Disappearing Peaks in Sensitivity Enhanced Experiments

Cavanagh, J., and Carlstroem, G.

Characterization of Ordered Buckminsterfullerene Co-Crystal C_{60}-CH_{2}Cl_{2}-C_{6}H_{6}

Geiser, U., Kumar, S.K., and Botto, R.E.

Can NMR Sustain the Forest?

Preston, C.M., and Sayer, B.G.

Optimizing the PGHMQC Experiment - How to Get the Most Signal for Your Dollar

Gmeiner, W.H., and Saarenin, T.

Observation of Splittings in 13C CP/MAS Spectra Due to J(15N,13C)

Wasylischen, R.E., and Etchele, K.

Dipolar Filtered Proton NMR and SiH

Chan, P.H., and Norberg, R.E.

Separated Local Fields - Application to Starch

Juneau, G.P.

Position Available

Weiner, M.W.

Miscellaneous Applications of Materials MRI

Axelson, D.

31P Solid State NMR, a Complementary Method to X-Ray Crystallography

Pregosin, P.S., and Rueger, H.

Position Available

Procter & Gamble

In Situ pH Measurements for Protein NMR

Dahlquist, F.W., and Anderson, E.

Assigning the Carbon Chemical Shift of Dioxane in Water

Omecke, D., Reily, M.D., and Thanabal, V.

TANGO with Spin-Lock Pulses in Suppression of 1H-12C Magnetization

Hruby, V.J., Kover, K.E., and Prakash, O.

Nitrogen-15 CP Matching Using 15N-Labelled Glycine

Dudley, R.L.

Deuteron Lineshapes in the Presence of Motion

Armstrong, P.A., and Reimer, J.A.

Rotation and Inversion in Amino-Ammonium Salts

Fraenkel, G., and Boyd, S.E.

INADEQUATE or What?

Bax, A., N.N., and N.N.
TABLE 1 DEUTERATED SOLVENTS

<table>
<thead>
<tr>
<th>Cat. No.</th>
<th>Description</th>
<th>Formula</th>
<th>Min.</th>
<th>Max.</th>
<th>Value</th>
<th>MP</th>
<th>BP (°C)</th>
<th>-X, X 10° @ (°C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>D-11</td>
<td>1,1,2,2-Tetrachloroethane-d2</td>
<td>ClCH₂Cl</td>
<td>0</td>
<td>0</td>
<td>1.43</td>
<td>0.551</td>
<td>(32)</td>
<td></td>
</tr>
<tr>
<td>D-12</td>
<td>1,1,2,2-Tetrachloroethane-d2</td>
<td>ClCH₂Cl</td>
<td>0</td>
<td>0</td>
<td>0.460</td>
<td>(20)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>D-13</td>
<td>Deuterated-1,1,2,2-Tetrachloroethane-d2</td>
<td>ClCH₂Cl</td>
<td>0.99</td>
<td>1.0</td>
<td>0.611</td>
<td>(20)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>D-14</td>
<td>Deuterated-1,1,2,2-Tetrachloroethane-d2</td>
<td>ClCH₂Cl</td>
<td>0.99</td>
<td>1.0</td>
<td>0.611</td>
<td>(20)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>D-15</td>
<td>Deuterated-1,1,2,2-Tetrachloroethane-d2</td>
<td>ClCH₂Cl</td>
<td>0.99</td>
<td>1.0</td>
<td>0.611</td>
<td>(20)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>D-16</td>
<td>Deuterated-1,1,2,2-Tetrachloroethane-d2</td>
<td>ClCH₂Cl</td>
<td>0.99</td>
<td>1.0</td>
<td>0.611</td>
<td>(20)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>D-17</td>
<td>Deuterated-1,1,2,2-Tetrachloroethane-d2</td>
<td>ClCH₂Cl</td>
<td>0.99</td>
<td>1.0</td>
<td>0.611</td>
<td>(20)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>D-18</td>
<td>Deuterated-1,1,2,2-Tetrachloroethane-d2</td>
<td>ClCH₂Cl</td>
<td>0.99</td>
<td>1.0</td>
<td>0.611</td>
<td>(20)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>D-19</td>
<td>Deuterated-1,1,2,2-Tetrachloroethane-d2</td>
<td>ClCH₂Cl</td>
<td>0.99</td>
<td>1.0</td>
<td>0.611</td>
<td>(20)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>D-20</td>
<td>Deuterated-1,1,2,2-Tetrachloroethane-d2</td>
<td>ClCH₂Cl</td>
<td>0.99</td>
<td>1.0</td>
<td>0.611</td>
<td>(20)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>D-21</td>
<td>Deuterated-1,1,2,2-Tetrachloroethane-d2</td>
<td>ClCH₂Cl</td>
<td>0.99</td>
<td>1.0</td>
<td>0.611</td>
<td>(20)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>D-22</td>
<td>Deuterated-1,1,2,2-Tetrachloroethane-d2</td>
<td>ClCH₂Cl</td>
<td>0.99</td>
<td>1.0</td>
<td>0.611</td>
<td>(20)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>D-23</td>
<td>Deuterated-1,1,2,2-Tetrachloroethane-d2</td>
<td>ClCH₂Cl</td>
<td>0.99</td>
<td>1.0</td>
<td>0.611</td>
<td>(20)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>D-24</td>
<td>Deuterated-1,1,2,2-Tetrachloroethane-d2</td>
<td>ClCH₂Cl</td>
<td>0.99</td>
<td>1.0</td>
<td>0.611</td>
<td>(20)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>D-25</td>
<td>Deuterated-1,1,2,2-Tetrachloroethane-d2</td>
<td>ClCH₂Cl</td>
<td>0.99</td>
<td>1.0</td>
<td>0.611</td>
<td>(20)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>D-26</td>
<td>Deuterated-1,1,2,2-Tetrachloroethane-d2</td>
<td>ClCH₂Cl</td>
<td>0.99</td>
<td>1.0</td>
<td>0.611</td>
<td>(20)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>D-27</td>
<td>Deuterated-1,1,2,2-Tetrachloroethane-d2</td>
<td>ClCH₂Cl</td>
<td>0.99</td>
<td>1.0</td>
<td>0.611</td>
<td>(20)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>D-28</td>
<td>Deuterated-1,1,2,2-Tetrachloroethane-d2</td>
<td>ClCH₂Cl</td>
<td>0.99</td>
<td>1.0</td>
<td>0.611</td>
<td>(20)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>D-29</td>
<td>Deuterated-1,1,2,2-Tetrachloroethane-d2</td>
<td>ClCH₂Cl</td>
<td>0.99</td>
<td>1.0</td>
<td>0.611</td>
<td>(20)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>D-30</td>
<td>Deuterated-1,1,2,2-Tetrachloroethane-d2</td>
<td>ClCH₂Cl</td>
<td>0.99</td>
<td>1.0</td>
<td>0.611</td>
<td>(20)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>D-31</td>
<td>Deuterated-1,1,2,2-Tetrachloroethane-d2</td>
<td>ClCH₂Cl</td>
<td>0.99</td>
<td>1.0</td>
<td>0.611</td>
<td>(20)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Need Deuterated Solvents?
WILMAD HAS YOUR SOLUTION!

Cost-conscious quality NMR solvents offered by Wilmad, such as CDCl₃, are frequently priced lower than more traditional sources. Included in this offering are the most common solvents, like Acetone-d₆, Benzene-d₆, D₂O, and DMSO-d₆, as well as some of the most unusual solvents for specialty applications, like 1,1,2,2-Tetrachloroethane-d₂, Octane-d₈, and Trifluoroacetic Acid-d₆.

WILMAD GLASS COMPANY
Route 40 and Oak Road • Buena, NJ 08310 U.S.A.
609-697-3000 • TWX 510-687-8911
FAX 609-697-0536

VARIAN
BOX/500 SHEETS

Use Plotter Paper and Pens?
WILMAD HAS YOUR CHART!

We provide the largest variety of paper and pens for NMR recorders or plotters available anywhere. Included in these listings are the newest spectrometers from Varian, Bruker, (and IBM), General Electric and JEOl, as well as the latest models, such as the Hewlett Packard 7475A, 7550A, and Thermo Scientific 22225A, Zeta 8 or 8A, and Western Scientific 4730 plotters and printers.

Searching for the Unusual Requirement?
WILMAD HAS YOUR ANSWER!

The most comprehensive offering of "widgets, gadgets and specials" for NMR spectroscopy, including:

- Spatula for 5mm NMR Tubes
- Three types of Valve NMR Tubes
 (including the new J. Young Valve Tube)
- Solvent Jet NMR Tube Cleaners
- pH Electrode for 5mm NMR Tubes
- Taperlok® NMR Tubes
- A multitude of Coaxial Inserts
- Alumina NMR Tube for Si-29 Studies
- Ultra-thin wall NMR Tubes
- Throwaway "THRIFT" and "ECONOMY" NMR Tubes

Serving the Spectroscopic Aftermarket
<table>
<thead>
<tr>
<th>Author</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anderson, E.</td>
<td>41</td>
</tr>
<tr>
<td>Armstrong, P. A.</td>
<td>51</td>
</tr>
<tr>
<td>Areschon, D.</td>
<td>35</td>
</tr>
<tr>
<td>Bar, A.</td>
<td>55</td>
</tr>
<tr>
<td>Betry, R. E.</td>
<td>9</td>
</tr>
<tr>
<td>Boyd, S. E.</td>
<td>52</td>
</tr>
<tr>
<td>Carlstrom, G.</td>
<td>5</td>
</tr>
<tr>
<td>Cavanagh, J.</td>
<td>5</td>
</tr>
<tr>
<td>Chan, P. H.</td>
<td>25</td>
</tr>
<tr>
<td>Dahquist, F. W.</td>
<td>41</td>
</tr>
<tr>
<td>Dudley, R. L.</td>
<td>48</td>
</tr>
<tr>
<td>Eichele, K.</td>
<td>21</td>
</tr>
<tr>
<td>Fremdt, G.</td>
<td>52</td>
</tr>
<tr>
<td>Geiter, U.</td>
<td>9</td>
</tr>
<tr>
<td>Gmurer, W. H.</td>
<td>17</td>
</tr>
<tr>
<td>Hoch, J. C.</td>
<td>40</td>
</tr>
<tr>
<td>Hruby, V. J.</td>
<td>47</td>
</tr>
<tr>
<td>Juneau, G. P.</td>
<td>33</td>
</tr>
<tr>
<td>Kover, K. E.</td>
<td>47</td>
</tr>
<tr>
<td>Kumar, S. K.</td>
<td>9</td>
</tr>
<tr>
<td>N.</td>
<td>55</td>
</tr>
<tr>
<td>Norberg, R. E.</td>
<td>25</td>
</tr>
<tr>
<td>Ocenisly, D.</td>
<td>42</td>
</tr>
<tr>
<td>Prakash, O.</td>
<td>47</td>
</tr>
<tr>
<td>Prose, J. S.</td>
<td>39</td>
</tr>
<tr>
<td>Preston, C. M.</td>
<td>13</td>
</tr>
<tr>
<td>Procter & Gamble</td>
<td>40</td>
</tr>
<tr>
<td>Reily, M. D.</td>
<td>42</td>
</tr>
<tr>
<td>Reimer, J. A.</td>
<td>51</td>
</tr>
<tr>
<td>Roeper, H.</td>
<td>39</td>
</tr>
<tr>
<td>Saarenin, T.</td>
<td>17</td>
</tr>
<tr>
<td>Sayer, B. G.</td>
<td>52</td>
</tr>
<tr>
<td>Thanabal, V.</td>
<td>42</td>
</tr>
<tr>
<td>Wanshifeiner, R. B.</td>
<td>21</td>
</tr>
<tr>
<td>Weiner, M. W.</td>
<td>34</td>
</tr>
</tbody>
</table>

AUTHOR INDEX

<table>
<thead>
<tr>
<th>Company</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>American Microwave Technology, Inc.</td>
<td>15</td>
</tr>
<tr>
<td>Bio-Rad, Saddler Division</td>
<td>19</td>
</tr>
<tr>
<td>Bruker Instruments, Inc.</td>
<td>23</td>
</tr>
<tr>
<td>Dony Scientific, Inc.</td>
<td>3</td>
</tr>
<tr>
<td>GE NMR Instruments</td>
<td>7, 19 back cover</td>
</tr>
<tr>
<td>Hare Research, Inc.</td>
<td>53</td>
</tr>
<tr>
<td>Hiuchi Instruments, Inc.</td>
<td>43</td>
</tr>
<tr>
<td>International Equipment Trading, Ltd.</td>
<td>49</td>
</tr>
<tr>
<td>JEOL</td>
<td>outside back cover</td>
</tr>
<tr>
<td>Norell, Inc.</td>
<td>27</td>
</tr>
<tr>
<td>Otuska Electronics/Che magnetics</td>
<td>57</td>
</tr>
<tr>
<td>Oxford Instruments</td>
<td>11</td>
</tr>
<tr>
<td>Petroleum Recovery Institute</td>
<td>inside front cover</td>
</tr>
<tr>
<td>The Procter & Gamble Company</td>
<td></td>
</tr>
<tr>
<td>Shell Development Company</td>
<td></td>
</tr>
<tr>
<td>Tecmag</td>
<td></td>
</tr>
<tr>
<td>Unilever Research</td>
<td></td>
</tr>
<tr>
<td>Union Carbide Corporation</td>
<td></td>
</tr>
<tr>
<td>Varian, Analytical Instrument Division</td>
<td></td>
</tr>
</tbody>
</table>

ADVERTISER INDEX

<table>
<thead>
<tr>
<th>Sponsor</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abbott Laboratories</td>
<td></td>
</tr>
<tr>
<td>ATI Instruments</td>
<td></td>
</tr>
<tr>
<td>Bruker Instruments, Inc.</td>
<td></td>
</tr>
<tr>
<td>Burroughs Wellcome Co.</td>
<td></td>
</tr>
<tr>
<td>Cambridge Isotope Laboratories, Inc.</td>
<td></td>
</tr>
<tr>
<td>Cryomagnet Systems, Inc.</td>
<td></td>
</tr>
<tr>
<td>The Dow Chemical Company</td>
<td></td>
</tr>
<tr>
<td>The Du Pont Nick Pharmaceutical Company</td>
<td></td>
</tr>
<tr>
<td>Eastman Kodak Company</td>
<td></td>
</tr>
<tr>
<td>E. I. du Pont de Nemours &</td>
<td></td>
</tr>
<tr>
<td>GE NMR Instruments</td>
<td></td>
</tr>
<tr>
<td>JEOL (U.S.A.) Inc., Analytical Instruments Division</td>
<td></td>
</tr>
<tr>
<td>The Monsanto Company</td>
<td></td>
</tr>
<tr>
<td>Nalocre Cryogenics Corporation</td>
<td></td>
</tr>
<tr>
<td>New Methods Research, Inc.</td>
<td></td>
</tr>
<tr>
<td>Norell, Inc.</td>
<td></td>
</tr>
<tr>
<td>Otsuka Electronics/Che magnetics</td>
<td></td>
</tr>
<tr>
<td>Oxford Instruments</td>
<td></td>
</tr>
<tr>
<td>Petroleum Recovery Institute</td>
<td></td>
</tr>
<tr>
<td>The Procter & Gamble Company</td>
<td></td>
</tr>
<tr>
<td>Shell Development Company</td>
<td></td>
</tr>
<tr>
<td>Tecmag</td>
<td></td>
</tr>
<tr>
<td>Unilever Research</td>
<td></td>
</tr>
<tr>
<td>Union Carbide Corporation</td>
<td></td>
</tr>
<tr>
<td>Varian, Analytical Instrument Division</td>
<td></td>
</tr>
</tbody>
</table>

SPONSORS OF THE TAMU NMR NEWSLETTER

<table>
<thead>
<tr>
<th>Sponsor</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abbott Laboratories</td>
<td></td>
</tr>
<tr>
<td>ATI Instruments</td>
<td></td>
</tr>
<tr>
<td>Bruker Instruments, Inc.</td>
<td></td>
</tr>
<tr>
<td>Burroughs Wellcome Co.</td>
<td></td>
</tr>
<tr>
<td>Cambridge Isotope Laboratories, Inc.</td>
<td></td>
</tr>
<tr>
<td>Cryomagnet Systems, Inc.</td>
<td></td>
</tr>
<tr>
<td>The Dow Chemical Company</td>
<td></td>
</tr>
<tr>
<td>The Du Pont Nick Pharmaceutical Company</td>
<td></td>
</tr>
<tr>
<td>Eastman Kodak Company</td>
<td></td>
</tr>
<tr>
<td>E. I. du Pont de Nemours &</td>
<td></td>
</tr>
<tr>
<td>GE NMR Instruments</td>
<td></td>
</tr>
<tr>
<td>JEOL (U.S.A.) Inc., Analytical Instruments Division</td>
<td></td>
</tr>
<tr>
<td>The Monsanto Company</td>
<td></td>
</tr>
<tr>
<td>Nalocre Cryogenics Corporation</td>
<td></td>
</tr>
<tr>
<td>New Methods Research, Inc.</td>
<td></td>
</tr>
<tr>
<td>Norell, Inc.</td>
<td></td>
</tr>
<tr>
<td>Otsuka Electronics/Che magnetics</td>
<td></td>
</tr>
<tr>
<td>Oxford Instruments</td>
<td></td>
</tr>
<tr>
<td>Petroleum Recovery Institute</td>
<td></td>
</tr>
<tr>
<td>The Procter & Gamble Company</td>
<td></td>
</tr>
<tr>
<td>Shell Development Company</td>
<td></td>
</tr>
<tr>
<td>Tecmag</td>
<td></td>
</tr>
<tr>
<td>Unilever Research</td>
<td></td>
</tr>
<tr>
<td>Union Carbide Corporation</td>
<td></td>
</tr>
<tr>
<td>Varian, Analytical Instrument Division</td>
<td></td>
</tr>
</tbody>
</table>

FORTHCOMING NMR MEETINGS

<table>
<thead>
<tr>
<th>Conference</th>
<th>Date</th>
<th>Location</th>
<th>Contact Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>34th Rocky Mountain Conference on Analytical Chemistry</td>
<td>August 8-14, 1992</td>
<td>Denver, Colorado</td>
<td>M. C. Goldberg, P.O. Box 25046 MS 424, Lakewood, CO 80225; (303) 232-4728</td>
</tr>
<tr>
<td>XV International Conference on Magnetic Resonance in Biological Systems</td>
<td>August 16 - 21, 1992</td>
<td>Jerusalem, Israel</td>
<td>Prof. Gil Navon, XV ICMBBS, P. O. Box 50066, Tel Aviv 61500, Israel; Tel: (972-3) 5174571, Fax: (972-3) 656746/660525</td>
</tr>
<tr>
<td>MRI in the Applied Sciences</td>
<td>October 28-30, 1992</td>
<td>Durham, North Carolina</td>
<td>Society of Magnetic Resonance in Medicine, 4181 University Ave., Suite 3C, Berkeley, CA 94704; (510) 841-1899; FAX: (510) 841-2340</td>
</tr>
<tr>
<td>High Resolution NMR Spectroscopy (a residential school)</td>
<td>April 1993 [sic]</td>
<td>University of Sheffield, England</td>
<td>Dr. B. E. Mann (Sheffield); For information, contact Miss L. Hart, The Royal Society of Chemistry, Burlington House, Piccadilly, London W1V 0BN, England; Tel: 071-437-8656</td>
</tr>
</tbody>
</table>

Additional listings of meetings, etc., are invited.
Subscription renewal invoices for the October 1992 - September 1993 year were mailed out on 1 July. If you ought to receive such an invoice, and do not have it in your hands by the time you read this notice, please call or write me promptly. Payment of these invoices must be received by me no later than September 10, 1992 to ensure uninterrupted mailing of the Newsletter issues. Please do not delay execution of any necessary paperwork!

Also, please be sure that the instructions on the invoice are followed precisely. In particular, overseas subscribers should be careful to see that their name and the invoice number appear on the payment (or, better, that the extra invoice copy which is provided is returned to me with the payment check or money order). Anonymous checks, while otherwise useful, cannot always be credited to the correct account.

The subscription rate for the October 1992 - September 1993 year has been set at US$170.00 for the twelve monthly issues, postpaid. Personal or academic subscriptions will continue to be offered at a 50% discount, at US$85.00. The inexorable rise in costs has necessitated this small increase in the subscription fee.

The new invoices contain entries for optional surcharges for First Class or Air Mail Printed Matter mailing. Please adjust the amount you pay accordingly (I trust no one will choose to pay both surcharges.).

Thank you for your understanding and cooperation.

B. L. Shapiro
2 July 1992

The Newsletter's fiscal viability depends very heavily on the funds provided by our Advertisers and Sponsors. Please do whatever you can to let them know that their support is noted and appreciated.

Mailing Label Adornment: Is Your Dot Red?

If the mailing label on your envelope of this issue is adorned with a large red dot or circle: this decoration means that you will not be mailed any more issues until a technical contribution has been received by me.

Page Length Instruction

Attention overseas subscribers: If you must use paper which is longer than 11", please take care that all material (including signatures, addresses - everything!) ends no more than 10" from the top of each of your pages. It is costly to make reductions, and henceforth I reserve the right to chop the excess length off any page, no matter what the result. Beware of the dreaded guillotine! Your cooperation in this matter will be greatly appreciated.

All Newsletter Correspondence
Should Be Addressed To:
Dr. Bernard L. Shapiro
TAMU NMR Newsletter
966 Elsinore Court
Palo Alto, CA 94303, U.S.A.
(415) 493-5971

DEADLINE DATES
No. 408 (September)------- 21 August 1992
No. 409 (October)--------18 September 1992
No. 410 (November)-------16 October 1992
No. 411 (December)------20 November 1992
Supersonic Magic Angle Spinning

For ten years Doty Scientific has led the field in high speed sample spinning. Our supersonic spinner systems use a unique air bearing design (patent pending) for highest stability, radial-inflow microturbines (patent pending) for highest efficiency, and cooled bearing gas to keep the sample temperatures constant. Every rotor is individually tested above its rated speed.

3.5-mm SUPERSONIC MAS
The 3.5-mm supersonic spinner is available for probes 30.5 mm in diameter and larger.
Applications for \(^1\text{H}, ^{19}\text{F}\) and quadrupolar nuclei.
Spinning speed – 26 kHz
Sample volume – 20 µl to 30 µl

10-mm SUPERSONIC MAS
The 10-mm supersonic spinner is available for supercon probes 44 mm in diameter and larger. It is the latest addition to our sample spinner product line
Spinning speed – 10 kHz
Sample volume – 1 ml

14-mm SUPERSONIC MAS
The 14-mm spinner can only be provided in wide bore probes over 70 mm. Applications include low-level constituents, such as natural abundance \(^{15}\text{N}\) in polymers and quantitative MAS without CP.
Spinning speed – 6.5 kHz
Sample volume – 2.8 ml

In the future – 5 mm and 7 mm Supersonic MAS!
On May 7, 1992 Doty Scientific celebrated its 10th birthday!

A Decade of Innovation (and 670 NMR Probes)

- 1982 7 mm MAS at 5 kHz
- 1982 Triple-Tuned MAS
- 1983 Single-Crystal Probes
- 1984 5 mm MAS at 9 kHz
- 1984 Multinuclear Observe for Solids
- 1985 19 mm MAS
- 1987 CRAMPS Probes
- 1987 Actively Shielded Gradient Probes
- 1987 5 mm MAS at 17 kHz
- 1988 650°C MAS
- 1987 1000 G/cm Pulsed Field Gradient
- 1987 7 mm MAS at 9 kHz
- 1989 Precision Temperature Controller
- 1989 7 mm MAS at 9 kHz
- 1990 Dynamic Angle Spinning
- 1990 7 mm MAS at 9 kHz
- 1991 14 mm MAS at 7 kHz
- 1991 3.5 mm MAS at 26 kHz
- 1992 300°C Pulsed Field Gradient Probe
- 1992 10 mm MAS at 10 kHz
- 1992 300°C Pulsed Field Gradient Probe

In the last 10 years we have provided our customers with the first commercially available probes for many challenging NMR experiments. During this time, we have also built a reputation for quality. Less recognized may be our competitive pricing. We have always offered the best probes at prices well below the competition’s – usually 60% of their price. We enter our second decade as an American company with a continued commitment to provide the best probes, rf accessories, and control systems at the lowest prices with the fastest service.

Our eleventh year will see record levels of innovation, as we deliver user-friendly DOR probes, automatic MAS sample changing, 800°C MAS, and other probes according to your needs.

Doty Scientific, Inc.
700 Clemson Road
Columbia, SC 29223
USA
Phone (803) 788-6497
Fax (803) 736-5495
Dear Prof. Shapiro:

Since publishing several different sensitivity enhanced versions (1-4) of proton detected heteronuclear correlation experiments, in both two and three dimensions, we have received some phone calls asking us questions about these experiments and their optimum implementation. Most questions concern the disappearance of signal in the final spectra.

Two points are worth emphasizing in regard to this. The way in which these experiments work is straightforward. In a conventional HSQC experiment, only one proton in-phase magnetization component is detected, H_x, for example. In the sensitivity enhanced (SE) versions of this experiment (Fig. 1) two orthogonal proton in-phase magnetization components are detected, $-H_x$ and $+H_y$. Processing of this data alone results in a horrible phase-twisted spectrum.

Recording the same experiment but with the phase of ϕ_2 inverted results again in two orthogonal proton in-phase magnetization components, this time $+H_x$ and $+H_y$. Adding the two sets of data together gives $+2H_y$, a pure phase correlation spectrum, we denote as ADD. Subtracting the sets of data gives $+2H_x$, also a pure phase spectrum which we call SUB. The ADD and SUB spectra are phase-shifted from each other by 90° in each dimension. Co-addition of ADD and SUB spectra doubles the size of the signal while the noise adds as statistically independent. In theory, a 1.41 increase in sensitivity is realized.

The first thing to note is that to generate the two orthogonal terms, each follows a different pathway. During the refocussing process, the H_x term is derived from longitudinal magnetization while the H_y term is derived from multiple quantum coherence. These have different relaxation rates and as the system being studied increases in size and the correlation time decreases, the ADD spectrum (H_y) begins to lose sensitivity. Therefore when processing the ADD and SUB spectra prior to final combination, it is not unusual to see the signal-to-noise ratio of the ADD spectrum slightly less than the SUB spectrum. This causes a small drop in sensitivity enhancement in the whole process.

However, it has been noted in our lab and others, that in some cases there is no signal at all in the ADD spectrum. The explanation for this is that the recommended phase cycling procedure outlined in ref. 2 is not followed correctly. As always, several options exist for the phase cycling in this experiment, especially for the pulses noted ϕ_2 and ϕ_3. The relative phases of the phases of ϕ_2 and ϕ_3 are especially important since they actually determine the signs of the detected orthogonal operators. This means that ϕ_2 and ϕ_3 have to be cycled in parallel in order to maintain a consistent sign relationship between the two detected operators. A quick product operator analysis is not sufficient to check the effect of a phase cycle in these experiments. In many cases an analysis will show that a particular phase cycle is fine and the H_x (SUB) spectrum will appear in its full glory. However it is imperative to remember that the whole point of the SE methods is to collect two components and failure to phase cycle pulses ϕ_2 and ϕ_3 correctly may result in complete cancellation of the H_y (ADD) spectrum.
In summary, we suggest that the phase cycle shown below in the figure, be employed as it stands when running the SE experiments. It is important that any extra phase cycling be added only after the basic unit has been completed.

Please credit this contribution to the account of Peter Wright.

Best Wishes

John Cavanagh, Ph.D.

Göran Carlström, Ph.D.

Phase Cycle:
\[
\phi_1 = x, -x, x, -x \\
\phi_2 = x, x, -x, -x \\
\phi_3 = y, y, -y, -y \\
\text{receiver} = x, -x, -x, x
\]

\[\text{Diagram}\]
Gradient Enhanced Spectroscopy

Phase Sensitive DQF COSY
The selection of multiple quantum coherence with gradients is an effective method for suppressing the water resonance in aqueous solutions and for reducing T_1 noise and other artifacts. A further enhancement is the use of selective water excitation using crafted RF pulses followed by gradient dephasing to attenuate the water signal prior to the coherence selection sequence. This technique has been applied to the phase sensitive gradient enhanced DQF COSY experiment for a 5mM lysozyme sample in 90% H_2O. The data were collected on an Omega PSG 500 equipped with the S-17 Gradient Enhanced Spectroscopy accessory using a 5mm inverse probe.

Figure 1
The pulse sequence and the corresponding coherence level diagram for the phase sensitive GE-DQF COSY experiment. The water resonance is selectively excited using a crafted RF pulse followed by a shaped gradient pulse along the X axis which dephases the transverse magnetization. A second selective RF pulse is applied with a dephasing gradient along the Y axis to avoid gradient recalled echoes. This is followed by a phase sensitive GE-DQF COSY sequence.

Figure 2
The crafted RF pulse used in this sequence. This pulse was designed using the “hard pulse approximation” method. It is characterized by a flat amplitude response in the selected region and minimal excitation in the out of band region. The duration of the selective RF pulse was set to 20 ms, corresponding to an excitation bandwidth of 175 Hz.

Figure 3
A phase sensitive GE-DQF COSY spectrum of 5 mM lysozyme in 90% H_2O. Thirty-two scans were accumulated for each of the 700 t_1 increments resulting in a total data acquisition time of approximately 9.7 hours. Half-sinusoidal gradient pulses of 20 ms duration with an amplitude of 10 G/cm were used to dephase the excited water signal. Coherence selection was achieved using 2 ms gradient pulses of 17 and 34 G/cm amplitude.
Figure 4
The noise floor contour plot. This spectrum illustrates the efficiency of the water suppression and the absence of noise and artifacts. The effectiveness of the water suppression stems from two different sources: the dephasing of the water signal after excitation by the selective RF pulse, and the selection of the double quantum pathway using the gradient pulses G_1 and G_2.

Figure 5
The expansion plot shows good resolution and intensity for cross peaks at the chemical shift of water. The combination of selective RF techniques and actively shielded gradients allows phase sensitive spectra of medium-sized proteins in aqueous solution to be obtained.
RE: Characterization of Ordered Buckminsterfullerene Co-Crystal $C_{60} \cdot CH_2I_2 \cdot C_6H_6$

Dear Barry:

We have obtained the first crystals containing crystallographically ordered (at room temperature), unmodified fullerene (C_{60}) molecules, with chemical composition $C_{60} \cdot CH_2I_2 \cdot C_6H_6$. The fullerene molecules are arranged in novel hexagonally close-packed layers, separated by the solvent components. The monoclinic (space group $C2/c$) crystal structure of $C_{60} \cdot CH_2I_2 \cdot C_6H_6$ was determined by X-ray crystallography. It should be noted that all buckminsterfullerene carbon atoms readily appeared as distinct peaks on the electron density maps, indicating a high degree of order even at room temperature. In addition to C_{60} and the methylene iodide molecule, a molecule of benzene was located.

Solid-state 25-MHz 13C NMR spectra of $C_{60} \cdot CH_2I_2 \cdot C_6H_6$ are shown in the Figure. The MAS spectrum (a) exhibits two sharp resonance lines at 146.7 and 133.1 ppm and a somewhat broad resonance at approximately 35 ppm, corresponding to carbon atoms of C_{60} benzene and methylene iodide, respectively. The recycle delay time was chosen to enhance the weak carbon signal of methylene iodide, hence integrated signal intensities in the spectrum do not accurately reflect the number of carbon atoms in each chemical environment. Broadening of the carbon resonance of methylene iodide results from residual quadrupole coupling to iodide due to restricted motion in the crystal lattice. The static spectrum (b) of the C_{60} co-crystal recorded at room temperature shows a single Gaussian line at 146.7 ppm with a fwhm = 147 Hz. The C_{60} resonance in the static spectrum recorded at a carbon frequency of 75 MHz has a fwhm = 240 Hz. The narrow line widths observed at both frequencies indicate that the C_{60} molecules in the co-crystal rotate rapidly and nearly isotropically relative to the NMR time scale defined by the inverse of the chemical shift anisotropies (CSA) of the aromatic carbons in C_{60}. The CSA powder pattern for solid C_{60} is approximately 200 ppm in width, thus the rotational correlation time of C_{60} in the co-crystal must be short compared to the inverse CSA width, or greater than about 70 µs.

Even though the crystallographic analysis of $C_{60} \cdot CH_2I_2 \cdot C_6H_6$ shows the fullerene molecules to be ordered on the X-ray time scale, NMR experiments indicate dynamic effects. Static 13C spectra taken at two field strengths demonstrate that the rotational correlation time of C_{60} in the co-crystal is shorter than 70 µs. This upper limit is at least four orders of magnitude greater than the lower limit, which has to be less than the correlation time of pure C_{60}, i.e., <1 ns. An attractive possibility which is consistent with the crystallographic observation of distinct electron density peaks (ordered atomic positions) would be a restricted (jumping) rotation of the molecule such that each atom spends a considerable amount at or near its equilibrium position ("ratchet motion"). A thorough investigation of the temperature dependence of the 13C NMR lineshape and spin-lattice relaxation time (T_1) to probe the details of molecular motion in $C_{60} \cdot CH_2I_2 \cdot C_6H_6$ is planned.

Signatures:

Urs Geiser
Chemistry & Materials Science Division

S. Kalyan Kumar
Chemistry & Materials Science Division

Robert E. Botto
Chemistry Division

Operated by The University of Chicago for The United States Department of Energy
Ultra•nmr™ Shims are setting the standard in water suppression performance.

Varian, the leader in biomolecular NMR, is setting the standard for the highest quality water suppression performance on a UNITY® NMR spectrometer equipped with Ultra•nmr shims. These shims are available exclusively from Varian and can be added to a VXR® or UNITY-500 or -600 MHz NMR spectrometer to achieve superior quality water suppression results.

As the sample is diluted, to overcome aggregation or solubility problems in either a 5mm or 10mm tube, the relatively larger residual water signal becomes more difficult to suppress. Varian's new Ultra•nmr shims with either 5mm or 10mm probes are the dilution solution.

This new water suppression acceptance test demonstrates the superior quality performance that only Varian's Ultra•nmr shims can provide.

Varian Associates 3120 Hansen Way, Bldg. 4, Palo Alto, CA 94304-1030, U.S.A. Tel: 1-800-356-4437
Varian International AG Kellerstrasse 36, CH-6303, Zug, Switzerland Tel: (412) 44 88 44 • Varian GmbH Alsfelderstrasse 6, D-6100 Darmstadt, Germany Tel: (0 61 51) 70 30 • Varian Instruments Ltd. 3rd Matsuda Bldg. 2-2-6 Okubo-Shinjuku, Tokyo, Japan Tel: (3) 3204-1211
Tell me more about Varian’s Ultra-nmr Shims!

☐ For my current spectrometer:

☐ For a new instrument purchase:

Name ____________________________

Phone ____________________________

Company ___________________________

City __________________State _______ Zip ____________

Please mail to: Varian Associates
NMR Instruments D-300
UNITY Customer Support
3120 Hansen Way
Palo Alto, CA 94304-1030

varian®
CAN NMR SUSTAIN THE FOREST?

June 4, 1992
(received 6/15/92)

Dear Barry,

Sustainable forestry is critically dependent on the production and planting of seedlings. The requirement for 1992 in British Columbia alone is for 237 million nursery seedlings to be produced and planted. The cost of the 600 million seeds required for this process is $340,000. For conifers to germinate, the seeds must be taken out of their dormant state by a process called "stratification", typically a combination of moisture and chilling treatments. However, there is no rapid, simple technique for assessing the readiness of seeds to germinate. We would like to see if NMR offers some insight into physiological changes during stratification and also provide a method to determine whether tree seeds are ready to germinate.

Rutar has shown that magic angle spinning removes line broadening due to differences in magnetic susceptibility in plant seeds. In the case of the seeds we have studied, linewidths are reduced from about 400 Hz to 10 Hz. The spectra in the figure show some of the changes that take place during germination. In the dormant state only signals from mono, di, and trienoic fatty acids are observed. After stratification, the seeds were soaked in water and signals from sucrose can be seen within a few hours. Upon germination, after 10 days in a moist environment, signals from other carbohydrate and protein fragments are observed.

Timing is critical in seedling production and a repeat sowing may not be possible. This method shows great potential in predicting successful stratification and germination.

Sincerely,

Caroline M. Preston
Pacific Forestry Centre
Victoria, B.C.

Brian G. Sayer

Please credit this contribution to Alex Bain's account.
Top. Part of the 13C spectrum of germinating *Picea Sitchensis* seeds.
Bottom. Part of the 13C spectrum of a *Picea Sitchensis* seed.
INTRODUCING

American Microwave Technology is adding a NEW broadband amplifier product to the 3000 series NMR product family.

The Model 3426 is specifically designed for low field NMR applications and operates over the 10–90 MHz frequency range with 1000 watts of peak pulse power.

KEY FEATURES

- 10–90 MHz frequency range for low field NMR/NMR1 applications
- 1000 watt RF output power for solids applications
- Linearity ± 1.0 dB for shaped pulses
- Noise blanking within 20 dB of KTB in less than 2 µs for multipulse applications
- Low Pulse Droop, less than 5% to 20 ms for spin locking applications
- RF based protection, envelope detection for optimum performance envelope, user convenience and safety
- Dual Mode operation for pulse and CW type signals
- Digital forward and reflected RF peak power meter for tuning and monitoring

3080 Enterprise Street, Brea, CA 92621 (714) 993-0802 Fax (714) 993-1619
NEW FEATURES FOR THE 3000 SERIES PRODUCTS

- Faster noise blanking, less than 1 µs
- User selectable Hi/Low RF output power limits
- Enhanced LED status indication

Please send me more information on...

- AMT NMR amplifiers
- AMT NMRI amplifiers
- AMT Laboratory Class A linear amplifiers

Are you considering the purchase of an RF power amplifier in the next 6 months? ______

What special NMR/NMRI requirements does your company have? ______________________

Dear Dr. Shapiro:

We recently received the first pulsed field gradient (PFG) triple resonance probe from Varian. The probe and associated hardware are part of our UNITY 500 MHz NMR system. As our work focuses on molecular structures important to the understanding and control of carcinogenesis we have begun investigating the utility of field gradients for solvent suppression and coherence selection in 2D and 3D experiments. We would like to provide some practical insight into setting up PFG experiments.

The reproducibility and accurate control of gradient pulse areas is critical for best PFG results. In setting up the 1H-15N HMQC experiment we were delighted to find that the amplifier driving the PFG is remarkably stable and linear. In the PG-HMQC experiment the applied gradients are scaled by the ratio of the 1H single quantum and 1H-15N double quantum frequencies which is theoretically a factor of 1.1014 when using the two gradient pulse version of the HMQC experiment. Mismatching the area of the gradient pulses results in severe attenuation of signals arising from the desired coherence pathway. For gradient strengths of 30 G/cm and a standard sample length, a 1 microsecond mismatch of the gradients results in only 94% of the signal remaining while with a 2 microsecond mismatch only 22% of the signal remains. We are happy to report that gradient areas are reproducible to levels far below this level and can easily be controlled to such fine specifications. The observed results are close to the theoretical model which assumes linear gradients across the sample region and a uniform excitation and detection of spins along the gradient axis. In figure 1 is a series of spectra showing the first increment of a series of 1H-15N HMQC experiment with gradient time arrayed. The experiment was performed on a (Ala)13C(Gly)15N(Gly) sample in DMSO. The first gradient in all cases is 5 msec in duration and 30 G/cm in strength. The step sizes are about 2 parts per ten thousand in gradient pulse area. In figure 2 is PG-HMQC 1H-15N spectrum of 15N enriched
nisin. We are excited about the potential for this device for improving existing experiments and opening up new avenues of research here at UNMC.

Sincerely yours,

William H. Gmeiner
Assistant Professor
Eppley Cancer Institute, UNMC

Timothy Saarenin, Ph.D.
Product Manager
Varian, Inc.

P.S. - Please start a subscription for Dr. Gmeiner with this contribution.
Structure Elucidation

CSEARCH

Offers identical presentation on Sun, Silicon Graphics, or VMS
Reads 13C NMR peak tables directly
Confirms calculated with measured spectrum
Finds structurally related compounds by spectral matching
Calculates spectra for compounds not in the database

Comparison of the calculated spectrum of a proposed structure with its measured spectrum. The intelligence of CSEARCH is demonstrated by favorable comparison for a structure not contained within the database of 52,000 spectra.
Those with the BEST INFORMATION WIN

Software and Databases for Personal Computers

Sadler User Library Manager - C:\ULIB\ST141-1

<table>
<thead>
<tr>
<th>Rec ID</th>
<th>Locked</th>
<th>Chemical Name/ID</th>
<th>IR Spec</th>
<th>NMR Peaks</th>
<th>Coup Const</th>
<th>Chem Struc</th>
<th>Phys Prop</th>
<th>MS Peaks</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>X</td>
<td>A-1290</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>2</td>
<td>X</td>
<td>A-4578</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Define Physical Properties

- Technique: CDCl3
- Melting Point: 126°C
- Boiling Point
- Molecular Weight
- Molecular Formula
- Sadler Reference Number: ST141
- Weissenber Line Notation
- CAS Registry Number
- RTECS Number
- Comments: Starting point for our oxidation

Current Template: U_Lib = !!= !!= K ==J

BIO-RAD
Sadler Division

Observation of splittings in 13C CP/MAS spectra due to $J(^{14}$N,13C)

Dear Barry,

In high-resolution 13C CP/MAS studies of solids one generally observes asymmetric doublets with relative intensities of 2:1 for carbon nuclei which are directly bonded to 14N. This phenomenon is now well understood and arises because of a breakdown of the high-field approximation.\(^1\) Qualitatively, the 14N Zeeman levels are strongly perturbed by the quadrupolar interaction; hence, the 14N,13C direct dipolar interaction, D, is not averaged to zero by MAS. The splitting in the asymmetric doublet is proportional to $\chi(^{14}$N)$D/\nu(^{14}$N)$, where all symbols are standard. Typical residual splittings are on the order of 0-300 Hz for spectrometers operating at 1H frequencies of 150-300 MHz. Usually indirect 14N,13C spin-spin coupling constants, J's, are not observed in the solid state because these coupling constants are generally much smaller than typical 13C CP/MAS line widths.

Analysis of the 13C CP/MAS spectrum of a highly crystalline sample of [(n-C$_3$H$_7$)$_4$N][Cd(SCN)$_3$],\(^1\) indicates the presence of three non-equivalent thiocyanate groups (see fig.1), consistent with the known trigonal-bipyramidal structure of this compound.\(^2\) The most interesting feature of the spectrum is that the line shape of one of the carbons, C_{eq}, exhibits a splitting which is due to indirect 14N,13C spin-spin coupling. Since only the portion of the 13C line shape associated with the nitrogen $m_1 = +1$ and -1 spin states is affected by the J interaction, the observed splitting is amplified by a factor of two. The interpretation of the 13C CP/MAS spectrum at 4.7 T was also confirmed by measurements at 9.4 T using our new wide-bore AMX-400 spectrometer. To our knowledge this is the first reported observation of a splitting due to $J(^{14}$N,13C) in the solid state. Further details will appear in the new journal, Solid State NMR.

Yours sincerely,

\[\Box \]

Roderick E. Wasylishen
Professor of Chemistry

Klaus Eichele
Killam PDF

Fig. 1: 13C CP/MAS spectrum of [(n-C$_3$H$_7$)$_4$N][Cd(SCN)$_3$], showing the peaks due to the carbons of the three non-equivalent thiocyanate ligands. The positions of the isotropic chemical shifts are indicated by arrows. The carbon nucleus of the equatorial ligand displays splitting due to $^{1}J(^{14}$N,13C) = 16 Hz and is flanked by satellites due to $^{2}J(^{111}$Cd,13C) = 75 Hz.
1.5 second burst of ASX rf output, power greater than 400W, with virtually no amplitude droop.

In Solids NMR, what you don’t see makes all the difference.

It may be that you will never see the purity of the ASX™ rf, derived from highest quality synthesizers. You may never directly observe the virtually instantaneous phase switching of Bruker’s unique 4-phase modulator, or measure the 4 MHz bandwidth of Bruker’s 451 MHz IF receiver. And you may never have occasion to verify the amplitude, phase and frequency pulse shaping precision of the 64 kW/channel waveform memories, or the droop-free performance of the 1 kW amplifiers (even during bursts of more than 1 second).

But you will see cutting-edge results. Because these unique features of the ASX™ enable you to perform the widest range of solids spectroscopy and imaging experiments available in the industry.

Solids NMR redefined. Period.

In fact, it was this unmatched level of performance that allowed us to invent methods such as C-24 CRAMPS, WIMSE and HETCOR, which provide liquid-like 1D and 2D results for solids. In addition, Bruker’s SOLIDSCOPE™ and STRAFI™ proprietary solids-imaging technologies have made us the undisputed leader in imaging of rigid solids.

And you won’t find the UNIX-based ASX™ difficult to use. In fact, features such as pneumatic MAS sample insert/eject, microprocessor regulated rotor speed, automatic spin up/down and built-in probe tune and wobble make the ASX™ the easiest solids machine ever. Better yet, add an optional solids sample changer and go home while the ASX™ continues without you! Of course the ASX™ can easily be expanded to full AMX™ high resolution performance, as well as micro-imaging of liquids.

Ask for details on the ASX™...it’s for Advanced Solids Xcelence.

Bruker Instruments, Inc. Manning Park, Billerica, MA 01821
In Europe: Bruker Analytische Messtechnik GmbH, Silbertreifen, D-7812 Rheinstetten 4, Germany
In this spectrum the solid state 2D HETCOR experiment, developed in the Bruker applications laboratory, has been applied to the pharmaceutical compound ibuprofen. For comparison, 1D 13C CPMAS and BR-2D 1H CRAMPS spectra are displayed along the axes in place of the usual 2D projections. Strong cross peaks are visible for all of the directly bonded proton-carbon groups, as well as first order sidebands for the four aromatics. In addition, each of the three non-protonated carbons is shown to correlate to at least two long range protons. Note that minute differences in proton chemical shift, impossible to resolve in the 1D CRAMPS spectrum, are clearly visible in the 2D spectrum. 2D HETCOR requires simultaneous, fully windowless pulse sequences to be applied to both protons and carbons during the evolution and mixing periods. All the data shown here was obtained and processed on a Bruker ASX-300.
Dear Dr. Shapiro,

The proton NMR line for hydrogenated amorphous silicon usually shows two principal components: a 25 kHz FWHM Gaussian from more clustered hydrogen and a 4 kHz FWHM Lorentzian from less clustered hydrogen. At low temperatures there also is a 176 kHz doublet from trapped o-H2. When appreciable SiH2 exists there is a 14.6 kHz doublet, which is difficult to resolve in the presence of strong dipolar coupling to nearby hydrogens. Recently, we have developed a dipolar filtering technique which can improve the structure resolution of proton NMR for a-Si:H. The filter is a Jeener-Broekaert three-pulse sequence: 90°-α-τ-β-τ-echo. Right after the third pulse a JB echo may be formed and at τ=τ a stimulated echo is superimposed as shown in Fig.1a. Our studies have been focused on the stimulated echo. We have found that for a-Si:H, hydrogens in the more and less clustered phases, o-H2, or SiH2, have very different T2 and T1. These differences provide a good way to eliminate those components which have small T2 or T1. With this dipolar-filtering technique, the 14.6 kHz Pake doublet of SiH2 has been resolved up to 220 K. In Fig.1b α=β=45° and the Fourier transform was performed on the stimulated echo at τ=τ. To see the 14.6 kHz doublet for SiH2, we use both the T2(τ=50 µs) and T1(τ=20 ms) filters to cut down the signal from the clustered hydrogen which has a short T2 (about 20 µs) and the signal from the less clustered hydrogen which has a short T1 (about 10 ms). Because SiH2 and o-H2 have longer T2 and T1, both of them pass the two filters. In Fig.1b, at T=7 K there are two doublets: one for SiH2(14.6 kHz) and the other for o-H2(176 kHz). As temperature increases the 176 kHz doublet is motionally narrowed but there is no motional narrowing effect upon the SiH2 doublet even at T=220 K.

Sincerely,

P.H. Chan

R.E. Norberg

Washington University
Campus Box 1105
One Brookings Drive
St. Louis, Missouri 63130-4899
(314) 889-6276
Fig. 1 (a) transient shapes of echoes at T=7K, 71K and 220K respectively. The JB echo is formed right after the third pulse and the stimulated echo is formed at t=τ. (b) FT spectra of the stimulated echoes for SiH₂ and o-H₂. Motional narrowing can be seen for o-H₂ but no motional narrowing for SiH₂. The pulse sequence is 90°-τ-45°-τ₁-45° with τ=50µs and τ₁=20ms. The FT begins at the t=τ peak of the stimulated echo.
NMR Graduate™ No. 509-UPG
Ultraprecision NMR Sample Tube

ADVANTAGES? Too many to list! Can you imagine working in the lab without a standard graduate cylinder or a pipette? You’ll wonder why it took so long to introduce the NMR Graduate™. We are the first to bring it to you (patent pending).

PRICE
1-99 Tubes: $10.00 ea.
100-299: 9.00 ea.
300+: 8.00 ea.

SPECIFICATIONS:
Standard Tube length: 178 mm (7 in.)
o.d. 4.97 mm ± 0.006 mm (0.00025 in.)
i.d. 4.20 mm ± 0.012 mm (0.0005 in.)
Camber: ± 0.0006 mm (0.00025 in.)

PRECISION THIN WALL® NMR Sample Tubes

<table>
<thead>
<tr>
<th>No.</th>
<th>Description</th>
<th>Standard Tube Length</th>
<th>O.D.</th>
<th>I.D.</th>
</tr>
</thead>
<tbody>
<tr>
<td>No. 508-UP</td>
<td>Ultra High Precision for Ultra High Resolution NMR</td>
<td>178 mm (7 in.)</td>
<td>4.97 mm</td>
<td>4.20 mm</td>
</tr>
<tr>
<td>No. 507-HP</td>
<td>High Precision for High Resolution NMR</td>
<td>178 mm (7 in.)</td>
<td>4.97 mm</td>
<td>4.20 mm</td>
</tr>
<tr>
<td>No. 506-P</td>
<td>Precision for Medium and High Resin NMR</td>
<td>178 mm (7 in.)</td>
<td>4.97 mm</td>
<td>4.20 mm</td>
</tr>
<tr>
<td>No. XR-55</td>
<td>Precision for Medium and High Resin NMR</td>
<td>178 mm (7 in.)</td>
<td>4.97 mm</td>
<td>4.20 mm</td>
</tr>
<tr>
<td>No. 505-P</td>
<td>Precision for Medium and High Resin NMR</td>
<td>178 mm (7 in.)</td>
<td>4.97 mm</td>
<td>4.20 mm</td>
</tr>
<tr>
<td>No. 502</td>
<td>Throwaway Type Economical Tube</td>
<td>178 mm (7 in.)</td>
<td>4.97 mm</td>
<td>4.20 mm</td>
</tr>
</tbody>
</table>

LARGE VOLUME NMR Sample Tubes

<table>
<thead>
<tr>
<th>Size</th>
<th>Description</th>
<th>Standard Length</th>
<th>O.D.</th>
<th>I.D.</th>
</tr>
</thead>
<tbody>
<tr>
<td>10mm</td>
<td>Ultra High Resolution NMR</td>
<td>178 mm (7 in.)</td>
<td>10.00 mm</td>
<td>8.76 mm</td>
</tr>
<tr>
<td>20mm</td>
<td>Ultra High Resolution NMR</td>
<td>178 mm (7 in.)</td>
<td>20.00 mm</td>
<td>14.17 mm</td>
</tr>
</tbody>
</table>

NOTE:
Other tube sizes available, please inquire.

PTFE Machined Tube Caps
5mm: $40/25 caps or 475/50 caps
10mm: $43/25 caps or 600/50 caps

PTFE VORTEX PLUGS
all sizes: specify tube size... $40/lot of 5
RODS for all Vortex Plugs: $10.00 each
BEAKER MUGS

<table>
<thead>
<tr>
<th>Style</th>
<th>Size</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>NB-8</td>
<td>8 oz</td>
<td>$5.00</td>
</tr>
<tr>
<td>NB-14</td>
<td>14 oz</td>
<td>$5.75</td>
</tr>
<tr>
<td>NB-20S</td>
<td>20 oz</td>
<td>$6.00</td>
</tr>
<tr>
<td>NB-20T</td>
<td>20 oz</td>
<td>$6.50</td>
</tr>
<tr>
<td>NB-64</td>
<td>64 oz</td>
<td>$16.50</td>
</tr>
</tbody>
</table>

NTB Series with classic style handle:

<table>
<thead>
<tr>
<th>Style</th>
<th>Size</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>NTB-250</td>
<td>250 ml</td>
<td>$68/12 [Shelfpack]; $204/48 [Case]</td>
</tr>
<tr>
<td>NTB-400</td>
<td>400 ml</td>
<td>$68/12 [Shelfpack]; $204/48 [Case]</td>
</tr>
<tr>
<td>NTB-600</td>
<td>600 ml</td>
<td>$80/12 [Shelfpack]; $120/24 [Case]</td>
</tr>
<tr>
<td>NTB-1000</td>
<td>1000 ml</td>
<td>$126/12 [Shelfpack]; $190/24 [Case]</td>
</tr>
<tr>
<td>NTB-2000</td>
<td>2000 ml</td>
<td>$160/8 [Shelfpack]; $240/16 [Case]</td>
</tr>
</tbody>
</table>

NKC Series with extended length handles:

<table>
<thead>
<tr>
<th>Style</th>
<th>Size</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>NKC-250</td>
<td>250 ml</td>
<td>$68/12 [Shelfpack]; $204/48 [Case]</td>
</tr>
<tr>
<td>NKC-400</td>
<td>400 ml</td>
<td>$68/12 [Shelfpack]; $204/48 [Case]</td>
</tr>
<tr>
<td>NKC-600</td>
<td>600 ml</td>
<td>$80/12 [Shelfpack]; $120/24 [Case]</td>
</tr>
<tr>
<td>NKC-1000</td>
<td>1000 ml</td>
<td>$126/12 [Shelfpack]; $190/24 [Case]</td>
</tr>
<tr>
<td>NKC-2000</td>
<td>2000 ml</td>
<td>$160/8 [Shelfpack]; $240/16 [Case]</td>
</tr>
</tbody>
</table>

NLC and NC Series incorporate a stackable handle design - a great space saver! All prices are the same as NTB and NKC Series.

SPECIAL: SIX-PACK MUGGERS, Catg. No. NB-20S

FREE with any purchase of $250 or more! Limited time offer, when ordering, specify SPMF [[$36.00 value]]

Norell, Inc., 22 Marlin Lane, Mays Landing, NJ 08330 USA
Tel: 609-625-2223, Fax: 609-625-0526
to order toll-free in USA, call 1-800-222-0036

NEW

NMR Graduate™
SPECIAL SALE
TO MEMBERS, READERS, and SUPPORTERS
OF THE TAMU NEWSLETTER

1. DEUTERATED SOLVENTS IN MINIPULS™

TA1080M Chloroform-d, 99.8% D
■ Buy 100 Minipuls™ [0.4ml] for $65.00
and get 50 FREE (Save $32.50)
■ Buy 100 Minipuls™ [0.7ml] for $80.00
and get 50 FREE (Save $40.00)

TA1020M Acetone-d₆, 99.8% D
■ Buy 100 Minipuls™ [0.4ml] for $112.00
and get 50 FREE (Save $66.00)
■ Buy 100 Minipuls™ [0.7ml] for $150.00
and get 50 FREE (Save $75.00)

TA1120M DMSO-d₆, 99.8% D
■ Buy 100 Minipuls™ [0.4ml] for $112.00
and get 50 FREE (Save $66.00)
■ Buy 100 Minipuls™ [0.7ml] for $150.00
and get 50 FREE (Save $75.00)

Please specify Offer No. STA-9042, expiring September 4, 1992

2. NMR GRADUATE™ SAMPLE TUBES

No. 509-UPGT ULTRAPRECISION 5 mm o.d. NMR Sample Tubes with 0.01 ml graduations
■ Buy 50 for $500 and get 25 FREE (Save $250!)

Please specify Offer No. GTA-9042, expiring September 4, 1992

3. NMR TUBE WASHING/FILLING UNITS
(for 5mm o.d. NMR Sample Tubes)

U500T/F500T
■ Buy 4 for $128.50/lot and get 2 FREE (Save $64.25)

Please specify Offer No. UTA-9042, expiring September 4, 1992

4. LITHIUM-6 and LITHIUM-7 LABELED COMPOUNDS [Detailed listing on reverse]

■ Buy $400.00 worth of any of the Lithium Compounds and
get 10 NMR GRADUATE TUBES FREE (Save $100.00).

Please specify Offer No. LTA-9042, expiring September 4, 1992

Norell, Inc., 22 Marlin Lane, Mays Landing, NJ 08330 USA
Tel: 609-625-2223; Fax: 609-625-0526
Lithium-6 Labeled Compounds

Natural Abundance: 7.42%
Nuclear Spin: 1; Frequency at 11.75T: 73.603 MHz

<table>
<thead>
<tr>
<th>Catg. No.</th>
<th>Compound</th>
<th>Quantity</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>TLC60100</td>
<td>Lithium-^6^Li (Metal)</td>
<td>1g</td>
<td>$200.00</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5g</td>
<td>$475.00</td>
</tr>
<tr>
<td></td>
<td></td>
<td>10g</td>
<td>$800.00</td>
</tr>
<tr>
<td>TLC60105</td>
<td>Lithium-^6^Li Carbonate</td>
<td>1g</td>
<td>$80.00</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5g</td>
<td>$200.00</td>
</tr>
<tr>
<td></td>
<td></td>
<td>10g</td>
<td>$325.00</td>
</tr>
<tr>
<td>TLC60110</td>
<td>Lithium-^6^Li Deuterioxide</td>
<td>1g</td>
<td>$50.00</td>
</tr>
<tr>
<td></td>
<td>D_2O</td>
<td>5g</td>
<td>$200.00</td>
</tr>
<tr>
<td></td>
<td></td>
<td>10g</td>
<td>$350.00</td>
</tr>
<tr>
<td>TLC60115</td>
<td>Lithium-^6^Li Fluoride</td>
<td>1g</td>
<td>$70.00</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5g</td>
<td>$225.00</td>
</tr>
<tr>
<td></td>
<td></td>
<td>10g</td>
<td>$360.00</td>
</tr>
<tr>
<td>TLC60120</td>
<td>Lithium-^6^Li Sulfate</td>
<td>5g</td>
<td>$95.00</td>
</tr>
<tr>
<td></td>
<td></td>
<td>10g</td>
<td>$145.00</td>
</tr>
</tbody>
</table>

Lithium-7 Labeled Compounds

Natural Abundance: 92.58%
Nuclear Spin: 3/2; Frequency at 11.75T: 194.365 MHz

<table>
<thead>
<tr>
<th>Catg. No.</th>
<th>Compound</th>
<th>Quantity</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>TLC70110</td>
<td>Lithium-^7^Li (Metal)</td>
<td>1g</td>
<td>$125.00</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5g</td>
<td>$260.00</td>
</tr>
<tr>
<td></td>
<td></td>
<td>10g</td>
<td>$450.00</td>
</tr>
<tr>
<td>TLC70115</td>
<td>Lithium-^7^Li Carbonate</td>
<td>5g</td>
<td>$75.00</td>
</tr>
<tr>
<td></td>
<td></td>
<td>10g</td>
<td>$95.00</td>
</tr>
<tr>
<td></td>
<td></td>
<td>25g</td>
<td>$225.00</td>
</tr>
<tr>
<td></td>
<td></td>
<td>50g</td>
<td>$425.00</td>
</tr>
<tr>
<td>TLC70120</td>
<td>Lithium-^7^Li Fluoride</td>
<td>5g</td>
<td>$80.00</td>
</tr>
<tr>
<td></td>
<td></td>
<td>10g</td>
<td>$120.00</td>
</tr>
<tr>
<td></td>
<td></td>
<td>25g</td>
<td>$260.00</td>
</tr>
<tr>
<td></td>
<td></td>
<td>50g</td>
<td>$500.00</td>
</tr>
<tr>
<td>TLC70125</td>
<td>Lithium-^7^Li Hydroxide: H_2O</td>
<td>5g</td>
<td>$55.00</td>
</tr>
<tr>
<td></td>
<td></td>
<td>10g</td>
<td>$120.00</td>
</tr>
<tr>
<td></td>
<td></td>
<td>25g</td>
<td>$110.00</td>
</tr>
<tr>
<td></td>
<td></td>
<td>50g</td>
<td>$175.00</td>
</tr>
</tbody>
</table>

OTHER STABLE ISOTOPES

at low, competitive prices
[over 300 elements/compounds listed] Request Catalog No. NSI-300

Norell, Inc., 22 Marlin Lane, Mays Landing, NJ 08330 USA
Tel: 609-625-2223; Fax: 609-625-0526

Please Note: We have the lowest prices on LITHIUM-6 & LITHIUM-7 elements and compounds. Order $400.00 of any of these compounds and get 10 NMR Graduates™ FREE of CHARGE! This offer, LTA-9042, expires Sep 4, 1992.
We are offering **HIGH PERFORMANCE BEAKERS** of BOROSILICATE GLASS for your safety in handling hot solutions. Our beakers are designed with a thick beaded top and enameled area for pencil marking. With our **STURDY HANDLES** and high quality borosilicate glass, you have further assurance of long-term use with safety in mind.

To place your order, call us TOLL-FREE 1-800-222-0036

Norell, Inc., 22 Marlin Lane, Mays Landing, NJ 08330 USA
DEUTERATED SOLVENTS
in glass sealed MINIPUL™

We have the lowest prices without compromise in quality!

<table>
<thead>
<tr>
<th>Solvent Type</th>
<th>DC1080M, Chloroform-d, 99.8% D</th>
<th>DC1070M, Carbotetrachloride, NMR Grade</th>
</tr>
</thead>
<tbody>
<tr>
<td>10 x 0.4 ml</td>
<td>$7.50</td>
<td>10 x 0.4 ml</td>
</tr>
<tr>
<td>50 x 0.4 ml</td>
<td>$35.00</td>
<td>50 x 0.7 ml</td>
</tr>
<tr>
<td>100 x 0.4 ml</td>
<td>$125.00</td>
<td>100 x 0.7 ml</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Solvent Type</th>
<th>DC1020M, Acetone-d6, 99.8% D</th>
<th>DC1120M, DMSO-d6, 99.8% D</th>
</tr>
</thead>
<tbody>
<tr>
<td>10 x 0.4 ml</td>
<td>$14.00</td>
<td>10 x 0.4 ml</td>
</tr>
<tr>
<td>50 x 0.4 ml</td>
<td>$70.00</td>
<td>50 x 0.7 ml</td>
</tr>
<tr>
<td>100 x 0.4 ml</td>
<td>$180.00</td>
<td>100 x 0.7 ml</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Solvent Type</th>
<th>DC1400M, Unisol-d™, 99.9% D</th>
</tr>
</thead>
<tbody>
<tr>
<td>10 x 0.4 ml</td>
<td>$15.00</td>
</tr>
<tr>
<td>50 x 0.4 ml</td>
<td>$70.00</td>
</tr>
<tr>
<td>100 x 0.4 ml</td>
<td>$120.00</td>
</tr>
</tbody>
</table>

For your convenience, we supply EMPTY MINIPULS™, 3½ inches high, ideal for flame sealing and sample storage. Sold in lots of 100 at $25/pack.

MINIPUL™ ... WHAT IS IT?

The MINIPUL™ was developed by Norell, Inc. as the most practical (least costly!!!) method for quick and safe storage and dispensing of deuterated solvents for NMR analysis.

The MINIPUL™ is a thin-wall, glass tube, in essence similar to the "disposable" 5 mm NMR Sample Tube, about 3" in height and containing either 0.4 ml or 0.7 ml of the desired solvent.

ADVANTAGES • Eliminate pipetting • Easy handling, excellent student use • Reduce contamination • Can be used as a "reaction" flask connected to a micro-condenser via our Teflon™ sleeve. • Use it as container for future reference • No solvent loss when dispensing • Can be resealed for permanent storage • Allows sufficient solvent volume (either 0.4 or 0.7 ml) without solvent waste.

Teflon is a Trademark of E.I. du Pont

UNISOL-d™, is Norell’s special blend of deuterated solvents, specifically developed for proton NMR. "Most anything" (water soluble/insoluble), will dissolve in UNISOL-d™.
Separated Local Fields - Application to Starch

The separated local fields technique\(^1\) is a solid state 2D method which displays a \(^{13}\text{C}\) spectrum along the F-2 dimension and C-H dipolar coupling information along the F-1. With help from Doug Burum from Bruker and Chuck Bronnimann from ChemMagnetics, I was able to run the sequence on our Varian VXR -400. The sequence is shown below.

Using BLEW-12 proved to be feasible and it is supposedly more fool-proof than other multiple pulse dipolar decoupling sequences. In order to keep the \(t_1\) increments short, it was necessary to use high decoupling power (about 80 Watts), resulting in a 90° pulse of 4 usec. or less. This corresponds to an \(F_1\) width of 21 kHz. This 90° pulse must be calibrated for the BLEW-12 to be effective.

Although starch does not have a large CSA, it was still necessary to spin at 2 kHz on our instrument to get a satisfactory presentation in the F-2. The time between the cross polarization and the \(^{13}\text{C}\) refocussing pulse and that between the pulse and acquisition was 2 rotor periods, 1000 usecs. This allows 20 \(t_1\) increments and still retain acceptable sensitivity.

To get proper phasings in F-1, it is necessary to record the first FID with \(t_1 = 0\) or no BLEW-12 cycle and then to use \(1...N\) cycles. It is also necessary to discard the imaginary part in the Fourier transformation down the \(t_1\) axis.
An F-1 slice down F-2 = 103 ppm, C-1, is shown below. Slices through the other carbon resonances, with the exception of C-6 look similar. It is hard to compare the pattern with the results reported by Schaefer et al.,2,3 since the sample was spun a little faster and BLEW-12 shrinks the dipolar pattern more than WAHUHA. However, the spectrum probably indicates that the anhydroglucose units of Waxy 1 starch are not experiencing motions of significant amplitude. 180° spin flips can be ruled out from published x-ray data.

Professor of Radiology in Residence, University of California, San Francisco, Magnetic Resonance Unit, located at VA Medical Center. New position for NMR physicist with particular expertise in NMR instrumentation, NMR pulse sequence development, and data analysis. PhD in physics or similar field, with considerable training and experience in hardware and instrumentation aspects of NMR physics. Must have national and international reputation and productivity in the area of NMR instrumentation and pulse sequence development. Responsible for development of new hardware for MRS and MRSI. Will concentrate on development of new coils (birdcage coils for head studies and surface coils for studies of other organs) for various magnet systems in the Magnetic Resonance Unit. Quadrature coils and double and triple tuned coils would also be constructed. Expected to construct other specialized instrumentation which would advance the acquisition of MRS signals. Will publish papers in peer-reviewed journals and present papers at meetings concerning this work. Should have the ability to obtain peer-reviewed research support. Responsible for teaching NMR techniques to Radiology residents, postdoc fellows, NMR physicists, and medical students. The University of California is an **Equal Opportunity/Affirmative Action Employer**. Women and minority candidates are encouraged to apply. Send CV, publications list, and 3 letters of reference by October 31, 1992 to Michael Weiner, MD, VA Medical Center, 4150 Clement St (11M), San Francisco, CA 94121.
The installation of our Bruker Biospec-X 24/30 imaging system has been completed for some time now and we have reached a steady-state operation at the moment. Despite being the first to acquire this model with its associated (and impressively well-behaved) image processing software, it has been remarkably well-behaved under the circumstances. Down time since installation (more than 5 months now) has been 0%.

For the moment I just thought that I would give a brief overview of some of the applications encountered to date and show a few images (although it is difficult to do justice to the data when it's reproduced).

In anticipation of summer (since it's snowing outside as I write this) I include on the next page an image of the core of an uncooperative golf ball. The heterogeneity apparent in the back projection image was indeed found to be real from subsequent visual inspection of the core after cutting it up.

We have also been routinely running core samples under a variety of conditions. We now have one homebuilt core holder (about 11.7 cm diameter and almost 140 cm long) operated at ambient temperature up to 1000 psi. Our newly acquired Temco MRI cell is in testing and is capable of operation at 5000 psi and 300F. Other specialty holders are under design by our talented shop personnel. Rudimentary variable temperature capabilities have been added for several probes while we design a more elegant system for future use, particularly with polymer samples.

Other images shown in this communication include: (i) a comparison of a long echo time image of a rubber by MSME with that obtained by back projection at much shorter echo times, (ii) an oil saturated core, and (iii) a spin echo image of a human hand.

Other applications have included imaging of seeds, a wide variety of polymer composites/blends, flowers, fruit, wood, plants, sludges and emulsions.

More details will follow in our next contribution.

Dave Axelson
Group Leader
Founders Imaging Centre

Dave - Snow on 5/21 (or even 21/5)!! Now I remember why I left the old sod for more clement climes. Re your image of the golf ball (sure it's not a snowball?): It will put more trulyful if it was more uniform and spherical.

Petroleum Recovery Institute
3512 - 33 Street N.W., Calgary, Alberta, Canada
T2L 2A6

Telephone: (403) 282 - 1211 Fax: (403) 289 - 1988
Rubber
Left side: MSME (TE = 15 ms)
Right side: Back projection (TE = 2.8 ms) Both images have been scaled to be directly comparable.

MSME of hand

Oil saturated core. MSME.

Golf ball core
Back projection (TE = 2.8 ms)
TRIPOS and NMRi: A New Vision for Structural Prediction and Characterization

The shared commitment of TRIPOS Associates and New Methods Research fuses the strengths and scientific tradition of NMRi in spectroscopic information processing and analysis with those of TRIPOS, a leader in Computer-Aided Molecular Design tools and provider of new solutions for 2D/3D chemical information management and NMR structure determination.

Molecular Information Analysis Strategies
The shared vision is to enhance Molecular Information Analysis Strategies. Within this focus, the unique Molecular Spreadsheet™ is an excellent interactive tool for research data analysis and integration of data among scientific work groups and enterprise-wide teams. It is the backbone of the TRIPOS/NMRi vision for effective molecular information analysis.

Our Commitment:
• to provide extensive standalone 1D and nD processing and analysis tools for data handling in a multi-vendor NMR instrumentation environment
• to provide easy access to third party programs such as Mardi Gras and DGEOM, and facilitate structure file import and spectral information export
• to continue easy interchange of data with other commercial and third party software
• to ensure computer hardware independence by offering distributed graphics and computing on a range of platforms, including the highest performance X-Window implementation available
• to deliver a seamless scientific suite of products that will take the scientist from raw experimental data to solved molecular structures!

Ease-of-Use
The NMR products from TRIPOS/NMRi feature an easy to use graphical interface and the only truly open architecture in the industry, including a flexible macro programming language already used extensively by many customers for powerful tailored applications.

Expert Scientific Support
Our commitment is backed by a large expert staff of PhD scientists and computer scientists with a combined experience in NMR that is unmatched. Our distinctive support selections include in-depth workshops and training as well as software updates and industry-recognized customer hot-line support.

TRIPOS and NMRi—pioneering Molecular Information Analysis Strategies

The Molecular Spreadsheet will help visualize the relationship between spectra and structure by highlighting interactions.

The Customer is #1
Customers who invest now gain immediate access to NMRi's advanced computation algorithms, signal processing and spectral analysis as embodied in the NMRZ family of programs. Current tools for 1D, 2D, and nD applications include multi-deconvolution techniques such as curve-fitting, linear prediction, and maximum entropy. Other key features include electronic bookkeeping for the easy application of constraints and unique features to ensure peak assignment integrity.

The migration of the NMRZ tools into the new integrated TRIAD NMR architecture from TRIPOS is underway. From the automatic creation of "recipes" for increased processing speed to the automation of spectral resonance assignments, TRIAD saves time and dramatically enhances insight by coordinating all data management and visualization.

Expanded TRIAD NMR Productivity
• an extensive suite of available and tested algorithms from NMRi
• easy spectral and structural electronic bookkeeping using the convenient flexibility and openness of the Molecular Spreadsheet and the SPL macro language

Call us to learn about our solutions now and our pathway for your future in structural prediction and characterization science.
31P-Solid-state NMR, a complementary method to X-ray Crystallography

Dear Barry,

Agostic bonding, where EH bonds, E = C, N, Si, coordinate to transition metals, continue to be of interest and we have recently reported a new type of palladium(I) dimer containing an example with E = P. The presence of a Pd-H-P bridge in solution was established on the basis of 31P-{H} correlations and one- and two-dimensional 31P{H} heteronuclear Overhauser spectroscopy. Unfortunately, the solid state structure obtained by X-ray crystallography was not as conclusive as the NMR results, showing centrosymmetrical molecules.

This difference might originate from either a different bonding mode in the solid state or disordering in the crystal. To fill the missing gap between solid- and solution-state, we have employed 31P-CPMAS techniques (see figure). The results demonstrate that:

1. a) the molecule contains four non-equivalent phosphorous atoms with isotropical shifts of ca. 445, 230, 60 and 40 ppm, respectively, in close agreement with the solution data of 455, 217, 52 and 48 ppm for the phosphide, the bridging and the two terminal phosphines, respectively.
2. b) the high field and the one resonating at ca 230 ppm (drawn in black in the figure) have directly attached protons.

In summary it appears i) that the solution and the solid phases of [Pd2(µ-PBu2)2(µ-PHBu2)(PHBu2)]+ contain the same type of molecules with analogous bonding modes and ii) that solid-state NMR spectroscopy can give valuable and complementary information with respect to X-ray crystallography, especially in cases where static disordering is present in the crystals, therefore masking important features of the molecular structure.

Best wishes

Prof. Paul S. Pregosin

Dr. Heinz Rüegger

Figure: 31P-CPMAS spectra of [Pd2(µ-PBu2)2(µ-PHBu2)(PHBu2)]+ recorded at 162.0 MHz with vrot = 10 KHz. The resonances of the bridging phosphine are marked in black. Lower traces: CP-time = 8 msec. All phosphorus resonances are visible. Upper traces: CP-time = 80 µsec. Only protonated phosphorus atoms show up.
Research & Product Development

Magnetic Resonance Imaging

We have immediate openings in our Health Care Technology Division located at the Miami Valley Laboratories near Cincinnati, Ohio.

Magnetic Resonance Imaging

Our Magnetic Resonance Imaging/Spectroscopy facility conducts and interprets the results of biological experiments which provide mechanism-of-action information and facilitate model development for preclinical drug discovery. The selected candidate will be responsible for *in vivo* and *in vitro* MR imaging, *in vitro* NMR spectroscopy and spectral analysis and interpretation. Familiarity with the concepts of nuclear magnetic resonance and the willingness to work with biological models are required.

Research & Product Development Technicians at Procter & Gamble support our research scientists in basic and applied research associated with the development of our products. The facilities at our four Cincinnati Technical Centers are regarded as among the finest in the nation. Our compensation package includes excellent starting salary and benefits.

Applicants may send a resume and cover letter to:

THE PROCTER & GAMBLE COMPANY
R&PD Technician Recruiting
Dept. TN-231, 6090 Center Hill Avenue
Box 120, Cincinnati, OH 45224-1792

ROWLAND INSTITUTE FOR SCIENCE
100 CAMBRIDGE PARKWAY
CAMBRIDGE, MASSACHUSETTS 02142

June 10, 1992

Dear Dr. Shapiro:

Two postdoctoral positions in computational aspects of biomolecular nmr, including modern spectrum analysis, visualization, and computer-aided assignment, are available as part of a collaboration between Harvard Medical School and the Rowland Institute for Science. While experience in computational aspects of NMR is preferred, we are also considering candidates with computational experience in other areas of physical science. Interested candidates should transmit their CV and the names of two references to me at the address above, or to Gerhard Wagner at the Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, 240 Longwood Avenue, Boston, Massachusetts 02115.

Sincerely,

Jeffrey C. Hoch, Ph.D.
Fax: (617) 497-4627

JCH/lrp
In situ pH Measurements for Protein NMR

May 20, 1992
(received 6/6/92)

Dr. Bernard L. Shapiro
TAMU NMR Newsletter
966 Elsinore Court
Palo Alto, CA 94393

Dear Barry,

We have been investigating the acid unfolding of sundry T4-lysozyme protein variants using 15N or 13C-edited proton spectra to monitor the process. We were disgusted to observe that the combination of the acidic titration conditions, KCL leakage from the pH electrodes, and accumulation of "partially unfolded" proteins lead to the rapid demise of both the NMR sample and the pH electrode. This is particularly a problem with T4 lysozyme.

We have found that the pH of the solution can be conveniently monitored by 1H-NMR, thus eliminating the need for repeated glass electrode measurements of pH and the associated aggregation of protein and the proliferation of ruined pH electrodes. We use a combination of 100 µM glycine and 100 µM betaine (N,N,N-trimethyl glycine) added to the NMR sample. The 1H resonance of the Cα protons of either amino acid features an easily measured titration shift in the acid range (pH 1 to 3) as a result of carboxyl group protonation as shown in Figure 1. The addition of both compounds provides an internal consistency check of the pH calibration as well as extending the useful pH indicator range. Although the 1H resonances of glycine or betaine may sometimes overlap with protein resonances their positions can almost always be determined since the small molecule linewidths are substantially narrower than those of the protein.

We also use 31P shifts of various phosphates to monitor pH near neutrality. This can be done very conveniently when using a "reverse detection" (RPT) probe for measurements on pH-sensitive samples of protein/DNA complexes. The X-channel of the RPT probe, normally used for decoupling, is re-tuned for observation of 31P spectra, without the need to remove the sample from the magnet.

Sincerely,

F.W. Dahquist
Eric Anderson

Figure 1. 1H Chemical Shift of pH Indicator Proton Resonances.
Assigning the carbon chemical shift of dioxane in water

Dear Prof. Shapiro:

Recent reports on secondary structure dependent carbon chemical shifts in peptides\(^1\) and proteins\(^2\) have increased peoples’ interest in using \(^{13}\)C shifts as a structural diagnostic tool. In the study of such systems, dioxane is a commonly used internal reference standard. The carbon chemical shift of neat dioxane referenced with respect to internal TMS has been reported in literature\(^3\) to be 67.8 ppm and there are many examples in the field of protein NMR where internal dioxane was referenced to this value. Recently we assigned the carbon chemical shifts for the 20 common amino acids in D\(_2\)O and D\(_2\)O solutions containing 10\%, 20\% and 30\% v/v acetonitrile or trifluoroethanol. Since we were using organic co-solvents we thought we should check the carbon chemical shift value of our internal standard, dioxane. Surprisingly, we found the dioxane peak in water to resonate at 66.6 ppm with respect to external TMS! After further investigation we realized that there is, indeed, a 1.2 ppm difference in the carbon chemical shift of dioxane in water and neat dioxane. This discrepancy was apparently overlooked in earlier literature and has since been perpetuated. We also found that TSP resonates at -2.8 ppm relative to external TMS (Figure 1).

Please credit this contribution to D. Omecinsky.

Sincerely yours,

D. Omecinsky
M. D. Reily
V. Thanabal

Model R-1500
FT-NMR Spectrometer

The Model R-1500 60 MHz Fourier Transform NMR Spectrometer. (Photo provided through the generous courtesy of the Department of Chemistry Teaching Laboratory, University of Massachusetts, Amherst, MA.)

- **FT system features high sensitivity, excellent resolution and accurate chemical shift measurements.** With field stability ensured by TD lock, the Model R-1500 delivers performance typically associated with higher field instruments.

- **As many as 16K data points per spectrum** can be utilized to provide optimum peak definition and accurate scale expansion for critical interpretations.

- **Homonuclear decoupling** simplifies spectral interpretation by removing splitting due to coupling of neighboring protons. **Gated decoupling** increases the dynamic range improving the interpretation of more dilute peaks.

- **Inversion recovery T1 measurements** can be used to interpret complex spectra by removing overlapping chemical shifts.

- **WEFT measurement** capability expands the dynamic range by minimizing the large water peak and enables the interpretation of lower concentration components.

- **The multi-tasking data system** enables simultaneous acquisition and plotting or post run processing of spectral data to save time and increase productivity.

- **A complete data handling system** with 12-inch color CRT provides data archiving and post run processing. Data are conveniently stored on 5 1/4-inch floppy disks.

- **A menu system simplifies operation** by prompting the operator through standard acquisition parameters. As many as 32 methods can be stored to further simplify routine analyses.

- **Digital integration** combined with partial integration provides accurate calculations within a spectrum and from one analysis to another.

- **Chemical shifts, integration values, peak tables, and acquisition and processing parameters** are printed with the spectrum on the digital, 4-pen, 4-color printer/plotter in either A3 or A4 formats.

- **The R-1500 permanent magnet provides** minimal, low-cost maintenance.
Up to 16k data points/spectrum for acquisition and processing provides excellent peak definition enabling scale expansion for complex spectral interpretation. The spectrum below was acquired & processed with 8k data points.

Digital integration values are determined and printed for accurate calculations within a spectrum and from one analysis to another.
Si satellite peaks illustrate the R-1500's enhanced sensitivity and resolution typically associated with higher field instruments.

ACQUISITION COMMENT

Sample: Crotonaldehyde
Solvent: CDCL3
Conc.: 4%
Tube D: 5mm
Operator:
Date: Feb 16 '88

ACQUISITION PARAMETER

Acquis. mode: Normal
Spectrum width: 15 ppm
No. of acquis.: 16
Pulse interval: 6.0 sec
Data point: 8 k point
Pulse width 90: 10 micro sec

PROCESSING PARAMETER

Proce.data point: 8 k point
Display range: 10.40 ppm
Display gain: 1.00
Gain mode: Normal

Acquisition and processing parameters are stored and can be printed automatically so that all data and operating conditions are linked. Additionally, peak height tables including ppm to Hz conversion values can be printed.
This spectrum of 0.1% ethyl benzene illustrates the excellent sensitivity and resolution obtained with the Model R-1500 FT-NMR. A S/N ratio of 77.5 was calculated for the quartet shown in the expanded portion of the spectrum. The silicon satellite peaks seen at the base of the TMS peak underscore the R-1500's outstanding resolution.

Order Information

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
<th>Pkg/Qty</th>
</tr>
</thead>
<tbody>
<tr>
<td>435-6671</td>
<td>R-1500 Permanent Magnet Fourier Transform NMR</td>
<td></td>
</tr>
<tr>
<td>AN0-0166</td>
<td>Sample tube 0.5 mm OD</td>
<td>100</td>
</tr>
<tr>
<td>AN0-0167</td>
<td>Sample tube caps-red</td>
<td>100</td>
</tr>
<tr>
<td>AN0-0168</td>
<td>Sample tube caps-white</td>
<td>100</td>
</tr>
<tr>
<td>671-7501</td>
<td>A4 100 sheets plotter paper.</td>
<td></td>
</tr>
<tr>
<td>671-7502</td>
<td>A3 100 sheets plotter paper.</td>
<td></td>
</tr>
<tr>
<td>642-7362</td>
<td>Ceramicron Pen (Red)</td>
<td>0.2 mm</td>
</tr>
<tr>
<td>642-7364</td>
<td>Ceramicron Pen (Black)</td>
<td>0.2 mm</td>
</tr>
<tr>
<td>642-7365</td>
<td>Ceramicron Pen (Green)</td>
<td>0.2 mm</td>
</tr>
<tr>
<td>642-7369</td>
<td>Ceramicron Pen (Blue)</td>
<td>0.2 mm</td>
</tr>
</tbody>
</table>

Installation Specifications

- **Room Temperature**: 16-30°C with <2°C/hr fluctuation, (10°C/24 hr)
- **Power Supply**: 115V ± 10%, 60 Hz, 4-5 Amp
- **Magnet Weight**: 250 kg (550 lb)
- **Dimensions**: 1,630 mm (5'4") X 1,310 mm (4'3") X 800 mm (2'6") high
June 11, 1992
(received 6/15/92)

Dear Barry:

"TANGO with Spin-lock Pulses in Suppression of 1H-12C Magnetization."

The cyclic peptide [H-Tyr-D-Pen-Gly-Phe-D-Pen-OH]enkephalin (DPDPE), a highly potent delta-opioid selective agonist, has been studied in our laboratory by 1D and 2D 1H-NMR spectroscopy for the determination of molecular conformation. However, due to overlap of some signals in 1H spectrum and a need to obtain optimal information for conformational analysis, we undertook inverse proton detected C, H-correlation NMR studies.

Currently, the main difficulty encountered in inverse experiments is elimination of the large background proton (1H-12C) magnetization. Suppression based exclusively on phase cycling methods, imposes as a prerequisite, a spectrometer with high stability and an optimal dynamic range. Significant improvements can be achieved with pulse sequences that suppress the unwanted signals with the use of a BIRD pulse. However, in macromolecules, the sensitivity is reduced by spin-diffusion between protons bound to 13C and 12C. A different approach, employing a homospoil or spin-lock pulse at the end of a spin-echo preparation period, has been proposed to destroy the undesired 1H-12C magnetization. However, this method requires an additional inversion pulse pair during the refocusing period for experiments such as HMQC-NOESY, HMQC-TOCSY, etc. We have observed that pulse sequences employing a preparatory TANGO pulse (acts as a 90° pulse on 1H-13C), followed by a short spin-lock period, can provide suppression even with relatively unstable spectrometers. This method has the inherent advantages of a pulse sequence incorporating a spin-lock pulse, with the additional merit of using fewer pulses. Since the undesired magnetization is dephased by the spin-lock pulse, an efficient suppression can be achieved regardless of the actual range of proton T$_1$ values. In addition, the receiver gain can be increased significantly, resulting in a substantial increase in signal to noise.

Sincerely yours,

Victor J. Hruby
Katalin E. Kover
Om Prakash

April 27, 1992

Dr. Bernard Shapiro
TAMU NMR Newsletter
966 Elsinore Court
Palo Alto, CA 94303

NITROGEN-15 CP MATCHING USING NITROGEN 15 LABELLED GLYCINE

Dear Dr. Shapiro,

In the cross-polarization experiment one needs to achieve the Hartman-Hahn matching using a suitable compound. For solid-state carbon-13 NMR spectroscopy adamantane is used. For solid-state nitrogen-15 NMR spectroscopy nitrogen-15 labelled ammonium nitrate has been used. In this laboratory we have had little luck matching with this compound. We have found that even though a match has been achieved using ammonium nitrate we obtain less than satisfactory natural abundance nitrogen-15 spectra. Part of the problem is the matching condition for ammonium nitrate appear to be very dependent on spinning rate.

In seeking a more suitable compound for matching nitrogen-15 labelled glycine was tested. It turned out that it was easy to achieve the match on this compound. The magnetization curve is shown below. T_{Cw} is 2.35 msec and $T_{1 \rho}$ is 34.5 msec. It is possible to match on this compound using a 5 msec contact time and with a 2 to 3 second recycle time.

Please credit this report to Phil Pfeffer who has recently received your 'reminder'.

Sincerely yours,

Robert L. Dudley
EXPLORE THE ALTERNATE ROUTE...!

QUALITY REFURBISHED NMRs

BRUKER • JEOL • VARIAN

PERMANENT MAGNETS • ELECTROMAGNETS • CRYOMAGNETS

CURRENTLY IN STOCK:
BRUKER NR-80, WM-360WB, AC-300
VARIAN EM-360A, EM-360L, EM-390, FT-80A, XL-300, VXR-300
JEOL FX-90Q

FOR FURTHER DETAILS CALL: (708) 913-0777

International Equipment Trading Ltd.
960 Woodlands Parkway, Vernon Hills, IL 60061
FAX: (708) 913-0785
INVENTORY UPDATE SPRING 1990

X-RAY:
- Philips AXS Fluorescence spectrometer + 3100 generator
- Rigaku DMAX-AV automated vertical diffractometer
- Siemens SRS 200 Fluorescence spectrometer + 805 generator
- Stoe, Bragg-Brentano Diffractometer

RIGACU D/MAX-AV automated vertical diffractometer.

UV-VIS:
- Bausch & Lomb Spectronic 2000
- Beckman DU-7
- Hitachi 100-80
- Perkin Elmer Lambda 3B
- Varian 2290

ATOMIC ABSORPTION:
- Instrumentation Labs 457 with D2 and 440 AVA
- Jarrell Ash 951 with D2
- Jarrell Ash 655 Atomizer
- Jarrell Ash EDL Power Supply
- Jarrell Ash Smith-Hieltje Video 12E with 188 Furnace Atomizer and 440 AVA
- Leeman Labs Plasma Spec II simultaneous and sequential
- Perkin Elmer EDL Power Supply
- Perkin Elmer 403
- Perkin Elmer 373 with D2
- Perkin Elmer 560 with D2
- Perkin Elmer 703 with D2
- Perkin Elmer 2380 with printer
- Perkin Elmer 5000 with D2
- Perkin Elmer HGA-400
- Perkin Elmer HGA-500
- Perkin Elmer HGA-2200 furnace
- Perkin Elmer AS-40 Autosampler
- Perkin Elmer AS-50 Autosampler
- Perkin Elmer Data System 10 for AA
- Varian 875 with graphite furnace and computer

DISPERSE JR:
- Beckman Acculab 2
- Perkin Elmer 1330
- Perkin Elmer 297

FT-IR:
- Digilab FTS-15B +10 cm-1 option
- Nicolet 20SX
- Nicolet 20DX

RESONANCE SPECTROMETERS:
- Bruker WM-360 NMR
- Bruker XBP-200 NMR
- JEOL FX-90Q NMR
- Varian CFT-80 NMR
- Varian EM-380L NMR

ELECTRON MICROSCOPES:
- Cambridge 120B SEM
- Hitachi H-800 TEM
- ISI SS-60 SEM + Kevek 8000 II ED
- ISS 100
- JOEL 35C SEM
- Philips 400 STEM with ED

NUCLEAR INSTRUMENTS:
- Beckman 5000 scintillation counter
- Tracor Gamma Trac 1290

THERMAL ANALIZERS:
- Dupont 1090 with 910 OSC

BIOTECHNOLOGY:
- Applied Biosystems (ABI) Protein Sequencer 477A with 120A
- ABI Peptide synthesizer 430A
- ABI Analytical HPLC 150A
- ABI DNA synthesizer 3800-02
- ABI Separation system 130A
- ABI HPLC 151A
- Beckman J2-21M Centrifuge
- FTS Systems freeze-dryer

MISCELLANEOUS:
- A.O. model 820 microtome
- Aminco SPF-500 spectrophotometer
- Best Power 3KVA UPS
- Bicron M92, M95, M86 surveyors
- Blue M deluxe floor oven with Touch-Matic controls
- Hiac Royco 4100 with 3200 sampler
- 346 BCL sensor
- Jarrell Ash Deluxe Varisource
- L & N Microtrack 7995-12
- Technicon InfraAlyzer 400 moisture analyzer
- Perkin Elmer LS-3 spectrophotometer
- Perkin Elmer 240C CHN analyzer
- Reichert Zetopan phase contrast and fluorescence microscope
- Zeiss Photomicroscope III
- Zeiss ICM 405 microscope

Above equipment carries a 90-day warranty
Availability is subject to prior sale.
Sir:

June 15, 1992 (received 6/18/92)

We have recently been investigating the dynamics of deuterated pyridine adsorbed on powders with 2H-NMR. The lineshapes with which we fit our data are generated by averaging the electric field gradient tensor of each deuteron over the path of the motion, e.g. rotations about pyridine's C2v axis. Calculations of this type result in spin-1 powder patterns whose effective asymmetry parameter, \(\eta^* \), depends upon the symmetry of the motion. We have considered low-symmetry, fast motions, such as incomplete rotations or 2-site flips about pyridine's C2v axis, which, in general, yield asymmetric lineshapes (\(\eta^* \neq 0 \)). Wittebort et al.\(^1\) have documented calculations of low-symmetry motions neglecting the inherent asymmetry of the electric field gradient, \(\eta \). For C-D bonds, \(\eta = 0.05 \). Wittebort et al. note general trends in \(\eta^* \) and the averaged quadrupolar coupling constant, \(QCC_{ave} \), as a function of rate of molecular motion; these trends should not be a strong function of \(\eta \). However, in fitting experimental data with calculated lineshapes to extract parameters of fast molecular motion, we have found that neglecting \(\eta \) results in small but significant differences in the extracted \(\eta^* \), \(QCC_{ave} \), and motional parameters.

The effect of \(\eta \) on the calculated lineshape parameters is shown in Figure 1. We have calculated the principle components of the averaged electric field gradient tensor for the \(\alpha \)-deuteron of pyridine undergoing C2v rotations through an angle in the range 0 \(\leq \phi \leq 360^\circ \), for the cases of \(\eta = 0.05 \) and \(\eta = 0 \). The differences between the respective averaged tensor components for the two cases are plotted as a function of \(2\phi \). Clearly, the differences, which are in range 0 - 3kHz, are large enough to influence goodness-of-fit tests in least-squares fitting algorithms. Neglecting \(\eta \) can therefore result in the reporting of inaccurate motional parameters, such as a rotation or flip angle.

Please credit this contribution to Raychem.

Figure 1: Plot of the differences between the three principle components of motionally averaged tensors calculated for \(\eta = 0.05 \) and \(\eta = 0 \).

Sincerely,

Phillip A. Armstrong
Research Associate

Jeffrey A. Reimer
Associate Professor
June 11, 1992

We have been working with different kinds of t- amines particularly cis-vicinal t-diamines as potential ligands for lithium and unaccountably, brain receptors. The salts A and B and amine C exhibit interesting dynamic behavior. At 200K, 1C NMR of N(CH$_3$)$_3$ in A and B in acetone-d_6 shows up as a 1:1:1 triplet (unequally spaced) with N(CH$_3$)$_2$ as an equal doublet. This doublet also appears in the carbon spectrum of C. With increasing temperature, the two NCH$_3$ multiplets in A and B each signal average to single lines at their respective centers. Clearly, the changes in the N13CH$_3$ resonance come from different rotation rates about the CH-N(CH$_3$)$_3$ bond while the N(CH$_3$)$_2$ resonance behavior is due to the rate of inversion at nitrogen with rotation around the C-N(CH$_3$)$_2$ bond. The latter effect also appears in the C13C NMR of C. Activation parameters for nitrogen inversion in A, B, and C are respectively $\Delta H'$ (kcal/mol) of 16.7, 14.3, and 13.5 with $\Delta S'$ (eu) of 10.4, 3.5, and 9.7. These $\Delta H'$ values are somewhat high for inversion, perhaps due to the crowded nature of these species. Much faster is rotation about CH-N(CH$_3$)$_3$, where for A and B we find $\Delta H'$ (kcal/mol) of, respectively, 4.7 and 3.8 with $\Delta S'$ (eu) of -23.9 and -28.2. Rotation about the C-N$^+$ bond must be accompanied by an increase in solvation of the ion-pair in acetone-d_6. Perhaps in the transition state the two ions are further apart, hence requiring more solvation. Comments from interested readers are welcomed. Notice the bitnet address for easy cost-free communication. You never put out a list of our E-mail addresses. Do you accept contributions via bitnet?

I trust this finds you thriving and keeps the dreaded pink note from our mail box.

My entire group sends their very best regards.

Yours sincerely,

Gideon Fraenkel
Professor of Chemistry

Sharon Boyd
Associate

GFjlp
FELIX FOR WINDOWS is a general purpose program for processing one-dimensional NMR data off-line on any IBM compatible personal computer that supports the Microsoft Windows graphical environment version 3.1 or higher. **FELIX FOR WINDOWS** features a comprehensive set of 1D data processing, display and analysis tools, providing an easy and effective route from acquired NMR data to final spectral presentation, whether it be an in-house research report, a technical article or slides. Along with powerful tools for processing data with virtually unlimited data size and real-time on-screen phasing, the program provides direct export of both text and graphics output to your favorite Windows illustration software, word processor or desktop publishing system.

GENERAL

- **FELIX FOR WINDOWS** uses the popular Microsoft Windows environment, providing pull-down menus, dialog boxes, scroll bars and multiple document interfaces. You can work with several spectra simultaneously: popping, pushing and re-sizing each spectrum in its own window.

- **FELIX FOR WINDOWS** works on any IBM compatible computer with any graphics adapter, pointing device, printer or plotter supported by Microsoft Windows. This means that all of your current hardware will work automatically and will be fully utilized. Hardcopy graphics output of spectra to a variety of different devices from many different manufacturers is supported, including output from Epson FX-80 to color PostScript printers, and from A-size to E-size plotters.

- **FELIX FOR WINDOWS** can process data containing up to 1,048,576 points; with 286-based processors the data size is limited only by the memory size of your computer, while on 386- and 486-based processors it is practically unlimited.

- **FELIX FOR WINDOWS** can directly import data acquired on most spectrometers without requiring additional stand-alone conversion software. These data filters are supplied separately.

By combining the data processing, display and analysis utilities offered in **FELIX FOR WINDOWS** with other Microsoft Windows applications, research reports containing your spectra can be easily and efficiently prepared.
Processing
- Correct FID's to remove DC offset and zero fill to enhance digital resolution.
- Gaussian and exponential multiplication windows with adjustable line broadening.
- Automatically determine parameters for matched exponential or Gaussian filters directly by analysis of the time domain data.
- Fast Fourier transforms of real, complex-quadrature and TPPI data.
- Interactive real-time phasing featuring mouse-controlled scroll bars for zero- and first-order phase parameters and an adjustable pivot point.
- Baseline correction with automatic or manual selection of baseline points and a polynomial fitting algorithm of up to 20th order.

Analysis
- Click-and-drag mouse action for selection of integral segments.
- Interactive normalization of integral values.
- Neatly formatted text presentation of integral lists and options for displaying integral values over the spectrum.
- Set peak-picking threshold with a single mouse-click.
- Determine resonance peak positions using maximum intensity of either the actual data or modeled spectral curve extremes.
- Present peak-picking lists in a text format or display them on the spectrum.
- Automatic line width measurements for one-dimensional resonances.

Display
- Instantly select and expand spectral regions using a simple mouse click-and-drag action. Expanded regions can be displayed or moved to a new window, leaving the current window unchanged. Quickly return to a full spectrum with a single mouse click.
- Scroll back and forth through the spectrum and increase and decrease vertical scale in real-time using scroll bars. Vary the spectral expansion and contraction as well as the vertical position of the spectrum smoothly and easily using mouse-driven button controls.
- Scrollable axis in units of points, seconds, Hertz or ppm with adjustable vertical position that can be turned on and off.
- Spectra can be displayed using either discrete points or a continuous vector display.
- Scrollable integrals with adjustable scale and vertical placement.
- Optional screen elements such as ribbon and information bars can by displayed or hidden.
- Full window crosshairs or conventional mouse cursor.
- User defined coloring of spectral data, integrals, axes and cursors.

Other Features
- Directly export text and full resolution graphics to other Windows applications (whether it's illustration, word processor or desktop publishing software) using clipboards and without intermediate disk files.
- FID simulation with control of amplitude, peak-position/chemical shift and relaxation parameters.
- Program configuration may be saved to disk, providing continuity between data processing and analysis sessions.
- A combined function oriented and object oriented user interface: you may first select a spectral region and then expand it, or alternatively, first activate the expansion function and then define the desired spectral region.
- Adheres to the Windows Multiple Document Interface standard as several spectra can be simultaneously displayed on the screen, each in its own window, and these spectral windows can be arranged in cascade or tiled style or minimized to icons. Single spectra can also be displayed in multiple windows.

18943 120th Avenue NE, Suite 104 / Bothell, Washington 98011 USA / Phone: (206)487-9301 / FAX: (206)487-9304

Copyright ©1992 Hare Research Incorporated. Microsoft is a registered trademark and Windows and Word for Windows are trademarks of Microsoft Corporation. IBM is a registered trademark of International Business Machines. Epson is a trademark of Epson-Seiko. PostScript is a registered trademark of Adobe Systems.
Dear Barry:

INADEQUATE or what?

When I was a graduate student, working with Ray Freeman and members of his group, including Stewart Kempseil, David Max, Malcolm Levitt, Tom Frenkiel and Gareth Morris, we were very excited about the development of the INADEQUATE experiment, which permitted us to measure long-range carbon-carbon couplings in natural abundance samples. Unfortunately, this application of the INADEQUATE experiment was overshadowed by its more mundane use for making 13C resonance assignments. I also must admit that measuring these long range couplings with INADEQUATE was always a painstaking experience. Even at that time we were not optimistic about measuring $^{3}J_{CC}$ couplings much smaller than ~ 1 Hz. However, the idea never died completely: whenever I ran into some of my old colleagues we spent endless hours discussing the prospects and possible uses of such experiments.

More recently, the possibility of applying such experiments to 13C-enriched proteins revived the idea. The main problems in the application to uniformly (>95%) 13C-enriched proteins are the large natural line widths of 13C in proteins, the very complex structure of the 13C multiplet, and its relatively low sensitivity. After many more endless discussions we (my two colleagues wish to remain nameless, for the time being) found a solution to these problems. The details go too far for this short letter, but the bottom line is as follows: Forget about anything else but methyl carbons and use their strongly non-exponential T_2 relaxation to fish out the narrow component of its line shape; use 2D or 3D NMR to remove the overlap and use 1H detection to enhance the sensitivity. More details will soon appear in JACS.

To make a long story short, the experiment works fine, and a small region of the spectrum from which the J values were measured is shown in Figure 1. A total of well over 100 J couplings were measured in an overnight experiment for the protein calmodulin, complexed with a 26-residue peptide. Note that the molecular weight of this complex is ~ 20 kDa, with C_α natural line widths of ~ 15 Hz ($T_2 \sim 20$ ms). Measured J couplings range from 0.7 Hz to 3.6 Hz and show the expected gauche (~ 1 Hz) trans (~ 3.1 Hz) difference for the J coupling. Consequently, for protein jocks these couplings contain very valuable information. For example, the $^{3}J_{CC}$ coupling between C_0 and C_α in isoleucine residues specifies the dihedral angle χ_2, which can be difficult to determine unambiguously by other methods. It also allows us to make stereospecific assignment of C_5 methyl groups in leucine and valine residues, and to measure χ_2 in leucines.

For proteins larger than ~ 10 kDa, the method is restricted to couplings involving at least one...
methyl carbon or carbons of residues with substantial internal mobility. However, for small 13C-enriched proteins with narrower 13C line widths, 13C-13C long range couplings involving non-mobile non-methyl carbons are also accessible.

Kindest regards,

Ad Bax N.N. N.N.

Figure 1. Small region of the 1H-detected 13C-13C shift correlation spectrum of the calmodulin-peptide complex, showing the cross peaks between methyl and C$_\alpha$ resonances. The intensity of these correlations is related in a straightforward manner to the size of the long range coupling.
Gradient Techniques for Large Proteins

Inverse detected $^{15}\text{N}-^{1}\text{H}$ NMR techniques in conjunction with ^{15}N labelling have proved to be an invaluable tool for assigning the ^{1}H resonances of proteins in solutions. However, the solvent saturation used in the phase cycled versions of these experiments often results in a decreased peak intensity due to exchange processes. Gradient selection of multiple quantum pathways eliminates the water signal and provides an attractive alternative to traditional phase cycled methods for the following reasons:

♦ **Superior Water Suppression** – Single quantum peaks such as the water resonance are eliminated while correlations which occur at the frequency of the solvent resonance are routinely observed. The undesirable effects of traditional presaturation are also avoided.

♦ **Fewer Artifacts** – Gradient selection conveniently avoids the t_1 noise and cancellation artifacts commonly found in phase cycled experiments.

♦ **Greater Sensitivity** – Since the suppression of undesired signals occurs prior to acquisition the receiver gain may be increased.

A phase sensitive GE-HMQC spectrum of a ^{15}N enriched protein of approximately 27 kDa (0.1 mM in 90% H$_2$O). The data were collected on an Omega 600 system equipped with the S–17 Gradient Enhanced Spectroscopy accessory using a 5 mm inverse probe. The S–17 GES accessory is a three-axis actively shielded gradient set. This spectrum demonstrates that gradient techniques can be successfully applied to relatively large proteins in dilute solution.

GE NMR Instruments
JEOL's gradient probe is tuned to observe 1H with 15N to 31P decoupling and is designed to be used for reverse detection experiments. The above data were collected on an ALPHA 500 with the pulsed field gradient accessory. The sample is stachyose in 90% H$_2$O. By comparing the 1D spectrum plotted at the top with the 2D data, one can see the magnitude of the water suppression afforded by the gradient probe. It is also worthwhile to note that each slice was obtained in one scan and that the double quantum filtering was accomplished with the gradients. This 512 by 512 matrix was obtained in approximately ten minutes.

If you would like to get more information about JEOL's ALPHA, please contact us at one of our offices listed below.

ALPHA FIRST IN PERFORMANCE, FIRST IN TECHNOLOGY