Relative Sign Determination of AMX Couplings by 2D A-X (A-M or M-X) Heteronuclear Shift Correlation

Spectroscopy ... Hasha, D. L. 5

13C NMR of Aqueous Microemulsions Cook, I., and Leary, B. 9

Field Corrections for Finite Sample Size Seydoux, R., and Diehl, P. 13

NATO Advanced Study Institute; National Center for NMR Applications; DNP of C_{60} and Diamond Films

Phosphorylated Adenine ... Berlin, K. D. 18

Queen Mary's Images: Nitrogen and Soil Water Randall, E. W. 21

Position Available .. Williamson, K., and Browne, S. 22

Position Available .. Hwang, L.-P. 22

Initial Results with Pulsed Field Gradients Emerson, S. D., Montelione, G. T., and Saarinen, T. 25

3D NMR Microscopy ... Kapadia, R. D., and Sarkar, S. K. 29

Differential Chemical Shifts in the 13C NMR Spectra of Aminophosphines Turnbull, M. M. 30

Increase in the ATP Signal After Treatment with Cisplatin in Two Different Cell Lines Studied by 31P NMR

Ruiz-Cabello, J. O., and Cohen, J. S. 35

Book Review ... Smith, W. B. 36

Using 35Cl NMR Null Point Experiments to Characterize the Binding of Chloride Ions to Human Serum Albumin

Hwang, L.-P., Price, W. S., Ge, N.-H., and Hong, L.-Z. 40

A monthly collection of informal private letters from Laboratories of NMR. Information contained herein is solely for the use of the reader. Quotation is not permitted, except by direct arrangement with the author of the letter, and the material quoted must be referred to as a "Private Communication". Reference to the TAMU NMR Newsletter by name in the open literature is strictly forbidden.

These restrictions apply equally to both the actual Newsletter participant-recipients and to all others who are allowed open access to the Newsletter issues. Strict adherence to this policy is considered essential to the successful continuation of the Newsletter as an informal medium of exchange of NMR information.
TABLE 1 DEUTERATED SOLVENTS

<table>
<thead>
<tr>
<th>Cat. No.</th>
<th>Formula</th>
<th>Min. (%)</th>
<th>Max. (%)</th>
<th>Solid (%)</th>
<th>mp (°C)</th>
<th>bp (°C)</th>
<th>-CH₂°CH₂ (°C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>D-11</td>
<td>D₂O</td>
<td>100</td>
<td>100</td>
<td>0</td>
<td>138</td>
<td>165</td>
<td>0.551 (32)</td>
</tr>
<tr>
<td>D-120</td>
<td>D₂O</td>
<td>100</td>
<td>100</td>
<td>0</td>
<td>138</td>
<td>165</td>
<td>0.460 (20)</td>
</tr>
<tr>
<td>D-13</td>
<td>D₂O</td>
<td>100</td>
<td>100</td>
<td>0</td>
<td>138</td>
<td>165</td>
<td>0.460 (20)</td>
</tr>
<tr>
<td>D-130</td>
<td>D₂O</td>
<td>100</td>
<td>100</td>
<td>0</td>
<td>138</td>
<td>165</td>
<td>0.460 (20)</td>
</tr>
<tr>
<td>D-28</td>
<td>D₂O</td>
<td>100</td>
<td>100</td>
<td>0</td>
<td>138</td>
<td>165</td>
<td>0.460 (20)</td>
</tr>
</tbody>
</table>

Cost-conscious quality NMR solvents offered by Wilmad, such as CDCl₃, are frequently priced lower than more traditional sources. Included in this offering are the most common solvents, like Acetone-d₆, Benzene-d₆, D₂O, and DMSO-d₆, as well as some of the most unusual solvents for specialty applications, like 1,1,2,2-
Tetrachloroethene-d₂, Octane-d₈, and Trifluoroacetic Acid-d₆.

VARIAN
BOX/500 SHEETS

<table>
<thead>
<tr>
<th>Cat. No.</th>
<th>Size</th>
<th>Instrument Model</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>WCV-100 (S-100)</td>
<td>1" X 26"</td>
<td>CFT-20, FT-80, FT-80A</td>
<td>Gridded-Two Color</td>
</tr>
<tr>
<td>WCV-60 (R-60)</td>
<td>1" X 26"</td>
<td>CFT-20, FT-80, FT-80A</td>
<td>Gridded-Two Color</td>
</tr>
<tr>
<td>WCV-CLF (T)</td>
<td>1" X 26"</td>
<td>CFT-20, FT-80, FT-80A</td>
<td>Gridded-Two Color</td>
</tr>
<tr>
<td>WCV-YXL (R)</td>
<td>1" X 26"</td>
<td>CFT-20, FT-80, FT-80A</td>
<td>Gridded-Two Color</td>
</tr>
</tbody>
</table>

We provide the largest variety of paper and pens for NMR recorders or plotters available anywhere. Included in these listing are the newest spectrometers from Varian, Bruker, (and IBM), General Electric and JEOL, as well as the latest models, such as the Hewlett Packard 7475A, 7550A, and Thinkjet 2225A, Zeta 8 or 8A, and Western Graphic 4730 plotters and printers.

Searching for the Unusual Requirement?
WILMAD HAS YOUR ANSWER!

The most comprehensive offering of “widgets, gadgets and specials” for NMR spectroscopy, including:

- Spatula for 5mm NMR Tubes
- Three types of Valve NMR Tubes (including the new J. Young Valve Tube)
- Solvent Jet NMR Tube Cleaners
- pH Electrode for 5mm NMR Tubes
- Taperlok ® NMR Tubes
- A multitude of Coaxial Inserts
- Alumina NMR Tube for Si-29 Studies
- Ultra-thin wall NMR Tubes
- Throwaway “THRIFT” and “ECONOMY” NMR Tubes

Serving the Spectroscopic Aftermarket

WILMAD GLASS COMPANY
Route 40 and Oak Road • Buena, NJ 08310 U.S.A.
609-697-3000 • TWX 510-687-8911
FAX 609-697-0536
TEXAS A&M NMR NEWSLETTER NO. 403, APRIL 1992

AUTHOR INDEX

Berlin, K. D. 18
Broome, S. 22
Cohen, J. S. 35
Cook, L. 9
Diehl, P. 13
Emerson, V. D. 25
Ge, N.-H. 40
Hasha, D. L. 5
Hong, L.-Z. 40
Kapadia, R. D. 29
Leary, B. 9
Maciel, G. E. 17
Mennelone, G. T. 25
Price, W. S. 40
Raul-Ceballos, J. O. 25
Saarinen, T. 25
Sarkar, S. K. 29
Seydoux, R. 13
Smith, W. B. 36
Turnbull, M. M. 39
Williams, K. 22

TEXAS A&M NMR NEWSLETTER NO. 403, APRIL 1992 ADVERTISER INDEX

American Microwave Technology, Inc. 3
Bio-Rad, Sadler Division 11
Bruker Instruments, Inc. 19
Chemagnetics, Inc. 15
Doty Scientific, Inc. 37
GE NMR Instruments 25
international Equipment Trading, Ltd. 37
JEOL.... 1

SPONSORS OF THE TAMU NMR NEWSLETTER

Abbott Laboratories
Analogic Corporation
ATI Instruments
Brucker Instruments, Inc.
Brueroughs Wellcome Co.
Cryomagnet Systems, Inc.
The Dow Company
The DuPont Merck Pharmaceutical Company
Eastman Kodak Company
E. I. du Pont de Nemours & Company
GE NMR Instruments
JEOL (U.S.A.) Inc., Analytical Instruments Division
The Lilly Research Laboratories, Eli Lilly & Company
Millipore Corporation, Waters Chromatography Division
The Monsanto Company
New Methods Research, Inc.
Norelco, Inc.
Onteka Electronics/Chemagnetics
Oxford Instruments
Petroleum Recovery Institute
The Procter & Gamble Company, Miami Valley Labs
Programmed Test Sources, Inc.
Shell Development Company
Tecmag
Unilever Research
Varian
Union Carbide Corporation
Varian, Analytical Instrument Division

FORTHCOMING NMR MEETINGS

Third Annual Workshop on Magnetic Resonance Microscopy and Materials Imaging, Charlestown (Boston), Mass., May 11-12, 1992; Contact: NMR Center at (617) 726-5811; fax (617) 726-5819; or email J. L. Arterman at jerry@nmr-cmg.harvard.edu, or L. Garzito at garzito@nmr-cmg.harvard.edu. See Newsletter 402, 74.

Sixth Washington University-ENI/Emerson Electric Co. Symposium on NMR, St. Louis, Missouri, May 18, 1992; Contact: Karen Klein, Wash. Univ.; (314) 933-6405. See Newsletter 402, 46.

Gordon Research Conference: Magnetic Resonance in Biology and Medicine, Tilton, NH, July 13-17, 1992; Contact: Dr. A. M. Cruickshank, Gordon Research Center, University of Rhode Island, Kingston, RI 02881-6801; (401) 783-4011/372; FAX: (401) 783-7644.

ISMAR 92 (The Xth Meeting of the International Society for Magnetic Resonance), Vancouver, B.C., Canada, July 19 - 24, 1992; Chairman: C. Pyke. Contact: ISMAR 92, Dept. of Chemistry, University of British Columbia, Vancouver, BC, Canada V6T 1Z1. Tel: (604) 822-2293; FAX: (604) 822-2847; EMAIL: ismar@alpin.nbi.ubc.ca; BITNET: ismar@ubcnet.bitnet.

Science Innovation '92, New Techniques and Instruments in Biomedical Research (sponsored by the AAAS), San Francisco, July 21-25, 1992; Workshops on biomedical imaging, chemical and structural NMR; Plenary session on NMR on Fri., July 24. Contact: Science Innovation '92, P.O. Box 635285, Baltimore, MD 21263; fax (202) 289-4021.

5th Rocky Mountain Conference on Analytical Chemistry, Denver, Colorado, August 8-14, 1992; Contact: M. C. Gerding, P.O. Box 250145 MS 42, Lakewood, CO 80225; (303)526-4728.

Eleventh Annual Scientific Meeting and Exhibition, Society of Magnetic Resonance in Medicine, Berlin, Germany, August 8-14, 1992; Contact: S.M.R.M., 1918 University Ave., Suite 3C, Berkeley, CA 94704; (415) 841-1899, FAX: (415) 841-2340.

XV International Conference on Magnetic Resonance in Biological Systems, Jerusalem, Israel, August 16 - 21, 1992; Contact: Prof. Gil Navon, XV ICMBRS, F.O. Box 20006, Tel Aviv 61590, Israel; Tel: (972-3) 5174371, Fax: (972-3) 6557546452.

Additional listings of meetings, etc., are invited.
The Newsletter's fiscal viability depends very heavily on the funds provided by our Advertisers and Sponsors. Please do whatever you can to let them know that their support is noted and appreciated.

Mailing Label Adornment: Is Your Dot Red?
If the mailing label on your envelope of this issue is adorned with a large red dot or circle: this decoration means that you will not be mailed any more issues until a technical contribution has been received by me.

Page Length Instruction
Attention overseas subscribers: If you must use paper which is longer that 11", please take care that all material (including signatures, addresses - everything!) ends no more than 10" from the top of each of your pages. It is costly to make reductions, and henceforth I reserve the right to chop the excess length off any page, no matter what the result. Beware of the dreaded guillotine! Your cooperation in this matter will be greatly appreciated.

All Newsletter Correspondence
Should Be Addressed To:
Dr. Bernard L. Shapiro
TAMU NMR Newsletter
966 Elsinore Court
Palo Alto, CA 94303, U.S.A.
(415) 493-5971

DEADLINE DATES
No. 405 (June)---------- 22 May 1992
No. 406 (July)---------- 19 June 1992
No. 407 (August)------- 24 July 1992
No. 408 (September)--- 21 August 1992
Instant Upgrade of RF Amplifier Performance in Your NMR/MRI System

Install an AMT 3000 Series solid-state pulse power amplifier—6-500MHz at up to 1000 W—into your system. Instant upgrade!

Here's just one example: AMT's RF power envelope detection system guarantees full protection. That means you can operate at low-level CW with full-power peaks on demand.

Pre-saturation water suppression? Cross polarization in solids? No problem—now!

Additional Key Features:
- Broadband Frequency Ranges—6-220MHz, 200-500MHz
- Key Power for Liquids & Solids—50, 150, 300, 1000 Watts
- Excellent Linearity—±1.0dB
- Low Pulse Droop—typically less than 5%
- Fast Low Noise Blanking—within 20dB of KTB in 1 µs

For full information call your NMR/MRI system manufacturer or contact Lowell Beezley at AMT:
PH (714) 993-0802
FAX (714) 993-1619

Models Available:

<table>
<thead>
<tr>
<th>Model</th>
<th>Frequency Range</th>
<th>Power</th>
</tr>
</thead>
<tbody>
<tr>
<td>3205</td>
<td>6-220MHz</td>
<td>300W</td>
</tr>
<tr>
<td>3200</td>
<td>6-220MHz</td>
<td>1000W</td>
</tr>
<tr>
<td>3137</td>
<td>200-500MHz</td>
<td>50W</td>
</tr>
<tr>
<td>3135</td>
<td>200-500MHz</td>
<td>150W</td>
</tr>
<tr>
<td>3134A</td>
<td>200-500MHz</td>
<td>300W</td>
</tr>
</tbody>
</table>
Electrical Specifications:

<table>
<thead>
<tr>
<th>Models</th>
<th>3200</th>
<th>3205A</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frequency range</td>
<td>6 - 220 MHz</td>
<td>6 - 220 MHz</td>
</tr>
<tr>
<td>Pulse power (min.) into 50 ohms</td>
<td>1000 W</td>
<td>300 W</td>
</tr>
<tr>
<td>CW power (max.) into 50 ohms</td>
<td>100 W</td>
<td>30 W</td>
</tr>
<tr>
<td>Linearity (±1dB to 200MHz) (to 220MHz)</td>
<td>0-800 W</td>
<td>0-250 W</td>
</tr>
<tr>
<td>Gain (typ.)</td>
<td>65 dB</td>
<td>60 dB</td>
</tr>
<tr>
<td>Gain flatness</td>
<td>±4 dB</td>
<td>±3 dB</td>
</tr>
<tr>
<td>Input/Output impedance</td>
<td>50 ohms</td>
<td>50 ohms</td>
</tr>
<tr>
<td>Input VSWR</td>
<td>< 2:1</td>
<td>< 2:1</td>
</tr>
<tr>
<td>Pulse width</td>
<td>20 ms</td>
<td>20 ms</td>
</tr>
<tr>
<td>Duty cycle</td>
<td>Up to 10%</td>
<td>Up to 10%</td>
</tr>
<tr>
<td>Amplitude rise/fall time</td>
<td>200 ns typ. 150 ns typ.</td>
<td></td>
</tr>
<tr>
<td>Amplitude droop</td>
<td>5% to 10 ms typ; 7% max</td>
<td></td>
</tr>
<tr>
<td>Phase change/power output</td>
<td>10° to rated power, typ.</td>
<td></td>
</tr>
<tr>
<td>Phase error overpulse</td>
<td>4° to 10 ms duration, typ.</td>
<td></td>
</tr>
<tr>
<td>Noise figure</td>
<td>11 dB typ. 8 dB typ.</td>
<td></td>
</tr>
<tr>
<td>Output noise (blanked)</td>
<td>< 20 dB over thermal</td>
<td></td>
</tr>
<tr>
<td>Blanking delay</td>
<td>< 2 µs on/off, TTL signal</td>
<td></td>
</tr>
<tr>
<td>Protection</td>
<td>1. VSWR: infinite VSWR at rated power</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2. Input overdrive: up to +10 dBm</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3. Over duty cycle/pulse width</td>
<td></td>
</tr>
<tr>
<td></td>
<td>4. Over temperature</td>
<td></td>
</tr>
</tbody>
</table>

Supplemental Characteristics:

Connectors, rear panel
1. RF input: BNC (F)
2. RF output: Type N (F)
3. Noise blanking: BNC (F)
4. Interface: 25 pin D (F), EMI filtered

Indicators, front panel
1. Peak power meter
2. Over temperature
3. Over duty cycle/pulse width
4. Overdrive
5. CW Mode

System monitors
1. Thermal fault
2. DC power supply fault
3. Over duty cycle/pulse width
4. Forward/Reflected RF power

Front panel controls
1. AC power
2. Pulse width
3. Duty cycle

Cooling
Internal forced air

Operating temperature
-10 to 40°C

AC line voltage
120/240 VAC, ±10%, 50-60Hz
(3200, 220/240V only)

AC power requirements
2000 watts 700 watts

Package
Rack mount

Size (HWD, inches)
12.25x19x24 5.25x19x24

Net weight
165 lbs 42 lbs
For the three spin AMX system the relative signs of all the couplings can be determined by any combination of two 2D heteronuclear shift correlation (HETCOR) experiments. In the A-X HETCOR spectrum a doublet is observed, resulting from the passive coupling with spin X. The resonances of this doublet are located at \(\omega_a \pm \gamma J_{ax} \) and \(\omega_a \pm \gamma J_{ax} \). If a line is drawn between the two resonances and the slope of the resulting line is positive then \(J_{ax} \) and \(J_{ax} \) have like signs. A negative slope would arise from unlike signs of \(J_{ax} \) and \(J_{ax} \). However, this is only true if \(\gamma_a \) and \(\gamma_a \) have like signs! It is easily shown that when the signs of \(\gamma_a \) and \(\gamma_a \) are opposite the frequencies of the resonances in the A-X HETCOR spectrum are \(\omega_a \pm \gamma J_{ax} \) and \(\omega_a \pm \gamma J_{ax} \). In this case the dependence of the slope of the line connecting the two peaks is reversed; i.e., negative slope for like signs of \(J_{ax} \) and \(J_{ax} \) and positive slope for unlike signs. An example of this reversal is provided by the \(^{29}\text{Si}-^1\text{H} \) HETCOR spectrum of TMS, \((\gamma_a<0)\). In the \(^{29}\text{Si}-^1\text{H} \) correlation map, see Figure 1, an intense singlet and two weak doublets are observed. The singlet is due to TMS molecules void of \(^{13}\text{C} \) nuclei, while the two doublets arise from TMS containing one \(^{13}\text{C} \) nucleus,

\[
\begin{array}{c}
\text{(H,}^{13}\text{C}) , \quad ^{29}\text{Si} - ^{1}\text{CH}_3 \\
\text{A} , \text{X} , \text{M} , \text{B}
\end{array}
\]

Although the above molecule is a \(\text{A}_2\text{B}_2\text{MX} \) spin system it can be treated as two separate AMX spin systems; \(\Delta \nu_{sa} = 59\text{Hz} \), \(J_{sa} = 0.2\text{Hz} \). The lines connecting the resonances of each doublet exhibit a positive slope which is consistent with \(J_{sa} \) having the opposite sign compared to \(J_{sa} \) and \(J_{sa} \). Since it is generally excepted that \(J_{sa} \) is positive (+118.4Hz), then \(J_{sa} = -50.9\text{Hz} \) and \(J_{sa} = +2.0\text{Hz} \). For completeness, the \(^{13}\text{C}-^1\text{H} \) HETCOR experiment was also conducted, see Figure 2. In this instance both \(\gamma_a \) are positive; therefore, the observed negative slope of the line drawn between the doublet resonances is due to \(J_{sa} \) and \(J_{sa} \) having unlike signs, i.e. \(J_{sa} = +6.5\text{Hz} \). The magnitude as well as the signs of the couplings obtained are in agreement with the results of double resonance experiments [1].

It should be noted that the slope of the line connecting the doublet resonances in the A-X HETCOR spectrum is independent of the sign of \(\gamma_{ax} \) and \(J_{ax} \). Further analysis of the AMX spin system reveals that the 64 possible sign combinations of \(\gamma \) and \(J \) produce only 4 different slope combinations for the three 2D HETCOR spectra (3 of the slope combinations are related by symmetry; i.e. interchanging of the spin labels \(A, M \) and \(X \)). These slope combinations show that if two of the 2D HETCOR spectra have been measured then the slope of the third 2D HETCOR spectrum can be easily deduced.

Dennis L. Hasha

Figure 1. 2D $^{29}\text{Si}^\text{1H}$ HETCOR via INEPT of 40mole% TMS solution based on the long-range coupling $J_{\text{ax}} = 6.5\text{Hz}$, $r=D5=1/(4J)$ and $\Delta/2=D6=0.047/J$. 64 data points in ω_1 dimension, 128 scans with 1s repetition time. Squared sine-bell in both ω_1 and ω_2 with phase shift equal to $\pi/12$.

Figure 2. 2D $^{13}\text{C}^\text{1H}$ HETCOR via INEPT of 40mole% TMS solution based on $J_{\text{ax}} = 118.4\text{Hz}$, $r=D5=1/(4J)$ and $\Delta/2=D6=0.098/J$. 128 data points in the ω_1 dimension, 16 scans with 1s repetition time. Squared sine-bell apodization in ω_1 and ω_2 with phase shift equal to $\pi/12$.
Structure Elucidation

CSEARCH

Offers identical presentation on Sun, Silicon Graphics, or VMS
Reads ^{13}C NMR peak tables directly
Confirms calculated with measured spectrum
Finds structurally related compounds by spectral matching
Calculates spectra for compounds not in the database

Comparison of the calculated spectrum of a proposed structure with its measured spectrum. The intelligence of CSEARCH is demonstrated by favorable comparison for a structure not contained within the database of 52,000 spectra.

Sun is a trademark of Sun Microsystems, Inc. VMS is a trademark of Digital Equipment Corporation. Silicon Graphics is a trademark of Silicon Graphics, Inc.
Those with the BEST INFORMATION WIN

Software and Databases for Personal Computers

Sadtler Division Main Office, 3316 Spring Garden Street, Philadelphia, Pennsylvania 19104.
Dear Dr. Shapiro,

As part of a larger research project on the polymerization of microemulsions, some aspects of the carbon-13 NMR spectra of aqueous methyl methacrylate/butyl acrylate/nonionic surfactant (MMA/BA/S) macro- and microemulsions were examined. These were of particular interest to us from a mechanistic point of view because a coarse macroemulsion (particle size >250nm) could be free radically polymerized to a microemulsion (size 50nm) without high shear. The question arose as to whether there was a microemulsion phase present in the coarse emulsion, or whether the polymerized microparticles arose spontaneously from the particular mix of chemicals present as a result of free radical polymerization mechanisms.

A monomer-to-surfactant (M:S) ratio 5:1 coarse emulsion initially gives a fairly broad line 13C spectrum (ω~20Hz). As the emulsion breaks, the clear lower phase gives a narrow line spectrum (ω~2Hz) with the cloudy upper phase giving a very similar spectrum to the entire emulsion. The narrow line spectrum of the lower phase is typical of a microemulsion spectrum, and contains about 20% of the original monomer. Fig.1 shows this in an overlay of all 3 spectra (alkene region). Note the chemical shift differences observed for the microemulsion.

The growth of the microemulsion phase can also be followed by a time course examination of the 'window' of emulsion within the receiver coil. Fig.2 shows the change from a broad to a narrow line spectrum over 1.5h for a M:S 5:1 case (40% solids).

For low M:S ratios (eg 2:1), both narrow and broad line peaks are observed in a one-phase system, indicating the coexistence of micro- and macroemulsion in slow equilibrium on the NMR timescale.

Evidence such as this seems to indicate that for high monomer:surfactant ratios, little if any microemulsion phase exists in the sheared emulsion, and that the polymerization mechanism acts by the free radicals nucleating particle growth outside the large monomer droplets and subsequently restricting growth to approx. 50nm, whilst using the larger droplets as monomer reservoirs.

Please credit this contribution to Ian D Rae's account.

Yours sincerely,

Iain Cook

Bruce Leary (Dulux Australia Pty Ltd)
FIG. 1 Overlay of 13C alkene peaks of MMA and BA for an intact 5:1 M:S ratio macroemulsion and the top and bottom layers of the broken emulsion 24h after shearing had ceased.

FIG. 2 Growth of sharp microemulsion peaks and concurrent loss of broad macroemulsion peaks during the breaking of a 5:1 emulsion.
You might think that because of its incredible flexibility, clean rf and exceptional sensitivity, the ARX™ would serve superbly as a high-resolution NMR research tool. And you'd be absolutely right. Even without having seen its triple resonance or 3-D capabilities, its ultra-precise rf control (in 0.001 Hz and 0.05° steps!), gradient spectroscopy or standard inverse and pulse shaping features.

You might think that with its elegant design simplicity, liquids and solids sample changers, barcode automation, exceptional ease of operation, plus its high reliability and superior throughput, the ARX™ is a new pacesetter for ease-of-use and automated NMR applications. Right again. Especially when you consider its powerful UXNMR software, easy pulse programming language and pulse shape generator, automated parameter optimization, and its new intuitive, yet powerful icon/mouse/menu operation.

Are we saying the ARX™ was designed for exceptionally easy-to-use, highly automated and highly flexible research NMR? Indeed we are, and we suggest quite simply that you challenge the ARX™ to a demonstration. You’ll see why the answer is: "Run it on the ARX™... it's for Automated Research Xcellence.”

Contact your local Bruker representative for more information or to arrange a demonstration.

Bruker Instruments, Inc.
Manning Park, Billerica, MA 01821
In Europe: Bruker Analytische Messtechnik GmbH, Silberstreifen, D-7512 Rheinstetten 4, Germany
Dear Barry,

Lately we studied gas-to-solution shifts of 3He dissolved in various liquid solvents. If the gas and solvent samples are prepared with equal glass containers, then the following relation holds

$$
\delta_{sol} - \delta_{gas} = -\sigma_m + \left(\frac{4\pi}{3} + g \right) \chi_{sol}
$$

where σ_m is an extrapolated value for zero pressure and σ_m is the medium shift. g is equal to 0 for an infinitely long cylindrical solvent column, that lies parallel to the field. For a finite geometry g is different from 0, but usually not very important in the determination of σ_m, unless we deal with shifts of light atoms such as protons or 3He, for which the finite size correction $g \cdot \chi_{sol}$ can be about 20% of the medium shifts. For our nonspinning samples g was then calculated for a geometry of a cylinder rounded off at the bottom as is shown in Fig.1. This was done first order in the solvent susceptibility, which has the advantage that one can avoid the solution of the Laplace-equation for magnetostatics. Simple integrations over magnetic charges at the poles of the cylinder are sufficient to obtain the additional magnetic field. Only its z component gives a first order correction to $\delta = g \chi_{sol}$. As that component doesn't vary much in the xy-plane (for usual h/d-ratios), we present here the correction for the cylinder axis:

$$
g(\zeta) = 2\pi \left(\frac{(2 + x)(1 - \zeta)}{\sqrt{(2 + x)^2 + x^2}} + \frac{\sqrt{((2 + x)\zeta - x)^2 + x^2}}{3 ((2 + x)\zeta - x)^3} \right)
$$

where we introduced $\zeta = z/h$ and $x = d/(h - d/2)$. The x dependence of g is shown in Fig.1 for various x values (in the direction of the doubledlined arrow they are: 1/20, 1/15, 1/10, 1/8, 1/6 and 1/5). To avoid nasty asymmetric and broadened lines when one works at a constant shim, as it is necessary for measurements of gas-to-solution shifts, x should be less than 1/10 and the coil should be placed between 0.4 and 0.6 of the solvent column's length (in commercial probeheads the coil is usually too low). Then it is possible to extract a more or less z independent g value. Otherwise a lineshape calculation must be done. This was tested for a water sample with 9mm inner diameter and filling heights of 7.6 and 3.7cm. The evaluated field corrections according to the above formula in the coil region (between 1.3 and 2.9cm from the tube's bottom) are demonstrated in Fig.2. These profiles of course are for a magnet field that is completely homogeneous, when no sample is loaded. But now for the sample with 7.6cm of water the shim was adjusted such that the water line showed no asymmetry. Then the field profile for the second measurement with 3.7cm is the difference between the two calculated for homogeneous field.
The such extracted theoretical lineshape is shown in Fig. 3. The peak appears at 0.078 ppm downfield from the '7.6cm sample' and the line is affected with an asymmetry of about 0.47 ppm. The experiment showed a peak at 0.088 ppm and an asymmetry of 0.44 ppm. At least our procedure seems to provide a more reasonable geometry correction than that for an ellipsoid [1], which would predict a 4.7 times higher value for the peak position and cannot account for the observed asymmetry.

With kind regards

Roberto Seydoux & P. Diehl

ACTIVE SHIELDED GRADIENT PROBES

Gradient-Enhanced Spectroscopy (GES), Pulsed-Field Gradient (PFG) measurement of diffusion coefficients, and Magnetic Resonance Imaging Microscopy (MRI-M) all benefit greatly from actively shielded gradient coils. DSI was the first to offer actively shielded gradient coils, and we continue to lead the way with such features as wound-kevlar reinforcing, computer numerical modeling, and computer controlled manufacturing methods for minimum vibration, high linearity, and minimal eddy currents.

These high performance X-Y-Z shielded gradient coils are furnished in a complete NMR probe which includes the rf electronics, cooling and VT air capability, internal lock, and support structure for narrow bore or wide bore magnets. Our standard 3-axes MRI probe achieves up to 120 G/cm (pulse) for 12-mm samples in narrow bore magnets with 10 to 30 µs rise time and less than 100 µs ringdown.

GES, PFG and MRI-Microscopy Probes

Each probe uses standard high resolution sample loading with 5, 8, 10, 12, 15, 20, 25, or 30 mm standard NMR sample tubes.

- forced-air cooling and VT air capability
- internal lock (2H)
- single or double-tuned orthogonal rf saddle coils
- axial access with standard NMR sample tubes
- external adjustment of tuning and matching
- multinuclear capability (optional)
- high performance X-Y-Z gradient coils (or Z only)
- high-order active-shielding coils
- rapid ringdown
- thermocouple overheat protection of gradient coils
- standard VT range: -10° to +80°C

Also Available

MRI-M probes with perfusing capability

High temperature PFG probes with VT range of -160 to +300°C
DSI GRADIENT COIL DRIVERS

Ultra-low drift, for better B_0 homogeneity

Recommended for use with imaging regions smaller than 12 mm

- DC to 50 kHz; 4 V/μs slew rate
- 500 W at 50% duty cycle with 4 Ω load
- Total hum and noise (20 Hz - 20 kHz): 114 dB below 500 W
- Maximum DC output drift after 10 minute warm-up:
 - Less than 300 μV in constant current mode (4 Ω load)
 - Less than 50 μV in constant voltage mode
- Switchable between constant current or constant voltage operation:
 - Constant current mode transfer function of $5.8 \frac{A}{V_l}$
 - Constant voltage mode gain of 12
- Peak current to ±15 amps; Peak voltage to ±50 volts
- External shut-down capability for overdrive protection
- Thermal overload protection
- Dimensions: 17.1" W x 7.375" H x 16" L; 20 kg
 Rack mount shelf available at extra cost

Doty Scientific, Inc.
700 Clemson Road
Columbia, SC 29223 USA
Main: (803) 788-6497 Fax: (803) 736-5495
Sales: (803) 699-3806 Service: (803) 699-3807
Subjects: (1) NATO ASI in Turkey, Aug. 23-Sept. 4, 1992; (2) NMR Services Available; (3) DNP of C_{60} and Diamond Films

Dr. B.L. Shapiro
955 Elsinore Court
Palo Alto, CA 94303

Dear Barry:

Here is our tardy contribution. I'll try to cram as much into this as I can in one page.

1. A NATO Advanced Study Institute will be held in Turkey (near Dalaman and Mugla) from August 23 through September 4, 1992. The theme is "NMR in Modern Technology", or "what is NMR doing to support industrial technology and what could NMR do in the future". The program includes NMR basics, modern liquid-sample and solid-sample NMR techniques and applications and NMR in quality control/process control. The speakers tentatively include R. Dupree (Warwick, U.K.), G. Erbatur and O. Erbatur (Çukurova, Turkey), R. Freeman (Cambridge, U.K.), C. Fyfe (British Columbia), G. Hatfield (W.R. Grace), B. Hawkins (Colorado State U.), L. Jeżinski (Cornell), G. Maciel (Colorado State U.), A. Pines (Berkeley), H. Pfeifer (Leipzig, Germany), E. Randall (London), J. Ray (Amoco), A. Samoson (Tallinn, Estonia), W. Veeman, (Duisburg, Germany), J. Waugh (M.I.T.), C. Yannoni (IBM) and A. Zambelli (Salerno, Italy). Those interested in attending should contact me for additional information and application forms.

2. The National Center for NMR Applications (formerly the NSF-funded Regional NMR Center) continues to expand its capabilities, with 10 spectrometers from 0.5 T to 1.4 T performing solid-state, liquid-sample and process-control/quality-control studies on a service or project basis. Interested laboratories should contact me or Dr. Bruce Hawkins (303-491-6455), the Center's manager.

3. Dynamic Nuclear Polarization (DNP) studies on a variety of solids continue here. On the right are shown natural-abundance 13C DNP spectra of a diamond film (sample provided by Dr. Curtis Johnson of the Naval Weapons Laboratory, China Lake) and C_{60} (sample provided by C.S. Yannoni of IBM), obtained by graduate student, Herman Lock. Spectra that are impractical to obtain without DNP (e.g., the diamond film) often are obtained easily with DNP.

Sincerely,

Gary E. Maciel
Professor
Dear Dr. Shapiro:

Some of our recent work has required a phosphorylated derivative of adenine which is
drawn below. The proton NMR spectrum was very interesting in that we could clearly see both
H(2) and H(8) of the adenine ring without any P-coupling. Admittedly, the 3J_P,H(2) coupling might
be small but we thought it worth evaluating. The shifts for H(2) and H(8) are 8.18 and 8.36 ppm,
respectively, and do not exhibit any P-H coupling that is detectable even when the signals are
enlarged at 400 MHz. We did not expect to see a 6J_P,H(8) coupling. The proton on nitrogen is
around 3.8 ppm while the aromatic proton signals are bunched at 7.5 and 7.82 ppm. There is a
residual signal from the solvent (DMSO-d$_6$) which is evident at 2.24 ppm. These phosphorylated
systems seem to be novel as a search of the literature revealed very few are known. We trust this
meets our obligation for a contribution to the TAMU NMR Newsletter.

Sincerely yours,

K. Darrell Berlin
Regents Professor
What's the difference between the new CMX spectrometer and the competition?

We took the complicated and made it simple.

Computer System
- Choice of SUN or Silicon Graphics computer
- X-Windows™ software on the spectrometer
- High-speed communications for "real time" display

Advanced Console Design
- Full channel modularity
- Full channel expandability
- Easy customer access

RF Design
- High IF design provides clean RF
- Ultra fast amplitude, phase, and frequency control
- Direct digital synthesis

Digital Design
- High-speed 100 MHz pulse programmer on each channel
- Complete pulse program flexibility
- Multiple expansion capability

Solids Probes System
- PENCIL™ spinning system for high stability MAS
- Constant spinning speed from - 150°C to + 250°C
- COAX design affords superior tuning and RF capability for multiple resonance experiments
- High-stability, microprocessor-controlled, speed controller

Ergonomics
- Superior comfort, functionality and increased work space for optimum productivity

Chemagnetics
2555 Midpoint Drive
Fort Collins, Colorado 80525
(303) 684-0428
1 (800) 4 OTSUKA

Dedicated to Design Excellence
Dear Barry,

Queen Mary's Images: Nitrogen and Soil Water

The SISCO 4.7T (33 cm bore) imaging spectrometer has been operational here since 1990. It is under the management of Dr. Steve R. Williams (who should not be mistaken for Steve R. Williams down at the Royal College of Surgeons) and is used by a variety of research groups in the University.

My own main interest has been with soils and also with the imaging of nitrogen. Concerning the latter we started with 14N and tested out the line width problems: how wide a line could we image? With our modest maximum gradient of 2 G cm$^{-1}$, the answer was about 150 Hz which would be increased (courtesy of Dr. F. Howe at St. George's Hospital Medical School) to about 500 Hz using their shielded gradient set (10 G cm$^{-1}$). A report of this work will appear soon in J. Magn. Reson.

We next imaged 15N at natural abundance as befits the traditions of the group. We set up on our standard laboratory sample, 99% enriched ammonium nitrate - 15N$_2$, which has horribly long relaxation times (51 s for 15NH$_4^+$ and 106 s for 15NO$_3^-$) and then proceeded directly to image liquid - N$_2$ at natural abundance (n.a.). I had remembered my experience with Geoff Hawkes when testing out a Bruker 180 in 1975. We obtained very good signal to noise with one pulse.1 The instrument was destined for Jack Roberts' lab., so we thought it only proper to put his name on the paper. This sample is the best for n.a. work since it consists only of nitrogen and gives a useful gain in sensitivity because of the low temperature. We then went on to image aniline, phenyl hydrazine, and hydrazine hydrate among other things before digging out some of our 15N enriched samples from our 15N bank.

Incidentally, one sample of liquid - N$_2$ was so contaminated with liquid - O$_2$ that we would not initially contain it in an open-topped dewar during insertion into the bore of the magnet. We now call this the Kinchesh effect after Paul the post-doc. on the project, who observed that the liquid was pulled into the bore and was not pushed out of it.

More recently we have shortened the imaging times by use of sensitivity enhancements, including NOE experiments and indirect detection.

As for soils, we visited Klaus Zick at Bruker near Karlsruhe and persuaded him to apply the STRAFI technique developed for soils to look at liquids in solids. The very large stray field gradients on his Bruker MSL 400 (15 kG cm$^{-1}$) mean one can get images on 1H water lines which are 15 kHz wide, and can reduce the magnetic susceptibility distortions to negligible proportions. There is a note in preparation for J. Magn. Reson. We also imaged plant material in the soil with no distortions.

I send best wishes from Geoff Hawkes in whose name the subscription is currently held, and from the rest of the NMR community here.

Yours sincerely,

Edward Randall

Mount Holyoke College
Kenneth L. Williamson
Carr Laboratory
South Hadley, Massachusetts 01075
Telephone 413-538-2349
Fax 413 538 2327

Dear Barry,

Mount Holyoke College is searching for an nmr spectroscopist to fill a tenure track faculty position. Mount Holyoke is a liberal arts college for women, enrollment 1700 with a chemistry faculty of eight. The department has four working spectrometers, a T-60, a JEOL FX 90 Q, a Bruker 250 and an IBM/Bruker 270. The latter spectrometer, equipped with a 10 mm multinuclear probe and 5 mm C/H probe, array processor, variable temperature, large disk and flatbed recorder will be turned over to the new faculty member. The Bruker 250 with a 5 mm C/H probe is used for routine analytical work and teaching. The JEOL is also available for research. The department has four electronics technicians who do all maintenance on the spectrometers as well as design and build apparatus.

Interested candidates should write to Prof. Sheila Browne, Chairman, as soon as possible with a CV, statement of research plans and arrange for three letters of reference to be sent.

Sincerely yours,

Postdoctoral Position - Molecular Dynamics

A postdoctoral position is available in the laboratory of Professor Lian-Pin Hwang at the Institute of Atomic and Molecular Sciences, Taipei. Current research interests involve the development of NMR methods to study molecular dynamics and their application to chemical and biological systems. The laboratory has Bruker MSL 300 and MSL 90 spectrometers and will soon install a 400 MHz spectrometer and the Institute has already purchased a 500 MHz spectrometer. Candidates for this position should have graduated with a Ph.D. within the last three years. Candidates with a strong background may be eligible for financial support from the National Science Council. The period is for one year in the first instance but may be renewed upon mutual agreement. Interested individuals should send a curriculum vitae and names of three referees to:

Professor Lian-Pin Hwang
Institute of Atomic and Molecular Science
Academia Sinica
P.O. Box 23-166
Taipei,
TAIWAN 10764
FAX: (02) 3620200
Gradient Enhanced Spectroscopy: a new, practical answer

By Frank Huang, PhD, Paul Calderon, MS, and Boban John, PhD

Making Gradient Enhanced Spectroscopy (GES) a viable method for high resolution spectroscopy has long been of interest to researchers. The obvious benefits in speed and information content were too often overshadowed by the drawbacks of signal loss and distortion.

Technology developed at GE NMR Instruments has overcome these challenges. The S-17 Gradient Enhanced Spectroscopy Accessory with integrated inverse probehead makes GES practical for a broad range of applications in ID, 2D, 3D, and 4D experiments.

A better design

The use of a three-axis, actively shielded gradient set allows GE to overcome the inherent drawbacks of previous GES technology—most notably, phase distortion and signal loss.

Active shielding. Eddy current effects are the major source of phase distortion in GES spectra. Active shielding prevents interaction of strong gradients with magnet and shim components—the source of eddy current effects.

Fast, strong gradients. Short gradient pulses in excess of 20 G/cm minimize signal loss during pulse sequences.

Applications advantages

With its integral inverse probehead, the S-17 Accessory can accommodate proton as well as heteronuclear GES techniques.

Gradient fields in excess of 20 G/cm are able to suppress water in aqueous samples and to improve performance in heteronuclear experiments. Other advantages:

- Speed without phase distortion or signal loss.
- Practical for ID, 2D, 3D, and 4D experiments.
- Accommodates proton and heteronuclear GES techniques.

For additional information on the S-17 GES Accessory, write to GE NMR Instruments, 255 Fourier Ave., Fremont, CA 94539. Or call toll free:

1-800-543-5934

© GE NMR Instruments
The pulse sequence and the coherence pathway diagram for a 15N GE-HMQC are shown in Fig. 1. The pulse sequence was a standard 13C GE-HMQC experiment (l) with different gradient amplitudes to account for the difference between the gyromagnetic ratios of 13C and 15N. The 90° proton pulse creates transverse magnetization which evolves into an anti-phase state with respect to J(NH) coupling at the end of the period \(\Delta \) (where \(\Delta = \frac{1}{2}J \) (NH)). The antiphase components are converted into heteronuclear zero- and double-quantum coherence by the 15N 90° pulse and the multiple quantum coherences are allowed to evolve during \(t_1 \). The 180° 1H pulse in the center of the evolution period serves to eliminate the 1H chemical shift evolution, yielding pure 15N chemical shifts along that axis. The zero- and double-quantum signals are then coherence-order labeled by the gradient pulses G1 and G2. After conversion into antiphase proton magnetization by the last 15N 90° pulse, the desired components are refocused by the gradient G3 and detected. The application of a gradient pulse results in a phase factor being applied to the magnetization which is dependent upon gradient strength, duration, the distance from the gradient isocenter, the gyromagnetic ratios of the coupled nuclei, and the desired coherence order. The relative amplitudes of the labeling and refocusing gradient pulses will determine the selection of a specific coherence pathway and are calculated to suppress magnetization components arising from the solvent and other protons not coupled to 15N spins.

The fundamental principle of coherence selection using gradients is that for a pathway to be detected, the cumulative phase factor during the acquisition must be zero:
\[
G_1\beta_1 + G_2\beta_2 + G_3\beta_3 = 0.
\]
The subscripts denote steps in the pulse sequence where \(\beta \) defines a composite coherence order for the heteronuclear case which includes the gyromagnetic ratios of the coupled nuclei:
\[
\beta = \beta_{1H} + (\beta_{15N}+\beta_{1H})\beta_{15N} \]
and \(\beta_{1H} \) and \(\beta_{15N} \) are the coherence orders for the 1H and 15N spins respectively. In the coherence pathway diagram, the relevant values of \(\beta \) are given to the left and the relative gradient areas (gradient strength x duration) are given next to each gradient pulse. The following pathway (shown in Fig. 1):
\[
H(+1)\rightarrow H(+1)N(0)\rightarrow H(+1)N(+1)\rightarrow H(-1)N(+1)\rightarrow H(-1)N(0)
\]
is detected using a 5:5:1 ratio of gradient areas, since according to Equation 2:
\[
5(1.1) + 5(-0.9) + 1(-1.0) = 0
\]
where the numbers in the parentheses refer to the composite coherence orders. Using these relative gradient areas, protons not coupled with 15N spins may pass through an alternate pathway:
\[
H(+1)\rightarrow H(+1)\rightarrow H(-1)\rightarrow H(-1)
\]
which results in a net phase factor:
\[
5(1.0) - 5(-1.0) + 1(-1.0) = -1
\]
Thus, signals from this pathway remain defocused during the acquisition.

Gradient-enhanced experiments provide a viable alternative to traditional phase-cycling methods for the selection of coherence pathways. In cases where the sensitivity is adequate, gradient selection can substantially reduce the collection time in multi-dimensional experiments. The 15N GE-HMQC data presented here has none of the \(t_1 \)-noise from cancellation artifacts usually present in phase-cycled versions of the HMHC experiment. In addition, since the suppression of the single-quantum signals is done prior to acquisition, the receiver gain may be increased, which results in a substantial increase in signal-to-noise. For these reasons, gradient pulses should be the method of choice for coherence selection in HMHC experiments.

Reference
Dear Dr. Shapiro,

Initial Results with Pulsed Field Gradients

Two common ways of selecting multiple quantum coherence in NMR experiments are phase cycling and pulsed field gradients (PFG's). The PFG approach exploits the fact that homonuclear N-quantum coherence will defocus (or refocus) in an inhomogeneous magnetic field N-times more rapidly than single quantum coherence. PFG methods for MQ coherence selection have many potential applications in biologic NMR, including suppression of single-quantum solvent coherences and selection of heteronuclear coherences. They can provide more efficient MD-NMR data collection by minimizing phase cycling requirements, and can improve dynamic range by allowing selection of MQ-filtered pathways in a single scan.

We have recently carried out some hetero- and homonuclear MQ-filtered experiments using new pulsed field gradient hardware available from Varian NMR. PFG-HMOC spectra were obtained using the following sequence:

\[
90°(H) - \tau - 90°(C) - ((1/2) + \Delta) - 180°(H) - ((1/2) + (G4+)) - 90°(C) - \tau - (G5-),
\]

where \(\tau = 1 /[2 \times J_{CH}]\), G4+ is a positive PFG with area 4, G5- is a negative PFG with area 5, and \(\Delta\) is a delay equal in length to the G4+ PFG. The pulse sequence was tested on a 1% sample of 60% \(^{13}\)CH\(_3\)I in CDCl\(_3\), containing 0.2% Cr[acac] and 1% tetramethyl phosphate (Wilmad #WGH4582). Shown in Fig 1 are \(^1\)H 1D spectra recorded using this pulse sequence (\(t_1 = 0\) sec, \(G_4 = 1\) ms) with either zero power on the field gradients (Fig 1A) or with a 6 Gauss / cm PFG (Fig 1B). In a single scan, we observe good suppression of the protons bound to \(^{12}\)C (the center peak), with retention of signals for the protons bound to \(^{13}\)C.

This result was highly reproducible as shown by five repetitions of the same PFG experiment (Fig 1C), each run with a single scan.

2D PFG-HMOC results for a ca. 20 mM sample of 35% \(^{13}\)C-enriched algal amino acids in water (MSD Isotopes) are shown in Fig 2. We have compared HMOC spectra recorded in D_2O solvent with 2 transients per FID with either phase-cycled (Fig 2A) or PFG (Fig 2B) selection of heteronuclear coherence. In the phase-cycled experiment, quadrature detection in \(\omega_1\) is done by hypercomplex data collection, while in the PFG experiment the p-pathway is selected by the G4+ and G5- pulses. The gradient pulses used (\(G_4 = 1\) ms) were 6 Gauss / cm in amplitude. These spectra were recorded with broadband \(^{13}\)C-decoupling during detection and plotted in absolute value mode. The vertical band of noise in Fig 2A is due to the residual HOD solvent signal, which was not preirradiated and is not completely cancelled by the phase cycling. Since this artifact arises from MQ coherence, it is completely eliminated in the PFG version of the experiment (Fig 2B). Artifacts due to decoupler modulation sidebands in the phase-cycled experiment are also eliminated in the PFG-HMOC. This same PFG-HMOC experiment was also run on a similar algal amino acid mixture dissolved in 90% H_2O, using 30 Gauss / cm field gradients and \(G_4 = 1.4\) ms. These spectra had excellent solvent suppression with minimal attenuation of signal-to-noise (Fig 2C). Representative \(\omega_2\) cross sections through these spectra at the frequency indicated by the dashed lines are shown in Fig 3. No residual water resonance (at 4.8 ppm) was observed in these PFG-HMOC spectra.

Homonuclear PFG 2Q-Spectra can also be obtained using the pulse sequence:

\[
90° - \tau - 180° - \tau - 90° - [11 + (G1+)] - 90° - [G2+] - \text{acquire},
\]

An example of a 2Q-Spectrum of 5 mM hen lysozyme in 90% H_2O acquired using \(\tau = 18\) ms, \(G1 = 2.4\) ms, \(G2 = 4.8\) ms, field gradient of 30 Gauss / cm, and one transient per increment is shown in Fig. 4. These spectra have excellent suppression of solvent signal and no \(\text{t}_1\) noise.

March 10, 1992
(received 3/20/92)
Figure 1

Figure 2

Figure 3

Figure 4

Steven Donald Emerson
CABM - Rutgers University
679 Hoes Lane
Piscataway, NJ 08854

Gaetano T. Montelione
CABM - Rutgers University
679 Hoes Lane
Piscataway, NJ 08854

Tim Saarinen
Varian Associates, NMRID
3120 Hansen Way, Bldg 4
Palo Alto, CA 94304
Varian introduces a 5mm variable temperature CP/MAS probe with a spinning advantage.

Varian's 5mm VT MagicAngle™ probe for CP/MAS applications, offers an advantage in sample spinning often required to spin non-powder samples. Coupled with very high decoupling power to eliminate strong dipolar interactions for the ultimate in line narrowing, this probe is the choice for the most reliable and easy operation over the temperature range. This probe can be used with a wide or even narrow bore magnet.

Varian's Solids VT System interfaces directly with VnmrB MAGICAL II™ software to provide computer-controlled temperature selection for the probe. Eliminating any liquid nitrogen condensation in the pneumatic lines produces the most reliable sample spinning. Experimental set-up is made easy with a quick disconnect system and a no-frost exterior.

For material science investigations, do your CP/MAS measurements with the Varian spinning advantage!

Varian Associates 3120 Hanover Way, Bldg. 4, Palo Alto, CA 94304-1030, U.S.A. Tel: 1-800-356-4437 • Varian International AG Eulerstrasse 39, 23553 Bad Oldesloe, Tel: (42) 44 86 44 • Varian GmbH Alexanderstraße 6, D-64100 Darmstadt, Germany Tel: (0 61 51) 70 30 • Varian Instruments Ltd, 3rd Matsuda Bldg., 2-2-6 Ohashi-Ohashi, Tokyo, Japan Tel: (3) 3504-1211
The MagicAngle•nmr™ probe

- Easy spinning of even the most unusual sample textures
- High decoupling power for exceptional line narrowing
- Superior performance in both wide and narrow bore magnets
- Multinuclear operation
- The ability to analyze a wide variety of sample dielectrics

The VT Solids System

- Computer-controlled temperature selection
- Pneumatic lines with no condensation for reliable sample spinning
- Quick disassembly system and no-frost exterior
- Easy experimental set-up
- The ability to change sample temperature quickly
Dear Barry:

Thanks for your gentle reminder.

We have been interested to extend the NMR microscopy techniques to 3 dimensions. 3D volume imaging and rendering significantly enhances the display and quantification of structures of interest in the images.

The 3-dimensional images could be generated either by 3D FT volume acquisition or by rendering the 2D contiguous slices with or without interpolation. We have been extending 3D NMR microscopy technology using both the approaches for application to systems of biological and non-biological interest. To date, we have obtained images with resolution of 80 x 80 x 80 mm for live mouse and with resolution of 35 x 35 x 35 mm for non-living samples, at 9.4 T. A 3D rendered volume image of a live mouse brain with infarction is shown below.

Yours sincerely,

Rasesh D. Kapadia
Postdoctoral Fellow
Physical & Structural Chemistry

Susanta K. Sarkar
Associate Fellow
Physical & Structural Chemistry

Volume Rendered Mouse Brain

Infarction
Ipsilateral Hemisphere
Contralateral Hemisphere
Differential Chemical Shifts in the 13C-NMR Spectra of Aminophosphines

Dear Barry:

In our studies of aminophosphines we have prepared a series of compounds of the general formula Ph(RR'N)PCl [R, R' = Me, Et, Bz, 1Pr, cHex] and examined their 13C-NMR spectra at low temperature. At sufficiently low temperatures these compounds show slow rotation about the P-N bond and the chemical shifts of the carbons adjacent to the N-atom are resolved into two sets signals representing the syn and anti conformers (with respect to the P-lone pair). In comparing the chemical shifts of a particular carbon in the syn position to its own shift in the anti position we note that the chemical shift difference ($\Delta \delta$) is independent of the substituent for both R=R' = small, and conclude that the average value of 5.2 ± 0.5 ppm represents the differential shielding effect of the P-lone pair for this system. The differential chemical shift data is presented below.

<table>
<thead>
<tr>
<th>R (R')</th>
<th>$\Delta \delta$ (in ppm)</th>
<th>R (R')</th>
<th>$\Delta \delta$ (in ppm)</th>
<th>R (R')</th>
<th>$\Delta \delta$ (in ppm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Me (Me)</td>
<td>-5.5</td>
<td>Me (Et)</td>
<td>-5.2</td>
<td>Me (Bz)</td>
<td>-4.9</td>
</tr>
<tr>
<td>Et (Me)</td>
<td>-5.4</td>
<td>Et (Et)</td>
<td>-4.8</td>
<td>Et (Bz)</td>
<td>-4.5</td>
</tr>
<tr>
<td>Bz (Me)</td>
<td>-5.7</td>
<td>Bz (Et)</td>
<td>-6.0</td>
<td>Bz (Bz)</td>
<td>-5.2</td>
</tr>
</tbody>
</table>

Please credit this contribution to Paul Inglefield’s account.

Sincerely,

Mark M. Turnbull
The future demands the best

Whatever your NMR requirement, Oxford Instruments can supply the magnet to match your needs.

Oxford supplies a truly integrated horizontal magnet system; the magnet, gradient coils and power supplies are matched at the design stage to optimise sample access and NMR performance.

Oxford Instruments horizontal bore magnet systems offer the following benefits:

- A unique choice of proton resonance frequencies from 85 MHz to 300 MHz.
- Room temperature bores from 150mm to 450mm in diameter.
- Yield homogeneity over large sample volumes.

and the following options:

- A comprehensive range of separate and combined room temperature shim and active shielded gradient coil sets.
- Active suppression of stray magnetic field for the whole magnet system for ease of siting.

So, when specifying an Oxford Magnet, you can rest assured that the performance of your system will not be limited by the performance of your Oxford Magnet!
Whatever your NMR application, your NMR system depends on the highest quality components to achieve the best results.

And at the heart of every NMR system is the magnet. More than anything else this vital component must be capable of reliably delivering the performance you seek, and Oxford Instruments’ magnets are at the heart of the world’s finest NMR spectrometers.

Oxford Instruments is the foremost manufacturer of highly homogenous superconducting magnet systems. Since 1968 we have been pushing back the frontiers of NMR technology with a range of magnets featuring ever-increasing field strengths.

In fact, we produce more magnets for high resolution NMR applications than anyone else, which means we have the technology and expertise to meet your most exacting individual requirements.

When you specify an Oxford Instruments magnet, the highest standards of quality and precision come as standard.

This commitment to quality is just one of the reasons why Oxford Instruments should be your first choice for superconducting magnets.
NMR-MRI HIGH PERFORMANCE DIRECT SYNTHESIZERS

The accuracy, stability and low noise you need for any experiment. Most widely accepted line of high-reliability frequency synthesizers. Thousands in use worldwide.

<table>
<thead>
<tr>
<th>Model</th>
<th>Range</th>
<th>Resolution</th>
<th>Switching</th>
<th>Output</th>
<th>Spurious Outputs</th>
<th>Phase Noise</th>
<th>Frequency Standard</th>
<th>Interface</th>
<th>Prices</th>
</tr>
</thead>
<tbody>
<tr>
<td>PS 040</td>
<td>0.1-40 MHz</td>
<td>0.1Hz-100KHz (opt)</td>
<td>1-20µs</td>
<td>+ 3 to + 15dBm; 500m</td>
<td>-75dBc</td>
<td>-75dBc</td>
<td>OCXO, TCXO, Ext.</td>
<td>BCD, GPIB</td>
<td>$5,125.00</td>
</tr>
<tr>
<td>PS 120</td>
<td>0.1-120 MHz</td>
<td>0.1Hz-100KHz (opt)</td>
<td>1-20µs</td>
<td>+ 3 to + 15dBm; 500m</td>
<td>-75dBc</td>
<td>-75dBc</td>
<td>OCXO, TCXO, Ext.</td>
<td>BCD, GPIB</td>
<td>$5,125.00</td>
</tr>
<tr>
<td>PS 160</td>
<td>0.1-160 MHz</td>
<td>0.1Hz-100KHz (opt)</td>
<td>1-20µs</td>
<td>+ 3 to + 15dBm; 500m</td>
<td>-75dBc</td>
<td>-75dBc</td>
<td>OCXO, TCXO, Ext.</td>
<td>BCD, GPIB</td>
<td>$5,125.00</td>
</tr>
<tr>
<td>PS 250</td>
<td>0.1-250 MHz</td>
<td>0.1Hz-100KHz (opt)</td>
<td>1-20µs</td>
<td>+ 3 to + 15dBm; 500m</td>
<td>-75dBc</td>
<td>-75dBc</td>
<td>OCXO, TCXO, Ext.</td>
<td>BCD, GPIB</td>
<td>$7,125.00</td>
</tr>
<tr>
<td>PS 310</td>
<td>0.1-310 MHz</td>
<td>1Hz</td>
<td>1-20µs</td>
<td>+ 3 to + 15dBm; 500m</td>
<td>-75dBc</td>
<td>-63dBc</td>
<td>OCXO, TCXO, Ext.</td>
<td>BCD, GPIB</td>
<td>$8,200.00</td>
</tr>
<tr>
<td>PS 500</td>
<td>0.1-500 MHz</td>
<td>0.1Hz-100KHz (opt)</td>
<td>1-20µs</td>
<td>+ 3 to + 15dBm; 500m</td>
<td>-75dBc</td>
<td>-63dBc</td>
<td>OCXO, TCXO, Ext.</td>
<td>BCD, GPIB</td>
<td>$9,250.00</td>
</tr>
<tr>
<td>PS 620</td>
<td>0.1-620 MHz</td>
<td>0.1Hz-100KHz (opt)</td>
<td>1-20µs</td>
<td>+ 3 to + 15dBm; 500m</td>
<td>-75dBc</td>
<td>-63dBc</td>
<td>OCXO, TCXO, Ext.</td>
<td>BCD, GPIB</td>
<td>$9,250.00</td>
</tr>
<tr>
<td>PS 1000</td>
<td>0.1-1000 MHz</td>
<td>0.1Hz-100KHz</td>
<td>5-10µs</td>
<td>+ 3 to + 15dBm; 500m</td>
<td>-75dBc</td>
<td>-63dBc</td>
<td>OCXO, TCXO, Ext.</td>
<td>BCD, GPIB</td>
<td>$11,250.00</td>
</tr>
<tr>
<td>PS x10</td>
<td>0.1-10 MHz band, selected decade 0.1-100 MHz</td>
<td>1Hz</td>
<td>1-5µs</td>
<td>+ 3 to + 15dBm; 500m</td>
<td>-75dBc</td>
<td>-63dBc</td>
<td>OCXO, TCXO, Ext.</td>
<td>BCD, GPIB</td>
<td>$5,125.00</td>
</tr>
</tbody>
</table>

OTHER OPTIONS

Programmable Attenuator 0-90dB (0-99dB w/ GPIB) n x 10 MHz output (20-140 MHz) or any 10 MHz line

Prices are US only, and include manual & remote (BCD) control, 1 Hz resolution, OCXO std.
WE HAVE A NUMBER OF USED PTS 500 INSTRUMENTS WITH MANUAL CONTROL, 0.1 Hz RESOLUTION AND TCXO FREQUENCY STANDARD FOR SALE AT A PRICE OF $4,750.00 EACH. THEY COME WITH NEW CABINETS AND OUR FULL WARRANTIES: 2 YEARS UNCONDITIONAL AND 8 YEARS FLAT RATE FOR $350.00 PER INCIDENT.

LIMITED QUANTITIES, SUBJECT TO PRIOR SALE

HURRY!

PTS 500 FREQUENCY SYNTHESIZER
• 1 MHz to 500 MHz
• + 3 to + 13dBm output
• choice of resolution
• low phase noise
• fast switching, 5-20 micro-sec.
• fully programmable, BCD or IEEE 488 BUS
• modular flexibility, remote-only versions
• low power consumption, high reliability

PROGRAMMED TEST SOURCES, INC.
P.O. Box 517, 9 Beaver Brook Rd., Littleton, MA 01460 Tel: 508-486-3008 FAX: 508-486-4495
INCREASE IN THE ATP SIGNAL AFTER TREATMENT WITH CISPLATIN IN TWO DIFFERENT CELL LINES STUDIED BY 31P NMR SPECTROSCOPY

Dr. Barry Shapiro,
Editor, NMR Newsletter

Dear Barry:

Acquired resistance to chemotherapeutic agents is one of the most important problems in cancer treatment. Studies of metabolic changes which occur when tumor cells become drug resistant may contribute to the understanding of the resistant phenotype, and help in designing means to overcome it.

Cisplatin [cis-diamminedichloroplatinum(II)] has activity against many solid tumors. The mechanism of action of cisplatin is not completely understood, though its cytotoxicity is believed to result from the adducts it forms with nuclear DNA. It has been shown that mitochondrial morphology and function in some cisplatin resistant cell lines are different than that observed in the sensitive line. Recent studies also indicate that cisplatin and its analogues produce alterations in the structure and function of isolated mitochondria. In other cells, the post-treatment concentration of platinum in mitochondria was higher than in the other subcellular compartments.

31P NMR spectroscopy constitutes a non-invasive technique that is very useful for monitoring high energy and phospholipid metabolism. We have previously described a procedure for continuously perfusing cells under controlled conditions. This technique has been used to demonstrate alterations in basal levels of high energy phosphate and phospholipids in resistant cells and shifts in these levels in response to drug exposure.

We have compared the 31P nuclear magnetic resonance (NMR) spectra of two different cisplatin resistant cell lines, one derived from human ovarian carcinoma and the other from rat lymphoma, and their respective cisplatin sensitive parental cell lines. Comparisons were made between the baseline spectra and after perfusion of the cells with 20 - 50 µM cisplatin for 16 - 20 hours. While no obvious differences were found between baseline spectra of sensitive and resistant cells, during cisplatin perfusion the sensitive cells had an increase in their ATP signals. The resistant cells also exhibited increases in their ATP signals during cisplatin perfusion but to a lesser extent than the sensitive cells. Although the significance of these ATP elevations towards the cellular pharmacology of cisplatin are not presently known, our studies demonstrate that 31P NMR spectroscopy may be useful for elucidating differences in phosphate metabolism in cells expressing the cisplatin resistant phenotype.

Yours sincerely,

Jesus O. Ruiz-Cabello

4 Research Court Rockville MD 20850 USA

(received 2/24/92)
The selection of a beginning textbook in NMR spectroscopy for an entering group of organic chemistry graduate students in not easy. There are several excellent texts which deal with modern pulse sequences and 2D NMR. However, the number which address spectral analysis and the correlation of NMR parameters with molecular structure is quite limited. Thus, the addition of the Friebolin text is particularly welcome. Originally published in a German edition in 1988, the current text has been updated and put forth in an excellent English translation. The diagrams are clearly drawn, the text reads well, and there is a lovely index of compounds for which spectral information is given, along with the usual subject index.

One realizes that such a lengthy list of subjects cannot be covered in complete detail. Consequently, it is inevitable that your favorite subject is not there in all the glory you would have preferred. I think that the text would have been enhanced with two or three problems at the end of most of the chapters, with answers at the back of the book.

W. B. S.
EXPLORE THE ALTERNATE ROUTE...!

QUALITY REFURBISHED NMRs

BRUKER • JEOL • VARIAN

PERMANENT MAGNETS • ELECTRO MAGNETS • CRYO MAGNÉTS

CURRENTLY IN STOCK: BRUKER WM-360WB, NR-80
VARIAN FT-80A

ALSO AVAILABLE: VARIAN EM-390, EM-360A, VXR-400
JEOL FX-90Q

FOR FURTHER DETAILS CALL: (708) 913-0777

International Equipment Trading Ltd.
960 Woodlands Parkway, Vernon Hills, IL 60061
FAX: (708) 913-0785
INVENTORY UPDATE SPRING 1990

X-RAY:
- Philips AXS Fluorescence spectrometer + 3100 generator
- Rigaku D/MAX-AV automated vertical diffractometer
- Siemens SRS 200 Fluorescence spectrometer + 805 generator
- Stoe, Bagg-Brentano Diffractometer

GAS CHROMATOGRAPHS:
- Hewlett Packard 5830A, dual FID
- Hewlett Packard 5840A with 7671A
- Hewlett Packard 5880A with FID, ECD
- Hewlett Packard 3392A Integrator
- Perkin Elmer Sigma 1B, dual TCD
- Perkin Elmer Sigma 2000 with HS-100 auto-injector
- Perkin Elmer 3920B, dual FID
- Tekmar ALS II Autosampler
- Tekmar LSC II Purge and Trap
- Varian 6000 FID, FPD capillary and packed column with model 8000 autosampler

H.P.L.C.:
- Beckman 345
- Dionex 2000/SP ion chromatograph
- Hewlett Packard diode array detector 1040M + HP 9000 (9843A), 20 Meg drive and printer
- Perkin Elmer LC-75 UV detector
- Perkin Elmer LC-85 UV detector
- Varian Varichrome UV detector
- Varian 5000 + UV-100 and Vista 401
- Waters 6000A pump
- Waters 440 detector
- Waters 441 detector
- Waters 710B wisp Autosampler

MASS SPECTROMETERS:
- Finnigan 4021
- Finnigan 1020/1050
- Hewlett Packard 5987 with 5890 GC with RTE-6 operating system

UV-VIS:
- Bausch & Lomb Spectronic 2000
- Beckman DU-7
- Hitachi 100-80
- Perkin Elmer Lambda 3B
- Varian 2290

ATOMIC ABSORPTION:
- Instrumentation Labs 457 with D2 and 440 AVA
- Jarrell Ash 951 with D2
- Jarrell Ash 655 Atomizer
- Jarrell Ash EDL Power Supply
- Jarrell Ash Smith-Hieftje Video 12E with 188 Furnace Atomizer and 440 AVA
- Leeman Labs Plasma Spec III simultaneous and sequential
- Perkin Elmer EDL Power Supply
- Perkin Elmer 403
- Perkin Elmer 375 with D2
- Perkin Elmer 560 with D2
- Perkin Elmer 703 with D2
- Perkin Elmer 2380 with printer
- Perkin Elmer 5000 with D2
- Perkin Elmer HGA-400
- Perkin Elmer HGA-500
- Perkin Elmer HGA-2200 furnace
- Perkin Elmer AS-40 Autosampler
- Perkin Elmer AS-50 Autosampler
- Perkin Elmer Data System 10 for AA
- Varian 875 with graphite furnace and computer

DISPERSE IR:
- Beckman Accubal 2
- Perkin Elmer 1330, Perkin Elmer 257

FT-IR:
- Digilab FTS-15B +10 cm-1 option
- Nicolet 20SX
- Nicolet 20DX

RESONANCE SPECTROMETERS:
- Bruker WM-360 NMR
- Bruker CXP-200 NMR
- JEOL FX-900 NMR
- Varian CFT-60 NMR
- Varian EM-360L NMR

ELECTRON MICROSCOPES:
- Cambridge 120B SEM
- Hitachi H-300 TEM
- ISI SS-60 SEM + Kevex 8000 III EDS
- ISI 100
- JEOL 35C SEM
- Philips 400 STEM with EDS

NUCLEAR INSTRUMENTS:
- Beckman 5000 scintillation counter
- Tracor Gamma Trac 1290

THERMAL ANALYZERS:
- Duport 1090 with 910 DSC

BIOTECHNOLOGY:
- Applied Biosystems (ABI) Protein Sequencer 477A with 120A
- ABI Peptide synthesizer 430A
- ABI Analytical HPLC 150A
- ABI DNA synthesizer 380B-02
- ABI Separation system 130A
- ABI HPLC 151A
- Beckman J2-21M Centrifuge
- FTS Systems freeze-dryer

MISCELLANEOUS:
- A.O. model 820 microtome
- Aminco SPF-500 spectrophotometer
- Best Power 3KV UPS
- Biocor M92, M95, M88 surveyors
- Blue M deluxe floor oven with Touch-Matic controls
- Hiaco 3000 with 3200 sampler
- 346 BCL sensor
- Jarrell Ash Deluxe Varisource
- L & N Microtrack 7995-12
- Technicon InfraAlyzer 400 moisture analyzer
- Perkin Elmer LS-3 spectrophotometer
- Perkin Elmer 240C CHN analyzer
- Reichert Zetopan phase contrast and fluorescence microscope
- Zeiss Photomicroscope III
- Zeiss ICM 405 microscope

Above equipment carries a 90-day warranty
Availability is subject to prior sale.

International Equipment Trading Ltd.
960 Woodlands Parkway
Vernon Hills, Illinois 60061
(708) 913-0777
FAX: 913-0785 TELEX: 754500 IET UD

SERVING THE SCIENTIFIC COMMUNITY FOR 10 YEARS
1988-1990
Almost Every NMR and MRI Test Depends On This Moveable Part

... and Voltronics makes most of them. By working closely with this community of researchers and engineers for 26 years, we offer you a broad line of the latest non-magnetic precision trimmer capacitors.

Features:
- Truly non-magnetic.
- Distortion of magnetic field below one part per 600 million.
- Long life, non-rotating piston design.
- O-ring seal.
- Linear tuning with positive stops.
- Tuning screw does not go in and out, allowing extended shaft option.
- High Q to over 5 GHz on some parts.
- Quartz, glass, sapphire, Teflon® and air dielectrics.

Standard Line:
- Over 144 catalog parts including:
 - Max. capacitance from 3.5 to 120 pF.
 - Peak RF voltage to 15KV.
 - Greatly expanded Teflon Line.
 - A .48" (12.2mm) x .23" (5.8mm) diameter 9pF Teflon trimmer with 1.5KV peak RF voltage.

Custom Design
- We'll be glad to modify a standard part or design a new one for you.

Special Designs
- Dual trimmers — Differential and Split Stator.
- Antennas and coils fused to quartz or glass tubes.
- Non-magnetic slip clutch to protect capacitor stops.

New Catalog
- Our new catalog lists many non-magnetic and standard parts. It includes data on RF peak voltage ratings and high frequency Q measurements.

For further information and our new catalog, call, fax, or write Voltronics or your local representative.

Voltronics Corporation
100-10 Ford Road • Denville, New Jersey 07834
PHONE: 201-586-8585 • FAX: 201-586-3404

Teflon® is a registered trademark of E.I. DuPont Co.
Using 35Cl NMR Null Point Experiments to Characterize the Binding of Chloride ions to Human Serum Albumin

Dear Barry,

We have previously used null point spectra from inversion-recovery experiments to determine the fluctuation correlation time of the electric field gradient at the nucleus and the quadrupolar coupling constant for 7Li in a sample composed of LiCl dissolved in isopropanol-d$_8$/D$_2$O solution [1]. We then extended the theory to include two-site exchange and using 35Cl null point studies to characterize the binding of chloride ions to human serum albumin (HSA) in the presence of sodium dodecyl sulfate (SDS) [2]. HSA has two classes of chloride binding sites: strong (s) and weak (w). SDS inhibits the binding of chloride ions to the strong sites.

We have now extended the theory to encompass three site exchange and are using this theory to study chloride ion binding to HSA in the presence and absence of SDS. In the absence of SDS, the binding of chloride ions to HSA becomes a three site exchange system. In extending the theory to cover three site exchange, the principle of detailed balance was used along with the following two assumptions: (1) There are n_w equivalent weak binding sites and n_s equivalent strong binding sites per HSA molecule. (2) The exchange between s and the free site (f) and between w and f occur independently (i.e., f ↔ s and f ↔ w) since the population of the free site is much greater than the population of the bound sites and the exchange is extremely slow since it would be limited by the Cl$^-$ ion diffusion rate on the protein surface.

The null point spectra are simulated using a complete formulation of the relaxation processes (i.e., both transverse and longitudinal) occurring throughout the inversion-recovery pulse sequence and the subsequent acquisition period. The relaxation equations used to interpret the relaxation processes and analyze the lineshapes were simplified by expressing the spin density matrix in terms of state multipoles [3]. As an example, the density matrix equation for transverse relaxation including exchange between the free, strong and weak sites is then described by the following rate equation...
\[
\frac{d}{dt} \begin{bmatrix} \rho_f \\ \rho_s \\ \rho_w \end{bmatrix} = \begin{bmatrix} -R_f (k_f + k_m) - i(\omega_b - \delta_f)I & k_df & k_wf \\ k_fn & -R_s - k_df - i(\omega_b - \delta_s)I & 0 \\ k_fn & 0 & -R_w - k_wf - i(\omega_b - \delta_w)I \end{bmatrix} \begin{bmatrix} \rho_f \\ \rho_s \\ \rho_w \end{bmatrix}
\]

where \(I \) is the unit matrix, the \(k_{ab} \) (where \(a, b = f, s, w \)) terms are microscopic rate constants for transfer from site \(a \) to \(b \). \(R_f, R_s \) and \(R_w \) are the Redfield relaxation matrices for the transverse components of the state multipoles in the three classes of sites \([1,2]\), \(\omega_b \) is the Larmor frequency and \(\delta_f, \delta_s, \delta_w \) are the chemical shifts of the three classes of sites. The column density matrices \(\rho_f, \rho_s, \rho_w \) of state multipoles \(\sigma_k^m \) (\(k \) is the rank and \(m \) is the tensorial component of the state multipole) are defined by,

\[
\bar{\rho}_f = \begin{bmatrix} \sigma_1^1 \\ \sigma_1^3 \end{bmatrix}, \quad \bar{\rho}_s = \begin{bmatrix} \sigma_1^1 \\ \sigma_1^3 \end{bmatrix}, \quad \bar{\rho}_w = \begin{bmatrix} \sigma_1^1 \\ \sigma_1^3 \end{bmatrix}.
\]

We were able to simulate the binding at the weak site using only one correlation time. However, for binding at the strong site a minor modification of the approach of Halle and Wennerström [4] was used, thus for the strong site two correlation times and an order parameter are needed. The spectral lineshape is related to the real part of the Fourier-Laplace transform of the \(\left(\sigma_1^1 f + \sigma_1^1 s + \sigma_1^1 w \right) \) term (n.b. the multipoles are population weighted), which evolves during the acquisition period. Some experimental and simulated \(^{35}\)Cl null point spectra from a sample of chloride ions binding to HSA in the absence of SDS are given in Figure 1.

In the future we hope to extend the null point method to the study of quadrupolar nuclei with \(I > 3/2 \).

Yours sincerely,

\[
\begin{array}{c}
\text{Lian-Pin Hwang} \\
\text{William S. Price} \\
\text{Nien-Hui Ge} \\
\text{Luan-Ze Hong}
\end{array}
\]

Figure 1. Experimental (top) and simulated (bottom) 35Cl null point spectra of a HSA/saline sample (HSA 0.45 mM; NaCl 1M; Tris-buffer 50 mM) at 298 K. The interpulse delay times in the inversion recovery pulse sequence and ordinate magnifying factors are given respectively by (A) 5.10 ms, 32; (B) 5.20 ms, 32; (C) 5.30 ms, 32; (D) 5.45 ms, 32; (E) 200 ms, 1. The fluctuation correlation times at the free and weak and strong sites were set to 3 ps and 3.5 ns, respectively. The two correlation times for the strong site and the order parameter were 0.8 ns, 43.0 ns and 0.47, respectively. The quadrupolar coupling constants for the free site was set to 1743 kHz and and the population times the (quadrupolar coupling constant)2 was set to 7981 and 16867 (kHz)2 for the weak and strong sites, respectively. Since the bound populations are not known accurately, the quadrupolar coupling constants could not be separated from the population terms for the bound sites.
The Z·SPEC® family of probes was developed with over 70 years of probe design experience. These probes were designed for compatibility with a broad range of spectrometers. In addition, configuration, sample versatility, support and performance makes a Z·SPEC probe the one to use for all reasons.

COMPATIBILITY
Z·SPEC probes are compatible with Bruker, Chemagnetics, General Electric, or Varian spectrometers operating at 'H frequencies of 200, 250, 270, 300, 360, 400, 500, or 600 MHz.

CONFIGURATION
Z·SPEC probes are available in a variety of configurations (see next page) including direct observe, four nuclei, indirect detection, triple resonance, microsample, 'H switchable 13C and 'H switchable broadband.

VERSATILITY
Z·SPEC probe models are available for 3, 5, 10, and 16mm sample tubes. Additional sizes are available on a custom basis.

PERFORMANCE
Z·SPEC probes employ proprietary materials resulting in significant performance advantages in terms of line-shape, signal/noise, resolution, 90° pulse width, and sample volume requirements.

CUSTOMER SUPPORT
The staff of the Z·SPEC probe group include applications specialists who are available to install and support our products in your laboratory.

For more information about Z·SPEC NMR probes, contact our marketing department.

NALORAC
837 Arnold Drive, Suite 600, Martinez, CA 94553
Tel: (510) 229-3501 • FAX 510.229.1651
<table>
<thead>
<tr>
<th>PROBE TYPE*</th>
<th>PROTON FREQUENCY (MHz)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>200</td>
</tr>
<tr>
<td>Four Nuclei</td>
<td></td>
</tr>
<tr>
<td>1H, 19F, 31P, 13C Observe</td>
<td>4N200</td>
</tr>
<tr>
<td>Indirect Detection</td>
<td>ID200</td>
</tr>
<tr>
<td>1H Observe, 19F, 31P Decouple</td>
<td></td>
</tr>
<tr>
<td>Triple Resonance Indirect Detection: 1H, 13C, 15N</td>
<td>IDT300</td>
</tr>
<tr>
<td>Microsample Indirect Detection</td>
<td>MID300</td>
</tr>
<tr>
<td>Broadband 19F-31P Observe</td>
<td>BB200</td>
</tr>
<tr>
<td>Dual Broadband 1H/19F-31P Switchable</td>
<td>DB200</td>
</tr>
<tr>
<td>Dual 1H/13C Switchable</td>
<td>D200</td>
</tr>
<tr>
<td>1H/19F Observe BB Decoupling of 1H or 19F</td>
<td>H-F200</td>
</tr>
<tr>
<td>1H/19F Observe</td>
<td>HF200</td>
</tr>
<tr>
<td>Microsample 1H/19F Observe</td>
<td>MHF200</td>
</tr>
</tbody>
</table>

* Contact factory for optional nuclei or custom configurations.
Gradient Enhanced Spectroscopy (GES) allows efficient 3D methods which require only a single acquisition per evolution time (t_1) and which generate patterns which can be used to distinguish among direct proton-carbon correlations, protons attached to an adjacent carbon, protons attached two carbon bonds away and non-identical protons attached to the same carbon. The GES 3D techniques benefit from elimination of phase cycling and avoidance of traditional water suppression and difference methods resulting in shorter experiment times and optimized receiver gain.

The sequence (Fig. 1) is a combination of a gradient enhanced HMQC experiment in which zero-quantum signal generated by 13C-1H coupling is selected via a 4:-3 gradient pair surrounding the final carbon π/2 pulse, and a gradient enhanced COSY experiment in which quadrature in the COSY evolution dimension is selected a 1:1 gradient pair around the final proton π/2 pulse. The resulting gradient areas are 4:-2:1. With this asymmetric pulse scheme, proton signals which are not at least indirectly coupled to 13C are dephased and not observed.

3D spectra were obtained using a 256 x 128 x 128 matrix for sucrose (Fig. 2) and a 512 x 128 x 128 matrix for menthol (Fig. 3). With a predelay time of 1s, total data collection time was approximately 6 hours.

Fig. 1
Gradient-enhanced Relay Edited Proton, GREP-HMQC-COSY pulse sequence.

Fig. 2
Contour plots of eleven protonated carbon planes (w_2, w_3) planes at the appropriate 13C chemical shifts in (w_1). Individual planes are identified by carbon and the chemical shift position in (w_1). The horizontal lines in C3 and C4 are at zero frequency in (w_2). GE NMR Instruments
Of all the advanced technology on this research-level NMR, this may be the most important piece of hardware.

JEOL’s Alpha series FT NMR system offers a research-level NMR spectrometer that sets a new standard of performance and reliability.

The Alpha combines event bus architecture, experiment definition language, dynamic RF control, pulse shaping and matrix shims into an extremely flexible, high speed precision machine with exceptional sensitivity.

One of the Alpha’s most important features isn’t listed on a technical data sheet, however. It’s the reputation for quality and service that JEOL has earned over the years.

All of our machines are designed for reliability, flexibility and durability. And the outstanding service and applications support provided by our customer service staff makes sure that our high-performance equipment always performs to your satisfaction.

For a demonstration or more information about the JNM-A400/A500/A600 Alpha series of FT NMR systems and JEOL’s customer service organization, call 508-535-5900 or write to JEOL USA, 11 Dearborn Rd., Peabody, MA 01960.