dynamics.
Proton coupled 13C NMR spectrum at 75.4 MHz (referenced to internal dioxane at 67.37 ppm) of reduced W28F in 50 mM, pH 6.5 phosphate buffer (below) and in 8 M urea (above) at 20 °C.

Please credit this contribution to the account of B. D. Nageswara Rao.

Best regards,

Marvin D. Kemple

Peng Yuan

Indiana University - Purdue University Indianapolis
Dear Dr Shapiro,

Progress Towards 750 MHz - Update

Since our last communication (11 November 1991) on our 750 MHz Superconducting Magnet Development Programme we have made excellent progress towards our goal of providing a 750 MHz magnet as the flagship of our product range.

We previously reported results from Phase I of our programme which culminated in a 720 MHz prototype NMR magnet system. This system operates at a temperature of 2.2K and requires relatively complex cryogenic control. Although this was a milestone in high field NMR development we highlighted the problems associated with operating such a system as part of a routine high resolution NMR Instruments, specifically the need for highly skilled operators and the potential for NMR artefacts due to vibrational effects.

To overcome these inherent problems and offer the most user friendly system possible we have developed a 750 MHz magnet that operates at a temperature of 4.2K. Thus operating in the same convenient, well-understood way as all of Oxford's NMR magnets including the 600 MHz system.

We are pleased to announce that the prototype 750 MHz magnet has been successfully energised to field and is presently undergoing trials at Oxford's factory in the UK. Some optimisation may be required but the results obtained so far are extremely encouraging.

Although the magnet drift has not fully settled out, we have seen overnight drift rates as low as 10 proton Hz/hour and fully expect it to reduce further. The homogeneity analysis is encouraging, as can be seen from the nonspun lineshape on chloroform taken at 750 MHz shown overleaf, but some further work needs to be done to optimise the shimming. The operation of the cryostat is as simple as that of a 600 MHz cryostat, and the cryogenic performance is good, offering two months helium refill interval. The next step is to carry out some further integration and optimisation.

Continued overleaf....
We believe that no other manufacturer can offer such a high performance package and we look forward to being able to announce truly state-of-the-art NMR magnet performance in the near future.

This development could not have been carried out without the unique contributions of Bill Timms, Paul Noonan, Peter Daniels and their team. Partial financial support from the Department of Industry under the collaborative LINK scheme is acknowledged.

Yours sincerely

Bill Proctor
Managing Director

Neil Killoran
Technical Manager
What’s faster than high speed? Supersonic MAS!

For ten years Doty Scientific has led the field in high speed sample spinning. Our supersonic spinner systems use a unique air bearing design (patent pending) for highest stability, radial-inflow microturbines (patent pending) for highest efficiency, and self cooled bearing gas to keep the sample temperature constant.

3.5-mm SUPERSONIC CP/MAS

Spinning speed - 26 kHz
Sample volume - 20 µl to 30 µl

The 3.5-mm supersonic spinner is available for probes 30.5 mm in diameter and larger.

Applications for 1H, 19F and quadrupolar nuclei.

Standard 300 MHz 3.5-mm MAS Multi-X Probe with accessories ... $30,000

14-mm SUPERSONIC CP/MAS

Spinning speed - 6.5 kHz
Sample volume - 2.8 ml

The 14-mm spinner can only be provided in wide bore probes over 70 mm.

Applications include low-level constituents, such as natural abundance 15N in polymers and quantitative MAS without CP.

Standard 300 MHz 14-mm MAS Multi-X Probe with accessories $32,000

(Foreign prices 10% to 15% higher, plus taxes.)
10-mm Supersonic CP/MAS by Doty Scientific

Highest sensitivity, resolution, and efficiency.
Rugged design, easiest spinning, simple operation, low cost,
Also spins 7-mm vacuum-sealed glass ampules

10-mm Rotor Specifications

<table>
<thead>
<tr>
<th>Rotor Wall (mm)</th>
<th>Material</th>
<th>Sample Length (mm)</th>
<th>Sample Volume (ml)</th>
<th>RF Homogeneity (%)</th>
<th>Max Safe Speed (kHz)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0</td>
<td>glass ampule</td>
<td>18.0</td>
<td>0.35</td>
<td>20</td>
<td>3.0</td>
</tr>
<tr>
<td>0.7</td>
<td>zirconia</td>
<td>17.4</td>
<td>1.00</td>
<td>16</td>
<td>6.7</td>
</tr>
<tr>
<td>0.7</td>
<td>zirconia</td>
<td>13.2</td>
<td>0.77</td>
<td>6</td>
<td>7.4</td>
</tr>
<tr>
<td>1.2</td>
<td>Si$_3$N$_4$</td>
<td>13.2</td>
<td>0.60</td>
<td>5</td>
<td>10.5</td>
</tr>
</tbody>
</table>

*For 1.2 g/cm3 sample density

Typical, Double-tuned, Multi-X, WB Specs

<table>
<thead>
<tr>
<th>Field (T)</th>
<th>Nucl.</th>
<th>Freq. (MHz)</th>
<th>Ringdown* (μs)</th>
<th>Power (W)</th>
<th>π/2 (μs)</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.7</td>
<td>1H</td>
<td>200</td>
<td>4</td>
<td>120</td>
<td>4</td>
</tr>
<tr>
<td>4.7</td>
<td>1H</td>
<td>50</td>
<td>15</td>
<td>300</td>
<td>4</td>
</tr>
<tr>
<td>4.7</td>
<td>1N</td>
<td>20</td>
<td>25</td>
<td>1400</td>
<td>4</td>
</tr>
<tr>
<td>9.4</td>
<td>1H</td>
<td>400</td>
<td>2</td>
<td>150</td>
<td>5</td>
</tr>
<tr>
<td>9.4</td>
<td>1C</td>
<td>100</td>
<td>10</td>
<td>250</td>
<td>6</td>
</tr>
<tr>
<td>9.4</td>
<td>1N</td>
<td>40</td>
<td>15</td>
<td>1100</td>
<td>6</td>
</tr>
</tbody>
</table>

* Ringdown (20%) when matched to typical preamp.

Low Frictional Heating: 2°C max, from 1 kHz to 7 kHz
Self-cooled. Isentropic expansion of turbine drive gas is used to cancel the bearing frictional heating that has plagued previous fast spinners. Low thermal gradients for highest resolution.

Balanced Decoupling Circuit – Lowest Noise and Decoupler Heating
No decoupler breakthrough with 100 ms pulses at 20% duty cycle.

High RF Homogeneity: ±6% for 0.77 ml sample volume
Hartmann-Hahn match and high rf field strength are not sufficient for CP at high speeds. The spinning frequency offset imposes the requirement of high B$_1$ homogeneity. High rf homogeneity can double SNR.

• Multinuclear channel tunable from 31P to 39K in most wide bores.
• Zirconia construction. Standard VT range: -140°C to +180°C.
• Upper temperature limit may be extended to 280°C.
• Triple-tuned option with dual, broadband channels: 1H-X-Y.
• Also available for Varian narrow bore (44 mm room temperature bore).

Standard 300 MHz 10-mm MAS Multi-X probe with accessories $27,500
Measurement of Long-Range 13C - 1H Coupling
Constants in Carbohydrates

Rossitza Gitti and C. Allen Bush

Department of Chemistry and Biochemistry
University of Maryland Baltimore County
Baltimore, Maryland 21228

Valuable conformational information can be derived from measurements of 3-bond heteronuclear coupling constants between 1H and 13C across the glycosidic linkage in oligosaccharides, (Rosvear et al., 1982). Although the measurements are technically difficult, efforts have continued to develop suitably parameterized trigonometric formulas for correlating the coupling constants with the dihedral angles of the glycosidic linkage, (Tvaroska, 1990). Among a number of new NMR experiments recently proposed for measurement of long-range heteronuclear coupling, one by Montelione et al. (1989) involves generation of 'E-COSY' type cross peak patterns in homonuclear 2-d spectra of samples enriched in 15N or 13C. While most of the applications reported for this method involve 15N, it should also work for 13C enriched carbohydrates. Although selective or partial enrichment might avoid some spectroscopic problems such as 13C - 12C coupling and 1H broadening by 13C relaxation, it should be easy to prepare uniform 100% enriched bacterial polysaccharides by growing bacteria in 13C enriched media. Selective or partial enrichment could be difficult for bacteria requiring multiple carbon sources.

Therefore we have applied the method of Montelione et al. (1989) to uniformly highly 13C enriched glucose. In these experiments we expect each homonuclear crosspeak to be split into four components separated in both dimensions by the one-bond 13C - 1H coupling. A phase-sensitive 2-d 1H TOCSY spectrum of uniform 98% labeled 13C glucose was recorded on a GN-500 spectrometer with MLEV-17 mixing with trim pulses. The results in Fig. 1 show the cross peaks of the upfield satellites of H2 and H4 of the β-anomer with H1. Fig. 2 shows cross peaks of H1 of the α-anomer with H2 and H3. Values of the coupling constants can be estimated from the contour plots made with high digital resolution. Using Hare's FELIX program to 'zoom' sub-blocks of our spectrum to 0.3 Hz/pt resolution, we have estimated J values to approximately \pm 0.4 Hz. Measurements are in reasonable agreement with literature values for the β-anomer of 5.5 Hz for $^2J_{C1-H2}$ (Walker et al, 1976) and for the α-anomer of 5.3 Hz and 1.3 Hz for $^2J_{C3-H1}$ and $^2J_{C2-H1}$ respectively (Gidley and Bociek, 1985).

REFERENCES

Figure 1. TOCSY cross peaks of β-H1 with H2 and H4 yield estimates of $^2J_{C1-H2}$ and of $^4J_{C1-H4}$.

Figure 2. TOCSY cross peaks of α-H2 and H3 with H1 yield estimates of $^2J_{C2-H1}$ and $^3J_{C3-H1}$.
Dr. Shapiro:

Measuring tissue oxygenation non-invasively in-vivo is a daunting task. However, it is well known that the spin-lattice relaxation rate of 19F in perfluorocarbon (PFC) emulsions is linearly related to dissolved oxygen content. Spatial mapping of oxygen tension in-vivo, using sequestered PFC emulsions, has also been published. Producing pO$_2$ maps can take an extraordinary amount of time because of long spin-lattice time constants of 19F PFC emulsions at normal oxygen tensions. We propose a technique to map oxygen tension in-vivo by employing 19F echo planar inversion recovery imaging of sequestered PFC emulsions. An inversion recovery method is more accurate than a progressive saturation technique because it provides twice the dynamic range. Since echo planar imaging also produces an entire image in less than 100 milliseconds, more images can be obtained or averaged at different inversion times making spin echo techniques time prohibitive.

Female, C3H mice are administered a 10g/kg dose of F-44E PFC emulsion (see spectrum in Figure 1) by tail vein injection. In three to five days most of the PFC emulsion is sequestered in the reticuloendothelial system of the liver and spleen. At this time the animals are anesthetized with 1.5% isoflurane in air or pure oxygen. Measurements are performed on a 2.0 T GE-CSI-II imaging spectrometer with 20g/cm self-shielded gradients. The transmitter frequency is selectively set on the CF$_3$ resonance and a 64x64 19F projection echo planar image, instead of a FID, is acquired at each inversion recovery time (Figure 2). The following TI intervals were used: (0.08, 0.2, 0.5, 2, 4, 8) seconds at a TR of 10 seconds. At a spectral width of 70KHz, the acquisition time was 28.6msec. With NA=2, the total acquisition time was approximately 2.5 minutes. The oxygen tension maps are then produced by calculating the relaxation rate, R$_1$, on a pixel by pixel basis, using a nonlinear least squares algorithm. Each pixel is then assigned a pO$_2$ value, in torr, from calibrations obtained from phantom experiments. A pO$_2$ map of the liver and spleen of a mouse breathing 21% O$_2$ is shown in Figure 3. The corresponding histogram with bin widths of 6 torr is shown in Figure 4. Oxygen tension maps were also produced for the same animal breathing 100% O$_2$ and post-mortem with mean pO$_2$'s of 115 and 8.7 torr, respectively. We hope to extend this technique to spatially map tumor oxygenation in-vivo to study the effects of adjuvants on radiotherapy.

Bernard J. Dzdzinski

Christopher H. Sotak
Dr. B. L. Shapiro
966 Elsinore Court
Palo Alto, CALIFORNIA 94303

SUBJECT: Novel Heteroarotinoids

Dear Dr. Shapiro:

Our contribution to the Newsletter is concerned with some heteroarotinoids (peripherally related to certain natural retinoids). The examples prepared recently were interesting in that at 300 MHz most of the signals were visible. The proton signals are followed by the signals for C-13 in ppm (all from TMS). What

\[
\begin{align*}
\delta & \quad \text{(ppm)} \\
1.39 & \quad (31.1) \\
2.27 & \quad (17.5) \\
1.86 & \quad (37.7) \\
4.21 & \quad (63.1) \\
6.76 & \quad (30.7) \\
4.40 & \quad (60.0) \\
\end{align*}
\]

Ar-H (Ar-C and vinyl-C): \(\delta \ 6.80-8.03 \ (116-153 \text{ ppm}) \)

C=O: 166.7 ppm

Is interesting is that the NMR signals for the oxygen compound (top) in DCCl3 do not appear to correlate well with what is present in the solid state analysis. The two aryl rings are more twisted (they are tilted approximately 45° with respect to each other) in the solid state than anticipated from the NMR analysis. We are looking at several other examples in this novel family.

Sincerely yours,

K. Darrell Berlin
Regents Professor
You might think that because of its incredible flexibility, clean rf and exceptional sensitivity, the ARX™ would serve superbly as a high-resolution NMR research tool. And you'd be absolutely right. Even without having seen its triple-resonance or 3-D capabilities, its ultra-precise rf control (in 0.001 Hz and 0.05° steps!), gradient spectroscopy or standard inverse and pulse shaping features.

You might think that with its elegant design simplicity, liquids and solids sample changers, barcode automation, exceptional ease of operation, plus its high reliability and superior throughput, the ARX™ is a new pacesetter for ease-of-use and automated NMR applications.

Right again. Especially when you consider its powerful UXNMR software, easy pulse programming language and pulse shape generator, automated parameter optimization, and its new intuitive, yet powerful icon/mouse menu operation.

Are we saying the ARX™ was designed for exceptionally easy-to-use, highly automated and highly flexible research NMR? Indeed we are, and we suggest quite simply that you challenge the ARX™ to a demonstration. You'll see why the answer is:

"Run it on the ARX™: . . . it's for Automated Research Excellence."

Contact your local Bruker representative for more information or to arrange a demonstration.

Bruker Instruments, Inc
Manning Park, Billerica, MA 01821
In Europe: Bruker Analytische
Messtechnik GmbH, Silberstreifen,
D-7512 Rheinstetten 4, Germany
ARX - Automated Research Excellence

Performance Data

Summary of Specifications for common probeheads

<table>
<thead>
<tr>
<th>ARX</th>
<th>Probehead</th>
<th>Resolution Test</th>
<th>Lineshape Test</th>
<th>Sensitivity Test</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>All 5 mm 1H</td>
<td>1H</td>
<td>5+10 mm 13C</td>
<td>80% C,H, all 5 (10) mm 13C</td>
</tr>
<tr>
<td></td>
<td>All 5 mm 1H</td>
<td>1H</td>
<td>5+10 mm 13C</td>
<td>80% C,H, all 5 (10) mm 13C</td>
</tr>
<tr>
<td></td>
<td>Lineshape Test</td>
<td>5 mm 1H Selective</td>
<td>135</td>
<td>150/300</td>
</tr>
<tr>
<td></td>
<td>Sensitivity Test</td>
<td>5 mm 1H Inverse Detection</td>
<td>100</td>
<td>140</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5 mm 1H Dual, QNP, VSP</td>
<td>100</td>
<td>140</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5 mm 1H Dual, QNP, VSP</td>
<td>100</td>
<td>140</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5 mm 1H Dual, QNP, VSP</td>
<td>100</td>
<td>140</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5 mm 1H Dual, QNP, VSP</td>
<td>100</td>
<td>140</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5 mm 1H Dual, QNP, VSP</td>
<td>100</td>
<td>140</td>
</tr>
</tbody>
</table>

EB = ethylbenzene (for 13C with 1H-dec);
ASTM = 60% C6H6 in dioxane;
QNP = 5 or 10 mm H, a,p, 1sN;
VSP = 5 mm 2N - 1ap; 10 mm 13C.

Console

- Dimensions and weights are approximate; voltage + 10% - 5% max. variation; other line freq. and voltage upon request.
- Dimensions: electronics cabinet w 130 x d 70 x h 1.20 m
- Weight: 450 kg
- Power (dissipation): 220 V/50 Hz/16 A (ca. 4 kW)

Australia: BRUKER (Australia) Pty., 1F, Alexandria, New South Wales, Tel. 02-5506422
Belgium: BRUKER SPECTROSPIN S.A./N.V., Brussels, Tel. (02) 548 52 98
Canada: BRUKER SPECTROSPIN (Canada) Ltd., Milton, Ontario, Tel. (416) 876-4841
England: BRUKER SPECTROSPIN LTD., Coventry, Tel. (0203) 855200
France: SADS BRUKER SPECTROSPIN SA, Wissembourg, Tel. (088) 73 6800
India: BRUKER INDIA SCIENTIFIC Pvt. Ltd., Andheri (West), Bombay, Tel. 22-62-52-322
Japan: BRUKER JAPAN CO. LTD., Itabashi-ku, Tokyo, Tel. 03-52-12-234
Netherlands: BRUKER SPECTROSPIN NV, Warmer, Tel. (70) 59.52.51
Scandinavia: BRUKER SPECTROSPIN AB, Täby, Sweden, Tel. (0468) 758-03-35
Spain: BRUKER ESPAÑA S.A., Madrid, Tel. 341-250-30-11
Switzerland: SPECTROSPIN AG, Fällanden, Tel. 1-92 59 111
USA: BRUKER INSTRUMENTS, INC., Billerica, MA 01821, 508-667-9580, Fax: 508-667-3954

Regional Offices:
- Chicago, IL, Tel. 708-971-4300
- Wilmington, DE, Tel. 302-478-8171
- Houston, TX, Tel. 713-292-2447
- San Jose, CA, Tel. 408-434-1100
First High Resolution Spectrum at 750 MHz

Dear Barry:

BRUKER is proud to present the first high resolution spectrum at 750 MHz. This spectrum was obtained within a few days after energizing our AMX 750 in its final dewar. We first successfully energized a 750 MHz persistent superconducting magnet, which BRUKER built in cooperation with the Kernforschungszentrum Karlsruhe, more than one year ago, and reported it in the TAMU NEWSLETTER in October 1991. We expected then, that the development of a complete 750 spectrometer would take several years, but progress has been more rapid.

The first 750 MHz spectrum shown in Fig. 1 was obtained from a cyclic tripeptide (Cyclo [L-Pro-L-Pro-L-Thr]), using a 5 mm proton selective probe (with lock) and BOSS™ shims on an AMX 750 with SE-451™ receiver. For comparison, the same spectrum is also shown using an AMX 600 spectrometer. Besides the 25% higher dispersion, which is clearly evident, the absolute resolution of the 750 MHz spectrum is essentially the same as at 600 MHz. Due to the higher dispersion, the two spin systems which at 600 MHz are still partially overlapping, are now well resolved at 750 MHz.

We hope that this first spectrum gives a good indication of the future potential of this new class of high-resolution, solid-state and microimaging NMR spectrometers. As progress continues, we will be happy to keep you informed about the latest developments with this new research spectrometer.

Sincerely,

Prof. Dr. Günther Laukien

Dr. Gerhard Roth

December 14, 1992
(received 12/17/92)
Fig. 1: 600 and 750 MHz spectra of cyclo[L-Pro-L-Pro-L-Thz] in CDCl₃. The expansion shows the signals of the cis-δ proton of proline 1 and 2. Both spectra are plotted on the same Hz/cm scale.

We acknowledge Dipl. Phys. R. Ruin for quickly shimming the magnet and Dr. W. Bermel for recording this first spectrum.
Dec 1 1992 (received 12/10/92)

Dear Barry,

QCC and Asymmetry Parameters of Phenyllithiums Using Solid State 7Li NMR.

For many organolithium compounds it is possible to obtain a detailed information of the state of aggregation in solution by measuring lithium relaxation, provided that there exists a reliable probe for the effective rotational correlation time of the studied complex. However, this latter requirement is quite critical and the obtained quadrupolar splitting constants (QSC) may be far from reliable.

To circumvent this problem and to compare the solution and solid state data, we have studied microcrystalline samples of variously complexed phenyllithiums using static and MAS 7Li NMR. A representative experimental and simulated powder spectrum is shown below for the PMDTA complex yielding a QCC of 260 kHz as expected for a monomer. For the TMEDA adduct, being a dimer according to X-ray, we obtained a QCC of 147 kHz, which affords a QSC of 161 kHz as compared to the solution value of 162 kHz. Similar agreement between solid and solution data was noted for tetrameric complexes. So solid state studies can be quite useful to characterize reactive organolithium species and to connect X-ray and solution experiments. However, keep your polymeric rotors away from these species. Organolithium compounds eat them.

All solid state studies so far have been performed on our old Bruker MSL-100 instrument. We will soon have solid facilities on our 500 MHz system also together with an upgrade from AM to a rack version of the new "X32-free" AMX.

Best regards

[Signature]

Ulf Edlund

Dan Johnels
Dear Barry,

We have lately been interested in measuring solvent effects on the chemical shift of 3He in liquids. During these studies we observed that 3He can also be detected if it has penetrated into the glass of the sample wall (see the Fig.). So far we have been able to obtain signals of 3He in quartz (suprasil) (one FID) and in pyrex (several thousand FID's). In suprasil the diffusion is rather fast (half time of ≈ 2 days); in pyrex it is slower. We have studied the 3He relaxation and have been able to attribute it to the dipole-dipole interaction in pyrex with Fe^{3+} impurity ions and in suprasil with unpaired electrons of defects. Presently we are studying 3He in various solids.

NMR of 3He in vitreous silica

With best regards

Prof. P. Diehl, Dr. R. Mazitov, R. Seydoux
AMT Delivers More For Less!

10-90 MHz, 1000 Watt RF power amplifiers for less than $10,000

Key Features:

- Full 10-90 MHz frequency range
- 1000 watt power rating
- Linearity ±1 dB
- Noise blanking in less than 2 µs
- Less than 5% pulse droop
- Dual mode, Pulse/CW operation
- Digital power meter
- Dual range power limits

The AMT NMR/NMRI product family

<table>
<thead>
<tr>
<th>SERIES</th>
<th>FREQUENCY</th>
<th>POWER RATING</th>
</tr>
</thead>
<tbody>
<tr>
<td>3130</td>
<td>200-500 MHz</td>
<td>50 to 300 W</td>
</tr>
<tr>
<td>3200</td>
<td>6-220 MHz</td>
<td>150 to 1000 W</td>
</tr>
<tr>
<td>3304</td>
<td>30-310 MHz</td>
<td>400 W</td>
</tr>
<tr>
<td>3420</td>
<td>10-90 MHz</td>
<td>1000 to 2000 W</td>
</tr>
</tbody>
</table>

Call Jim Lukes at AMT, or your local distributor NOW for a price that will flip your spins!

3080 Enterprise Street • Brea, CA 92621 • (714) 993-0802 • Fax (714) 993-1619
Electrical specifications:

- Frequency range: 10–90 MHz
- Pulse power (min.) into 50 ohms: 1000 W
- CW power (max.) into 50 ohms: 100 W
- Linearity (± 1 dB): 0–900 W
- Gain (typ.): 65 dB
- Gain flatness: ± 2 dB
- Input/Output impedance: 50 ohms
- Input VSWR: < 2:1
- Pulse width: 20 ms
- Duty cycle: Up to 10%
- Amplitude rise/fall time: 250 ns typ.
- Amplitude droop: 5% to 20 ms typ.
- Phase change/output power: 10° to rated power, typ.
- Phase error overpulse: 4° to 20 ms duration, typ.
- Noise figure: 11 dB typ.
- Output noise (blanked): < 20 dB over thermal
- Blanking delay: < 2 μs on/off, TTL signal
- Protection
 1. VSWR: infinite VSWR
 2. Input overdrive: up to 10 dB
 3. Over duty cycle/pulse width
 4. Over temperature

Supplemental characteristics:

Connectors, rear panel
1. RF input: BNC (F)
2. RF output: Type N (F)
3. Noise blanking: BNC (F)
4. Interface: 25 pin D(F), EMI filtered

Indicators, front panel
1. AC power on
2. Peak power meter
3. Over pulse width
4. Over duty cycle
5. Over temperature
6. Over drive
7. CW mode

System monitors
1. Forward/Reflected RF power
2. Over pulse width/duty cycle
3. DC power supply fault
4. Thermal fault

Front panel controls
1. AC power
2. Pulse width
3. Duty cycle

Cooling
Internal forced air

Operating temperature
+ 10 to 40°C

AC line voltage
208/230 VAC, ± 10%, 50–60 Hz

AC power requirements
2000 watts

Package
Rack mount

Size (HWD, inches)
8.75 × 19 × 20.25

Net weight
100 lbs.
"Squeezing more out of FT-PGSE self-diffusion experiments - blood from a turnip (?)"

Dear Barry,

Thank you for the final ultimatum to TAMU NMR Newsletter subscriber PS (normal address RIT, Stockholm, but presently having a short sabbatical in the laboratory of Charles S. Johnson Jr., at UNC). We have done some independent work along the lines of improved data evaluation in the case of FT-based pulsed-gradient NMR spin-echo experiments for the determination of self-diffusion coefficients on multi-component or polydisperse samples in solution. Self-diffusion coefficients contain a wealth of highly relevant and easily conceived physico-chemical information, especially on colloidal or macromolecular systems in solution, and NMR is undoubtedly the method of choice for accessing this type of information, as compared to radioactive tracer methods, or optical techniques.

The traditional approach of measuring NMR spin-echo intensities or peak integrals for subsequent fitting to the Stejskal-Tanner equation is normally sufficient for the majority of needs. However, if there is extensive peak overlap between components, or if the sample contains some polydisperse polymer, one must turn to more advanced data processing. With present-day instrumentation, it is natural then to try to use the complete experimental information available in bandshapes already stored on the spectrometer disk, and to utilize the really enormous computing power available on the on-line or network-connected workstations typically available.

Details of full FT-PGSE spectral data processing through deconvoluting routines like CONTIN, SPLMOD or DISCRETE (see e.g. S.W. Provencher, Comput. Phys. Commun., 27 (1982) 213 and 229), adding some extra "decision rules" for the deconvoluting process was recently submitted for publication (Morris and Johnson, see also previous communications in JACS 114 (1992) 3139 and 776). Figure 1 illustrates the power of that approach, and the information content that can be achieved. The 2D variant of the techniques is named DOSY (Diffusion Ordered NMR Spectroscopy). Together with former Stockholm postdoc Dirk Schulze (now at Shell Laboratories, Amsterdam), PS developed a complementary approach, that enables one to directly deconvolute spectral bandshapes, contributing to severely overlapping bands in FT-PGSE data sets, even in the case of very similar self-diffusion coefficients (Figure 2; the paper will be submitted when this appears in print).

We believe that procedures like these will be of significant value in future FT-PGSE work on more complex systems than previously considered feasible. Please credit this contribution to Peter Stilbs subscription.

Best regards,

Sincerely Yours

Kevin Morris
Charles S. Johnson, Jr.

Peter Stilbs

THE UNIVERSITY OF NORTH CAROLINA is an equal opportunity institution
Figure 1: A 250 MHz Proton DOSY spectrum of 1% Ethyl(hydroxyethyl)cellulose (EHEC) and 0.34% cetyl trimethylammonium bromide (CTAB) in heavy water. Such systems exhibit highly unusual rheologic behaviour. Note the very wide (polydisperse) EHEC diffusion distribution, and the very much narrower one for CTAB.

Figure 2: A deconvolution of the highly overlapping FT-PGSE spectra of a mixture of n-octane (open circles) and n-heptanol (filled squares); as based on differential signal attenuation effects on the combined bandshape (solid line) during FT-PGSE experiments.
November 6, 1992.
(received 11/21/92)

Dear Professor Shapiro:

The proton signals of 2-hydroxyindolenines 1-4 and of the 2-methoxy derivative 5 were assigned after first-order analysis of the 300 MHz spectra measured in CDCl₃ and DMSO-d₅ solutions from mixtures of E and Z isomers. The data are listed in the Table.

In the chloroform spectra, the proton signals from position 2 owing to the E and Z isomers (E/Z ratio ca 1:10) appear as broad doublets resulting from the interaction with the 2-OH group. For the Z isomer the H-2 signal appears at lower fields (0.41-0.47 ppm), compared with that of the E isomer, as a result of a selective anisotropic effect exerted by the carbonyl moiety of the ester group at C-8. Accordingly, the relative shieldings of the H-4 signals in the E,Z pairs vary in opposite directions, with H-4 in the Z isomer resonating at higher fields (0.30-0.41 ppm) than the E isomer. In the later form, H-4 is coplanar with the 8-carbonyl moiety. Consequently the chemical shifts owing to H-2 and H-4 can be used as key arguments for E,Z assignments. Although all other aromatic protons are less affected by the configuration of the C/3=C/8 double bond, they were easily discerned from the proton-proton coupling patterns.

On changing the solvent from CDCl₃ to DMSO-d₅ some chemical shift variations were observed. As expected, the most severe change occurs in the 2-OH chemical shift, which was considerably more shielded in CDCl₃ (by ca 3 ppm) than in DMSO-d₅. Contrarily to observations for the related 2-oxoindolenines³, the E/Z ratio for 1-5 were found to be solvent independent.

1.- G. Jones and W.J. Rae, Tetrahedron, 22, 3021 (1966).
Table. Chemical shifts in CDCl₃ (and DMSO-d₆).

<table>
<thead>
<tr>
<th>H2</th>
<th>H4</th>
<th>H5</th>
<th>H6</th>
<th>H7</th>
<th>OH</th>
</tr>
</thead>
<tbody>
<tr>
<td>E 6.33(6.16)</td>
<td>8.76(8.57)</td>
<td>7.11(7.24)</td>
<td>7.53(7.65)</td>
<td>7.98(7.88)</td>
<td>4.65(7.69)</td>
</tr>
<tr>
<td>Z 6.80(6.71)</td>
<td>8.46(8.29)</td>
<td>7.18(7.27)</td>
<td>7.60(7.69)</td>
<td>7.98(7.88)</td>
<td>4.50(7.40)</td>
</tr>
<tr>
<td>E 6.39(6.13)</td>
<td>8.75(8.57)</td>
<td>7.12(7.15)</td>
<td>7.52(7.63)</td>
<td>7.95(7.88)</td>
<td>4.68(7.66)</td>
</tr>
<tr>
<td>Z 6.80(6.69)</td>
<td>8.46(8.27)</td>
<td>7.16(7.23)</td>
<td>7.59(7.66)</td>
<td>7.95(7.88)</td>
<td>4.52(7.32)</td>
</tr>
<tr>
<td>E 6.50(6.25)</td>
<td>9.76(9.56)</td>
<td>-</td>
<td>8.44(8.49)</td>
<td>8.13(8.01)</td>
<td>4.74(8.05)</td>
</tr>
<tr>
<td>Z 6.92(6.76)</td>
<td>9.33(9.05)</td>
<td>-</td>
<td>8.48(8.52)</td>
<td>8.13(8.01)</td>
<td>4.48(7.77)</td>
</tr>
<tr>
<td>E 6.51(6.24)</td>
<td>9.74(9.51)</td>
<td>-</td>
<td>8.43(8.46)</td>
<td>8.12(8.00)</td>
<td>4.69(8.03)</td>
</tr>
<tr>
<td>Z 6.92(6.72)</td>
<td>9.33(9.03)</td>
<td>-</td>
<td>8.47(8.50)</td>
<td>8.12(7.98)</td>
<td>4.54(7.70)</td>
</tr>
<tr>
<td>E 6.19(6.15)</td>
<td>8.72(8.57)</td>
<td>7.12(7.20)</td>
<td>7.55(7.66)</td>
<td>7.94(7.86)</td>
<td>-</td>
</tr>
<tr>
<td>Z 6.88(6.66)</td>
<td>8.46(8.27)</td>
<td>7.18(7.28)</td>
<td>7.58(7.70)</td>
<td>7.94(7.86)</td>
<td>-</td>
</tr>
</tbody>
</table>

Sincerely yours,

Martha S. Morales-Rios

Pedro Joseph-Nathan
Varian’s Pulsed Field Gradients Provide Enhanced Sensitivity.

Designed for biomolecular applications

Outstanding probe performance, combined with Varian’s new ultra-stable low-noise gradient amplifier technology, provides extraordinary water suppression and sensitivity.

For proteins with even slowly exchanging amide protons, Varian’s Pulsed Field Gradient accessory provides superior sensitivity in the HSQC experiment when compared to traditional presaturation. Phase cycling and presaturation are eliminated.

Varian provides accessories for the performance edge you need in biomolecular NMR research.

For more information, contact a Varian office near you.

Varian Associates 3120 Hansen Way, Bldg. 4, Palo Alto, CA 94304-1030, U.S.A. Tel: 1-800-356-4437 • Varian International A2, Rischpark 20, CH-3302, Zug, Switzerland Tel: (41) 44 88 44 • Varian GmbH, Mittlerer Strasse 6, D-6100 Darmstadt, Germany Tel: (0 61 51) 70 30 • Varian Instruments Ltd., 3rd Mainside Bldg., 2-2-6 Ohashi Shibuya, Tokyo, Japan Tel: (3) 3204-2811
Varian's Pulsed Field Gradient module is comprised of a probe and amplifier

Probes

- Excellent specifications for uncompromised high resolution performance
- Extremely short delays between gradients and acquisition for highest sensitivity and minimal spectral distortions
- Minimal acoustic ringing with new gradient coil mounting

Amplifier

- Ultra-stable low-noise circuitry with thermal shunting for uncompromised stability and gradient pulse reproducibility
- Transconductance circuitry provides the ultimate in reproducible gradients and eliminates manual matching with the gradient coil
- Eddy current compensation for minimal gradient dead time
- Optimal choice of gradient strength for high resolution applications
Varian Obtains NMR Results at 750 MHz

Dr. B. L. Shapiro
TAMU NMR Newsletter
966 Elsinore Court
Palo Alto, CA 94303

Dear Barry,

We are currently acquiring data on our new Varian UnityPlus™ NMR console connected to a prototype Oxford 750 MHz superconducting magnet! We believe these are the first reported high resolution NMR results at 750 MHz for chemical and biomolecular applications which further demonstrates Varian's continuing commitment to high field NMR.

Varian has been developing probes and spectrometer consoles at 750 MHz in anticipation of the Oxford 750 MHz magnet. The spectra below demonstrate that today's 750 MHz NMR systems provide excellent results in a variety of experiments with the resolution and sensitivity enhancements that are expected.

Results
1a. The 23Na MAS spectrum of Na$_2$MoO$_4$ continues to narrow as the data is acquired at higher field strengths.

b. The series of spectra plotted from 200 to 750 MHz shows the effect of field strength.

![Spectra](image-url)
2.a. The second result is a comparison of resolution on a 750 MHz spectrometer with a 500 MHz spectrometer. The sample is delta-4-androstene-3,17-dione. The gain in resolution due to chemical shift dispersion is quite significant.

b. The DQCOSY on the same sample demonstrates that the magnet and spectrometer technology available today is capable of providing long term two dimensional results.
3.a. The third result is a water presaturation experiment on 5mM Lysozyme in 90% H₂O/D₂O. The result shows that excellent lineshape can be obtained on the 750 MHz system and biomolecular studies are feasible today. The peaks next to the residual water in the 1D spectrum are not suppressed.

b. The NOESY on 5mM Lysozyme in 90% H₂O/D₂O has a narrow water stripe with resolution and sensitivity superior to a 600 MHz spectrum.

We are extremely excited about these results and are looking forward to working with scientists worldwide on additional applications at 750 MHz.

Sincerely,

Timothy Saarinen
Product Manager

Peter Sandor
Applications Chemist

Ali Behbin
Probe Engineer

George Gray
Applications Chemist

Ron Haner
Probe Engineer
Extending spectrometer technology beyond current limits is a major goal at Varian NMR Instruments. Today, our course of innovation continues to provide professionals with the resources to step outside traditional boundaries. By encouraging professionalism that dares to be different, Varian remains first and foremost with opportunities that keep you on the industry’s cutting edge.

Senior Technical Staff Member

Reporting to the Manager of Research and Development, you will be responsible for extending the application boundaries of high-resolution NMR by designing novel experiments to perform with existing instrumentation, and by defining the operating parameters of new equipment. The successful candidate should also be capable of leading an engineering design team in the development of new NMR products.

This position requires an advanced degree in Applied Physics or Chemistry and 5 years’ experience in biomolecular NMR techniques and applications. A thorough understanding of present day high-resolution NMR methods is also required. Familiarity with modern NMR instrumentation is desirable and good communication skills are essential.

Senior Applications Chemist

You will be responsible for conducting demonstrations of NMR equipment, running customer samples, presenting workshops, and evaluating new equipment. You’ll also write manuals, assist in product development, participate in research programs, and provide post-sales customer support and training.

We require a PhD in Chemistry or Physics, or equivalent, and 3-5 years’ experience with state-of-the-art biomolecular NMR. You’ll also need a background developing and/or implementing NMR pulse sequences, an understanding of NMR phenomenon sufficient to implement and test new experiments, and familiarity with UNIX*. Excellent communication and presentation skills essential. NMR hardware design or troubleshooting experience desirable.

As a Fortune 500 company, Varian offers an excellent salary and benefits package which includes cash profit sharing, 100% tuition reimbursement, and a 401(k) retirement savings plan. To apply, please send your resume to: Varian Associates, 3120 Hansen Way, M/S D-315/SZ, Palo Alto, CA 94304. Varian is proud to be an equal opportunity employer and to provide a drug and smoke free environment.

*UNIX is trademark of UNIX Systems Labs, Inc.
Structure Elucidation

CSEARCH

Offers identical presentation on Sun, Silicon Graphics, or VMS
Reads 13C NMR peak tables directly
Confirms calculated with measured spectrum
Finds structurally related compounds by spectral matching
Calculates spectra for compounds not in the database

Comparison of the calculated spectrum of a proposed structure with its measured spectrum. The intelligence of CSEARCH is demonstrated by favorable comparison for a structure not contained within the database of 52,000 spectra.
Software and Databases for Personal Computers

BIO-RAD

Main Office, 3316 Spring Garden Street, Philadelphia, Pennsylvania 19104.
Triple Resonance Experiments for Determining Resonance Assignments in Small Proteins

Dear Dr. Shapiro,

During the last several months we have developed an improved strategy for determining sequence-specific NMR assignments in small isotope-enriched proteins. In our approach, the 1H-1H planes from a set of 15N-resolved 3D-NMR experiments are analyzed to provide both spin system identification and sequential connectivity information. These pulse sequences are extensions of the basic HC(NH) triple resonance1,2 experiment, modified to provide HCCH TOCSY transfer from sidechain protons, through sidechain and backbone carbon nuclei, to backbone amide nitrogen and protons. Multidimensional $\text{H}_\text{C}N\text{H}_\text{CA}_\text{N}_\text{H}$ TOCSY3 experiments are first used to connect together the resonances of each amino acid spin system and to provide unique identification of many spin system types, including those of asparagine and glutamine which exhibit cross peaks between sidechain aliphatic and sidechain amide nuclei. Next, sequential connections between amino acid spin systems are established using multidimensional $\text{H}_\text{C}O\text{N}_\text{H}$ TOCSY4. The $\text{H}_\text{C}N\text{H}_\text{CA}_\text{N}_\text{H}$ TOCSY3, or "CA-TOCSY", spectra provide an extensive set of intraresidue connections between proton, carbon, and nitrogen resonances of each amino acid in the sequence, while the complementary $\text{H}_\text{C}C\text{O}_\text{N}_\text{H}$ TOCSY4, or "CO-TOCSY", spectra provide sequential connections between aliphatic α, β, γ, and δ proton and carbon resonances of residue i and the amide proton and nitrogen resonances of residue $i+1$. These experiments are related to CBCANH and CBCA(CO)NH triple experiments recently described by Grzesiek & Bax5,6.

Representative data from triple-resonance TOCSY spectra are shown in Figs. 1 and 2. Together, these multidimensional CA- and CO-TOCSY experiments provide the information needed to determine most of the sequence-specific backbone and sidechain resonance assignments in small proteins. Details of these pulse sequences and their application in determining sequence-specific resonance assignments in proteins will be presented elsewhere3,4.

Barbara A. Lyons Mitsuru Tashiro Gaetano T. Montelione
Fig. 1. 2D CO-TOCSY spectrum of a 100% uniformly 13C- and 15N-enriched sample of a modified 8.2 kDa domain (called Z-Domain) of the immunoglobulin-binding Protein A from Staphylococcus aureus at protein concentration of 2 mM. These data were obtained at pH 6.5 and temperature of 30°C. In 24 hours using a Varian Unity 500 mHz spectrometer. Detailed analysis of the spectrum reveals that most of the cross peaks are sequential correlations between the sidechain aliphatic protons of residue i and backbone amide protons of residue i+1. In addition, for asparagine and glutamine residues intraresidue cross peaks are observed between aliphatic and sidechain amide protons. Connections between sidechain aliphatic and amide protons of asparagine and glutamine are also observed in CA-TOCSY spectra.

Fig. 2. Illustration of our strategy for correlating intraresidue cross peaks of residue i from the 30 CA-TOCSY spectrum with the corresponding sequential cross peaks at the amide frequency of i+1 in the 30 CA-TOCSY spectrum. This panel shows a 2 x 12H tryptic from 30 data sets establishing connections within the polypeptide segment Asn-43 to Glu-47 of the Z-Domain of Protein A7. Sample conditions are the same as in Fig. 1. Although this Z-Domain is highly α-helical and exhibits highly degenerate ^{1}H and ^{13}C spectra, the 2D and 3D CA- and CO-TOCSY experiments have enabled us to determine an extensive set of sequence-specific ^{1}H, ^{15}N, and ^{13}C resonance assignments without recourse to NOESY.

Accurate Multiexponential Analysis of Relaxation Decays Based on Linear Prediction and Singular Value Decomposition

Dear Prof. Shapiro,

An important element in relaxation-time analysis is the fitting of a decay curve to the sum of a series of exponential functions. An examination of past literature clearly reveals that such multiexponential decays function is particularly difficult to analyse using nonlinear least squares fitting. The difficulty lies in the fact that a decay of this type is particularly insensitive to changes in the parameters defining the exponential components, or even to change in the number of components assumed to represent the decay. Besides, in such a fitting process, the experimental error has a strong influence on the accuracy of the determined amplitudes and damping factors (inverse time constants). Thus conventional nonlinear least squares analysis is sensitive to noise and gives poor estimates when the signal-to-noise ratio is low. Hence, a very accurate analysis of multieponential decays requires exceedingly, and sometimes impossibly, accurate data extending over a very large part of the decay curve.

Recently, we proposed a novel method based on linear prediction and singular value decomposition for the parameters of superimposed exponentials corrupted by random noise. By invoking the principle of linear prediction the fitting can be carried out by a linear least squares procedure, and therefore needs no subjective initial guess. The least squares procedure is based on singular value decomposition, which enables one to distinguish between signal and noise subspaces. This method yields a list comprising the damping factor and amplitude of each distinct exponential decay. The mathematical method used in this work was originally proposed by Kumaresan and Tufts (KT) for estimating the parameters of damped exponential sinusoids in additive white noise. While KT's method performs well for spectrum analysis applications, it is shown here that it provides poor estimates of damping factors when directly applied to the multiexponential decay cases without any modification. This failure is because the bias in the damping factor and amplitude become significant at low signal-to-noise ratio. This type of bias is common in linear prediction methods and is due to the noise variance contributing significantly to the signal subspace. To overcome this problem, we present an empirical formula to subtract the noise contamination from the signal singular values. In addition to the normal effective singular values, we have also found it useful for further enhancing the accuracy to include the two sequential smaller singular values and their corresponding singular vectors such that the smaller signal components remain present in the signal subspace.

Intensive Monte Carlo simulations for Kumaresan and Tufts's two-exponential test sample and Clayden and Heider's three-exponential test sample are used to exhibit the improved robustness of this method compared to conventional nonlinear least squares analysis. A typical result of Kumaresan and Tufts's two-exponential test sample compared to nonlinear least square analysis is shown in Fig. A and B respectively with the true values of (damping factor and amplitude) located at (0.1,1) and...
Experimental data of 7Li longitudinal and transverse relaxations are also used which contain only 14 data points. Since 7Li is an $I=3/2$ quadrupolar nucleus, the relaxations exhibit two-exponential behavior when the extreme narrowing condition is not satisfied. The longitudinal relaxation has the function form $\left(\frac{1}{2}e^{-r_1t} + \frac{1}{2}e^{-r_2t}\right)$, and the transverse $\left(\frac{3}{2}e^{-s_1t} + \frac{1}{2}e^{-s_2t}\right)$, respectively. The damping factors of both longitudinal and transverse relaxations estimated by our new method, our previously proposed null point spectrum analysis, and the conventional nonlinear least squares analysis are listed in the following table. It should be noted that our new results are consistent with the null point spectrum analysis and need no subjective initial guess.

<table>
<thead>
<tr>
<th>Method</th>
<th>r_1, r_2 (s$^{-1}$)</th>
<th>s_1, s_2 (s$^{-1}$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>our work</td>
<td>2.560, 4.848</td>
<td>3.661, 6.150</td>
</tr>
<tr>
<td>null point spectrum analysis</td>
<td>2.173, 4.824</td>
<td>3.498, 6.479</td>
</tr>
<tr>
<td>nonlinear least squares analysis</td>
<td>2.339, 4.446</td>
<td>3.144, 5.390</td>
</tr>
</tbody>
</table>

We are now trying to extend this method to more accurate quantification of NMR spectral parameters. Further modification and application shall be reserved for a later occasion.

References

Sincerely,

Yung-Ya Lin
Nien-Hui Ge
Lian-Pin Hwang

Fig. A: Our Method

Fig. B: Nonlinear Least Squares Analysis
HIGH-PERFORMANCE DIRECT SYNTHESIZERS

Accurate, stable, quiet frequencies on command, fast. For NMR, imaging, SATCOM, surveillance, ATE. Sources adapting to your needs with options. High demonstrated reliability. Thousands in use.

<table>
<thead>
<tr>
<th>PS 040</th>
<th>PS 120</th>
<th>PS 160</th>
<th>PS 250</th>
<th>PS 310</th>
<th>PS 500</th>
<th>PS 620</th>
<th>PS 1000</th>
<th>PS x10</th>
</tr>
</thead>
<tbody>
<tr>
<td>Range: 0.1-40 MHz</td>
<td>Range: 0.1-120 MHz</td>
<td>Range: 0.1-160 MHz</td>
<td>Range: 1-250 MHz</td>
<td>Range: 0.1-310 MHz</td>
<td>Range: 1-500 MHz</td>
<td>Range: 1-620 MHz</td>
<td>Range: 0.1-1000 MHz</td>
<td>Range: 10 MHz band, selected</td>
</tr>
<tr>
<td>Resolution: 0.1Hz-100kHz (opt)</td>
<td>Resolution: 0.1Hz-100kHz (opt)</td>
<td>Resolution: 0.1Hz-100kHz (opt)</td>
<td>Resolution: 0.1Hz-100kHz (opt)</td>
<td>Resolution: 1Hz</td>
<td>Resolution: 0.1Hz-100kHz (opt)</td>
<td>Resolution: 0.1Hz-100kHz (opt)</td>
<td>Resolution: 0.1Hz-100kHz (opt)</td>
<td>Resolution: 0.1-190 MHz</td>
</tr>
</tbody>
</table>

- **Output:** +3 to +13dBm, 50ohm
- **Spurious Outputs:** -75dBc
- **Phase Noise:** -75dBc (0.5Hz-15KHz)

Other Options

- Programmable Attenuator 0-90dB (or 0-99dB with GPIB)
- n x 10 MHz output (20-140 MHz) or any 10 MHz line

*Prices are US only, and include manual & remote (BCD) control, 1 Hz resolution, OCXO std.

PROGRAMMED TEST SOURCES, INC.

P.O. Box 517, 9 Beaver Brook Rd., Littleton, MA 01460 Tel: 508-486-3008 FAX: 508-486-4495
COMPANY PROFILE

Programmed Test Sources, Inc. is a major manufacturer of high performance frequency synthesizers which are designed for stand-alone and OEM uses.

In 1975 we announced our first product, which embodied the goals formulated at the company's inception: a high quality, fast-switching, low-noise synthesizer of modular construction. This approach would make it possible to adapt the instrument effectively to a broad spectrum of uses and do so at a price not available elsewhere.

Today, we offer one of the most complete lines of synthesizers available in the industry. Our models all use our own direct synthesis systems. Their advantages over competitive designs include excellent specifications for phase-noise, switching speed and spurious outputs along with low complexity.

The acceptance of our products has proven the value in our approach. Many thousands of PTS synthesizers are in use today, by customers ranging from startups to some of the best-known names in industry. The confidence we have in our products is reflected in our two-year warranty, and by our flat-rate service policy for years three through ten.

In our complete catalog our instruments are fully specified and priced. In addition to our products, we take pride and care in the services we render. You can count on immediate access to engineering personnel for technical questions, efficient phone-quoting, order-taking and processing, on-time delivery and repair service within seven days. Finally, should you have any question about applicability or performance detail, demonstrator models are available for evaluations.
FACULTY POSITIONS IN MAGNETIC RESONANCE. The Department of Chemistry, University of Florida, invites applications for two tenure-track positions which are available in connection with the National High Magnetic Field Laboratory. The positions will be filled at any level, depending upon the qualifications of the successful candidates, who will be expected to conduct innovative programs of research which will emphasize the high-field capabilities of the instrumentation being developed at the NHMFL. Researchers in NMR will have access to existing new Varian Unity 500 MHz and 600 MHz spectrometers in the Department of Chemistry and the University of Florida Health Center, respectively. Additional support will be provided through the NHMFL facilities, including use of magnets and spectrometers operating at 17 tesla and higher fields as they are developed. In addition, attractive startup packages are associated with the positions. Applicants should have extensive experience at the post-doctoral or more advanced levels in NMR or EPR spectroscopy, and skill and interest in developing and expanding experimental techniques. Collaborative research with investigators in fields such as the study of biological macromolecules, polymers, or inorganic solids will be an important aspect of the two positions. The Department of Chemistry of the University of Florida is a leading chemistry department with a faculty of 50 including an established group of senior investigators as well as a number of well-qualified young scientists. There are 80 post-doctorals, 200 graduate students and 45 support personnel, and an average of 30 doctoral degrees are awarded annually. Computer, X-ray, mass spectrometer and EPR facilities are excellent.

Applications should be submitted by February 1, 1993. Applicants should include names of three or more references and will facilitate consideration by requesting references to send supporting letters. All correspondence should be sent to Wallace S. Brey, Chair, Search Committee, Department of Chemistry, University of Florida, Gainesville FL. 32611-2046. The University of Florida is an Affirmative Action-Equal Opportunity employer.

MRI Position at Abbott Laboratories

There will be an opening for an Industrial Post-Doctoral Fellow in the Magnetic Resonance Imaging Lab at Abbott Laboratories starting in January 1993. The lab has a 4.7 T/40 cm magnet and a Nalorac imaging/spectroscopy console. The responsibilities will include developing and implementing MRI techniques for evaluating drug efficacy in different animal models. We require at least a Ph.D. in Chemistry or Biological Sciences.

Abbott Laboratories is a global leader in the development of advanced health care products and services. Abbott is an Affirmative Action Employer and Smoke-Free Environment. For consideration, please send your resume to: Dr. Merrill Nuss, D418, Abbott Laboratories, Abbott Park, IL 60064.
Postdoctoral Research Associate Position Available

The Department of Biomedical Engineering at Worcester Polytechnic Institute is seeking a postdoctoral research associate to participate in NMR spectroscopy and imaging studies characterizing porous media using diffusion methods with particular emphasis on oil cores (the candidate will work closely with scientists from Schlumberger-Doll Research). The successful candidate will spend approximately two-thirds of their time on this project. For the remaining portion of the appointment, the candidate will participate in a project evaluating the efficacy of pharmaceutical interventions in the treatment of stroke using diffusion-weighted imaging and multiple-quantum NMR spectroscopy. The individual will also help supervise graduate students. Qualifications for the position include a doctoral degree in a basic science and hands-on experience with NMR spectroscopy and imaging. Salary is commensurate with experience.

The NMR laboratory is located in the Massachusetts Biotechnology Research Park, adjacent to the campus of the University of Massachusetts Medical School and a five minute drive from Worcester Polytechnic Institute. Equipment includes a 2.0T/45 cm GE CSI-II imaging spectrometer, exclusively for research, and two, 1.5T GE Signa clinical instruments (one of which is equipped for clinical spectroscopy), available for both clinical and basic research.

Worcester is located less than one hour from Boston. The beaches of Cape Cod, the Rhode Island shore, and Maine are 1.5 hours away, and the best skiing in the East is within 2 hours. Interested candidates should contact Prof. Chris Sotak, Department of Biomedical Engineering, Worcester Polytechnic Institute, 100 Institute Rd., Worcester, MA 01609.

DEPARTMENT OF HEALTH & HUMAN SERVICES

POSITION AVAILABLE

The National Institute on Aging of the National Institutes of Health wishes to recruit a Ph.D. level NMR spectroscopist for the In-vivo NMR Unit. Present research activities include studies of peripheral muscle metabolism in humans and experimental animals, and methodologic studies not directly related to metabolism. Current instrumentation is a Bruker Biospec 1.9T/31 cm horizontal bore spectrometer, which will be upgraded to a Bruker AMX system in the Spring of 1993. A wide-bore Bruker AMX 400 system is also on order for delivery this coming Spring. In addition, the NMR facilities of the main NIH campus in Bethesda, as well as instrumentation at the nearby Johns Hopkins Medical School, are available. The appointment will be as an IRTA Postdoctoral Fellow or Staff Fellow for US citizens, and as a Visiting Fellow or Visiting Associate for non-citizens, depending on experience and qualifications. In-vivo experience or a background in biochemistry/physiology is preferred but not required. Interested individuals should send a curriculum vitae and bibliography to: Dr. Richard Spencer, NIH/NIA, GRC 4D-13, 4940 Eastern Avenue, Baltimore, MD 21224, or telephone directly at 410-558-8226.
EXPLORE THE ALTERNATE ROUTE...!

QUALITY REFURBISHED NMRs

BRUKER • JEOL • VARIAN

PERMANENT MAGNETS • ELECTROMAGNETS • CRYOMAGNETS

CURRENTLY IN STOCK: BRUKER NR-80, WM-360WB, AC-300
VARIAN EM-360A, EM-360L, EM-390, FT-80A, XL-300, VXR-300
JEOL FX-90Q

FOR FURTHER DETAILS CALL: (708) 913-0777

International Equipment Trading Ltd.
960 Woodlands Parkway, Vernon Hills, IL 60061
FAX: (708) 913-0785
INVENTORY UPDATE

X-RAY
Philips AXS Fluorescence spectrometer + 3100 generator
Rigaku DMAX-AV automated vertical diffractometer
Siemens SRS 200 Fluorescence spectrometer + 605 generator
Stoe, Bragg-Brentano Diffractometer

GAS CHROMATOGRAPHS:
Hewlett Packard 5890A, dual FID
Hewlett Packard 5840A with 7671A
Hewlett Packard 5890A with FID, ECD, NPD
Hewlett Packard 3392A integrator
Perkin Elmer Sigma 16, dual TCD
Perkin Elmer Sigma 2000 with HS-100 auto-injector
Perkin Elmer 3926B, dual FID
Tekmar ALS II Autosampler
Tekmar LSC II Purge and Trap
Tracer 540 with ECD, FID
Varian 6000 FID, FPD capillary and packed column with model 8000 autosampler

H.P.L.C.: Beckman 345
 Dionex 2000/100 ion chromatograph
Hewlett Packard diode array detector 1040M + HP 9000
(9843A), 20 Meg drive and printer
Perkin Elmer LC-27 UV detector
Varian Varichrome UV detector
Varian 5060 + UV-100 and Vista 401
Waters 600A pump
Waters 440 detector
Waters 441 detector
Waters 710B wisp Autosampler

MASS SPECTROMETERS:
Finnigan 4021
Finnigan 1020/1050
Hewlett Packard 5987 with 5890 GC with RTE-6 operating system

UV-VIS:
Bausch & Lomb Spectronic 2000
Bekdam DU-7
Hitachi 105-80
Perkin Elmer Lambda 3B
Varian 2290

ATOMIC ABSORPTION:
Instrumentation Labs 457 with D2 and 440 AVA
Jarrell Ash 951 with D2
Jarrell Ash 655 Atomizer
Jarrell Ash EDL Power Supply
Jarrell Ash Smith-Hieflie Video 12E with 188 Furnace Atomizer and 442 AVA
Leeman Labs Plasma Spec III simultaneous and sequential
Perkin Elmer EDL Power Supply
Perkin Elmer 403
Perkin Elmer 373 with D2
Perkin Elmer 560 with D2
Perkin Elmer 703 with D2
Perkin Elmer 2380 with printer
Perkin Elmer 5000 with D2
Perkin Elmer HGA-400
Perkin Elmer HGA-500
Perkin Elmer HGA-2200 furnace
Perkin Elmer AS-40 Autosampler
Perkin Elmer AS-50 Autosampler
Perkin Elmer Data System 13 for AA
Varian 875 with graphite furnace and computer

DISPERSE IR:
Beckman Acculet II
Perkin Elmer 1330 Perkin Elmer 297

FT-IR:
Digilab FTS-115 +10 cm-1 option
Nicolet 205X Nicolet 202X

RESONANCE SPECTROMETERS:
Bruker WM-360 NMR
Bruker CXP-200 NMR
JEOL FX-60Q NMR
Varian CFT-80 NMR
Varian EM-360L NMR

ELECTRON MICROSCOPES:
Cambridge 120B SEM
Hitachi H-300 TEM
ISI SS-60 SEM + Kevex 8000 III EDS
ISI 100
JEOL 35C SEM
Philips 400 STEM with EDS

NUCLEAR INSTRUMENTS:
Bekdam 5000 scintillation counter
Tracor Gamma Trac 1200

THERMAL ANALYZERS:
Dupont 1090 with 910 DSC

BIOTECHNOLOGY
Applied Biosystems (ABI) Protein Sequencer 477A with 120A
ABI Peptide synthesizer 430A
ABI Analytical HPLC 150A
ABI DNA synthesizer 380B-2J
ABI Separation system 130A
ABI HPLC 151A
Beckman J2-21M Centrifuge
FTS Systems freeze-dryer

MISCELLANEOUS:
A.O. model 820 microtome
Amino SPF-500 spectrofluorometer
Best Power SKVA UPS
Bioron M5C, M5S, M58 surveyors
Blue M deluxe floor oven with Touch-Matic controls
Hiac Royco 4100 with 3200 sampler
346 BCL sensor
Jarrell Ash Deluxe Varisource
L & N Microtrack 7995-12
Technicon InfraAlzyzer 400 moisture analyzer
Perkin Elmer LS-3 spectrofluorometer
Perkin Elmer 240C CHN analyzer
Reichert Zetopan phase contrast and fluorescence microscope
Zeiss Photomicroscope III
Zeiss ICM 405 microscope

Above equipment carries a 90-day warranty
Availability is subject to prior sale.
Table of Contents, cont’d.

Positions Available

Position Available

Position Available

Position Available

Position Available

* * * *

All Newsletter Correspondence
Should Be Addressed To:
Dr. Bernard L. Shapiro
TAMU NMR Newsletter
966 Elsmore Court
Palo Alto, CA 94303, U.S.A.
(415) 493-5971

DEADLINE DATES
No. 414 (March) — 19 February 1993
No. 415 (April) — 19 March 1993
No. 416 (May) — 23 April 1993
No. 417 (June) — 21 May 1993

The Newsletter’s fiscal viability depends very heavily on the funds provided by our Advertisers and Sponsors. Please do whatever you can to let them know that their support is noted and appreciated.

Mailing Label Adornment: Is Your Dot Red?

If the mailing label on your envelope of this issue is adorned with a large red dot or circle: this decoration means that you will not be mailed any more issues until a technical contribution has been received by me.

PLEASE

Page Length Instruction

Attention overseas subscribers: If you must use paper which is longer that 11", please take care that all material (including signatures, addresses - everything!) ends no more than 10" from the top of each of your pages. It is costly to make reductions, and henceforth I reserve the right to chop the excess length off any page, no matter what the result. Beware of the dreaded guillotine! Your cooperation in this matter will be greatly appreciated.

WANTED: An Advertiser for this inside back cover page!
The above data is a 512 by 512 TOCSY spectrum and was obtained on an Alpha-500 in less than 5 minutes with JEOL's gradient probe. This same probe is also designed to do reverse and water suppression experiments. Pulse shaping, three channel operation, dynamic RF control, matrix shims, as well as unsurpassed field reliability are all standard with the Alpha.

ALPHA FIRST IN PERFORMANCE, FIRST IN TECHNOLOGY