Big Plots from Little Laserwriters.

Cowburn, D. 2

High Field 17O NMR on Aqueous Solutions of Al(III), Ga(III), and In(III) Salts

Venema, F. R., Peters, J. A., and van Bekkum, H. 5

Software for Microcomputer Data Station

Amundson, K., Berkoff, B. P., and Reimer, J. A. 7

Solid State NMR of Heavy Oil-Derived Clay-Organic Complexes

Axelson, D. 11

Position Available

Weiner, M. W. 12

2-D Quadrupolar Echo of $I > 1$ Nuclei

Halle, B., Furo, I., and Wong, T. C. 13

The COSY Spectra of Singlets: Not as Stupid As You Might Think!

Turner, C. J. 17

Comparison of HOGWASH with GM; ASPECT 3000 HOGWASH Software

Marat, K. 18

Position Available

Middleman, L. M. 20

Equipment Wanted

Oldfield, E. 20

Homebuilt Broadline NMR Spectrometer

Wassall, S. R., and Ray, B. D. 23

"Things Are Seldom What They Seem . . ."; or, What is the NMR Time-Scale?

Banyai, I., and Glaser, J. 24

Simultaneous Observation of Exchange Reactions by 1H and 17O NMR

Helm, L. 26

Position Available

Fry, D. C. 29

500 MHz NMR and Data Station Using AT-Clone Computers

Redfield, A. G. 30

Tautomerization of Z-D-Ribose Oxime

Tseng, C. K., and Snyder, J. R. 32

Platform for Vibration Damping, Leveling, and Height Control of High Resolution Superconducting Magnets

Allerhand, A., and Maple, S. R. 34

Position Available

Gonnella, N. C. 36

Weak Pt-H-C Interactions

Pregosin, P. S. 41

Inverse Detected, Long Range C-H Correlation of a Bisbenzimidazole on a JEOL GSX-400

Kelly, D. P. 42

NMR of Polyhydroxybutyrate in vivo

Sanders, J. K. M. 44

Conformational Studies of Free Nitroxide Radicals by NMR

Cinget, F., Gagnaire, D., and Vottero, P. 46

Deuterium NMR Study of Adsorbed Polymers

Sinha, B., and Blum, F. D. 49

Continued on page 70
Announcing... AN OUTSTANDING ADDITION TO THE WILMAD NMR LINE...

our COMPLETELY NEW 5mm "THRIFT" TUBE

at 95¢ each!

• INEXPENSIVE
• PRACTICAL
• RELIABLE
• GUARANTEED

...THE BEST POSSIBLE ANSWER FOR LOWER-END NMR SPECTROSCOPY NEEDS.

COMPARE THESE OUTSTANDING FEATURES OF OUR NEW WG-5mm-THRIFT-7 TUBE:

• 100% Wilmad inspection of structural parameters.
• Spinning Reliability. Passes our stringent Spinner Bearing Test which determines straightness and spinning stability using a Precision Bore Bearing just 0.002" larger than the tube O.D. No halted data accumulations or scratched tubes. Send for your free 5mm Spinner Bearing today.
• Round bottom is standard. Flat bottom . . . no extra charge.
• Non-Pyrex compatible borosilicate glass.
• Packaged individually for maximum protection.
• Standard length is 7". Available in 8" and 9" lengths. (Add 15¢ per inch.)
• Immediate shipment from available stock.

The Wilmad 5mm THRIFT tube is one of the most important recent developments in NMR tube manufacture. It is not recommended for use in high resolution spectrometers, but it provides exceptional performance in lower-end spectroscopic investigations and, at the same time, retains its low cost. It is manufactured from Non-Pyrex compatible borosilicate drawn tubing and is carefully selected for size and structure. At 95¢ each, this tube is really a bargain.

In fact, it is an infinitely better bargain in both price and quality than the following Norell tubes: 508-UP ($4.50 each); 507-HP ($3.50 each); 506-P ($2.50 each); 505-P ($1.80 each); XR-55 ($2.00 each); and 502 (80¢ each). Our examination of numerous Norell tubes has shown that the only significant difference between them is price. They consistently fail to meet even the most liberal structural standards used to define them.

Even with our less expensive 5mm THRIFT tubes, you'll soon learn why IT PAYS TO STANDARDIZE ON WILMAD!

WILMAD GLASS COMPANY, INC.
Serving the Spectroscopic Aftermarket
Route 40 and Oak Road, Buena, NJ 08310, U.S.A.
Phone: (609) 697-3000 • TWX 510-687-8911
<table>
<thead>
<tr>
<th>AUTHOR INDEX</th>
</tr>
</thead>
<tbody>
<tr>
<td>34</td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>TEXAS A&M NMR NEWSLETTER NO. 362, NOVEMBER 1988</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author Index</td>
</tr>
<tr>
<td>--</td>
</tr>
<tr>
<td>Allcrhand, A.</td>
</tr>
<tr>
<td>Amundson, K.</td>
</tr>
<tr>
<td>Axelson, D.</td>
</tr>
<tr>
<td>Banci, L.</td>
</tr>
<tr>
<td>Banyai, I.</td>
</tr>
<tr>
<td>van Berkum, H.</td>
</tr>
<tr>
<td>Berkoff, B. P.</td>
</tr>
<tr>
<td>Blum, P.O.</td>
</tr>
<tr>
<td>Cingert, P.</td>
</tr>
<tr>
<td>Cowburn, D.</td>
</tr>
<tr>
<td>Dellwo, M.</td>
</tr>
<tr>
<td>Ellington, D. H.</td>
</tr>
<tr>
<td>Fry, D. C.</td>
</tr>
<tr>
<td>Furo, I.</td>
</tr>
<tr>
<td>Gagnaire, D.</td>
</tr>
<tr>
<td>Glaser, J.</td>
</tr>
<tr>
<td>Goenertel, N. C.</td>
</tr>
<tr>
<td>Halle, B.</td>
</tr>
<tr>
<td>Hansen, P. E.</td>
</tr>
<tr>
<td>Harrison, D.</td>
</tr>
<tr>
<td>Helm, L.</td>
</tr>
<tr>
<td>Kelly, D. P.</td>
</tr>
<tr>
<td>Levy, G. C.</td>
</tr>
<tr>
<td>Liu, K.</td>
</tr>
<tr>
<td>Maple, S. R.</td>
</tr>
<tr>
<td>Meent, K.</td>
</tr>
<tr>
<td>Middelman, L. M.</td>
</tr>
<tr>
<td>Moore, P. J.</td>
</tr>
<tr>
<td>O'Connor, S. A.</td>
</tr>
<tr>
<td>Oliffseld, E.</td>
</tr>
<tr>
<td>Peters, J. A.</td>
</tr>
<tr>
<td>Prigess, P. S.</td>
</tr>
<tr>
<td>Ray, B. D.</td>
</tr>
<tr>
<td>Redfield, A. G.</td>
</tr>
<tr>
<td>Reiner, J. A.</td>
</tr>
<tr>
<td>Reidfeld, P. L.</td>
</tr>
<tr>
<td>Sanders, J. K. M.</td>
</tr>
<tr>
<td>Sinta, B.</td>
</tr>
<tr>
<td>Snyder, J. R.</td>
</tr>
<tr>
<td>Sotak, C. H.</td>
</tr>
<tr>
<td>Swiecinski, F. J.</td>
</tr>
<tr>
<td>Thomas, R. D.</td>
</tr>
<tr>
<td>Teng, C. K.</td>
</tr>
<tr>
<td>Turner, C. J.</td>
</tr>
<tr>
<td>Venema, P. R.</td>
</tr>
<tr>
<td>Vettero, P.</td>
</tr>
<tr>
<td>Ward, A. J.</td>
</tr>
<tr>
<td>Wasull, S. R.</td>
</tr>
<tr>
<td>Watson, J. A.</td>
</tr>
<tr>
<td>Weiners, M. W.</td>
</tr>
<tr>
<td>Woessner, D. E.</td>
</tr>
<tr>
<td>Wong, T. C.</td>
</tr>
<tr>
<td>20</td>
</tr>
<tr>
<td>66</td>
</tr>
<tr>
<td>66</td>
</tr>
<tr>
<td>20</td>
</tr>
<tr>
<td>5</td>
</tr>
<tr>
<td>17</td>
</tr>
<tr>
<td>5</td>
</tr>
<tr>
<td>5</td>
</tr>
<tr>
<td>46</td>
</tr>
<tr>
<td>62</td>
</tr>
<tr>
<td>23</td>
</tr>
<tr>
<td>12</td>
</tr>
<tr>
<td>56</td>
</tr>
<tr>
<td>5</td>
</tr>
<tr>
<td>33</td>
</tr>
<tr>
<td>32</td>
</tr>
<tr>
<td>49</td>
</tr>
<tr>
<td>67</td>
</tr>
<tr>
<td>49</td>
</tr>
<tr>
<td>32</td>
</tr>
<tr>
<td>49</td>
</tr>
<tr>
<td>66</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>TEXAS A&M NMR NEWSLETTER NO. 362, NOVEMBER 1988</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author Index</td>
</tr>
<tr>
<td>--</td>
</tr>
<tr>
<td>Allcrhand, A.</td>
</tr>
<tr>
<td>Amundson, K.</td>
</tr>
<tr>
<td>Axelson, D.</td>
</tr>
<tr>
<td>Banci, L.</td>
</tr>
<tr>
<td>Banyai, I.</td>
</tr>
<tr>
<td>van Berkum, H.</td>
</tr>
<tr>
<td>Berkoff, B. P.</td>
</tr>
<tr>
<td>Blum, P.O.</td>
</tr>
<tr>
<td>Cingert, P.</td>
</tr>
<tr>
<td>Cowburn, D.</td>
</tr>
<tr>
<td>Dellwo, M.</td>
</tr>
<tr>
<td>Ellington, D. H.</td>
</tr>
<tr>
<td>Fry, D. C.</td>
</tr>
<tr>
<td>Furo, I.</td>
</tr>
<tr>
<td>Gagnaire, D.</td>
</tr>
<tr>
<td>Glaser, J.</td>
</tr>
<tr>
<td>Goenertel, N. C.</td>
</tr>
<tr>
<td>Halle, B.</td>
</tr>
<tr>
<td>Hansen, P. E.</td>
</tr>
<tr>
<td>Harrison, D.</td>
</tr>
<tr>
<td>Helm, L.</td>
</tr>
<tr>
<td>Kelly, D. P.</td>
</tr>
<tr>
<td>Levy, G. C.</td>
</tr>
<tr>
<td>Liu, K.</td>
</tr>
<tr>
<td>Maple, S. R.</td>
</tr>
<tr>
<td>Meent, K.</td>
</tr>
<tr>
<td>Middelman, L. M.</td>
</tr>
<tr>
<td>Moore, P. J.</td>
</tr>
<tr>
<td>O'Connor, S. A.</td>
</tr>
<tr>
<td>Oliffseld, E.</td>
</tr>
<tr>
<td>Peters, J. A.</td>
</tr>
<tr>
<td>Prigess, P. S.</td>
</tr>
<tr>
<td>Ray, B. D.</td>
</tr>
<tr>
<td>Redfield, A. G.</td>
</tr>
<tr>
<td>Reiner, J. A.</td>
</tr>
<tr>
<td>Reidfeld, P. L.</td>
</tr>
<tr>
<td>Sanders, J. K. M.</td>
</tr>
<tr>
<td>Sinta, B.</td>
</tr>
<tr>
<td>Snyder, J. R.</td>
</tr>
<tr>
<td>Sotak, C. H.</td>
</tr>
<tr>
<td>Swiecinski, F. J.</td>
</tr>
<tr>
<td>Thomas, R. D.</td>
</tr>
<tr>
<td>Teng, C. K.</td>
</tr>
<tr>
<td>Turner, C. J.</td>
</tr>
<tr>
<td>Venema, P. R.</td>
</tr>
<tr>
<td>Vettero, P.</td>
</tr>
<tr>
<td>Ward, A. J.</td>
</tr>
<tr>
<td>Wasull, S. R.</td>
</tr>
<tr>
<td>Watson, J. A.</td>
</tr>
<tr>
<td>Weiners, M. W.</td>
</tr>
<tr>
<td>Woessner, D. E.</td>
</tr>
<tr>
<td>Wong, T. C.</td>
</tr>
<tr>
<td>20</td>
</tr>
<tr>
<td>66</td>
</tr>
<tr>
<td>66</td>
</tr>
<tr>
<td>20</td>
</tr>
<tr>
<td>5</td>
</tr>
<tr>
<td>17</td>
</tr>
<tr>
<td>5</td>
</tr>
<tr>
<td>46</td>
</tr>
<tr>
<td>62</td>
</tr>
<tr>
<td>23</td>
</tr>
<tr>
<td>12</td>
</tr>
<tr>
<td>56</td>
</tr>
<tr>
<td>13</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>TEXAS A&M NMR NEWSLETTER NO. 362, NOVEMBER 1988</th>
</tr>
</thead>
<tbody>
<tr>
<td>Advertiser Index</td>
</tr>
<tr>
<td>--</td>
</tr>
<tr>
<td>Bruker Instruments, Inc.</td>
</tr>
<tr>
<td>Dey Scientific, Inc.</td>
</tr>
<tr>
<td>Fermont Magnetic Resonance</td>
</tr>
<tr>
<td>GE NMR Instruments</td>
</tr>
<tr>
<td>Isotec Inc.</td>
</tr>
<tr>
<td>JEOL (U.S.A.) Inc., Analytical Instruments Division</td>
</tr>
<tr>
<td>Nalorac Cryogenics Corporation</td>
</tr>
<tr>
<td>Norrell, Inc.</td>
</tr>
<tr>
<td>Spectroscopy Imaging Systems Corporation</td>
</tr>
<tr>
<td>Varian</td>
</tr>
<tr>
<td>Wilmad Glass Company, Inc.</td>
</tr>
<tr>
<td>New Methods Research, Inc.</td>
</tr>
<tr>
<td>NMR Technologies Inc.</td>
</tr>
<tr>
<td>Procter & Gamble Company, Miami Valley Labs</td>
</tr>
<tr>
<td>Programmed Test Sources, Inc.</td>
</tr>
<tr>
<td>Shelm Development Company</td>
</tr>
<tr>
<td>Spectroscopy Imaging Systems Corporation</td>
</tr>
<tr>
<td>Spectral Data Services, Inc.</td>
</tr>
<tr>
<td>Union Carbide Corporation</td>
</tr>
<tr>
<td>Varian, Analytical Instrument Division</td>
</tr>
<tr>
<td>9</td>
</tr>
<tr>
<td>47</td>
</tr>
<tr>
<td>15</td>
</tr>
<tr>
<td>37, inside back cover</td>
</tr>
<tr>
<td>21</td>
</tr>
<tr>
<td>outside back cover</td>
</tr>
<tr>
<td>53</td>
</tr>
<tr>
<td>59</td>
</tr>
<tr>
<td>27</td>
</tr>
<tr>
<td>3</td>
</tr>
<tr>
<td>inside front cover</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SPONSORS OF THE TAMU NMR NEWSLETTER</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abbott Laboratories</td>
</tr>
<tr>
<td>The British Petroleum Co., Ltd. (England)</td>
</tr>
<tr>
<td>Bruker Instruments, Inc.</td>
</tr>
<tr>
<td>Cryomagnet Systems, Inc.</td>
</tr>
<tr>
<td>The Dow Chemical Company</td>
</tr>
<tr>
<td>Eastman Kodak Company</td>
</tr>
<tr>
<td>E. I. du Pont de Nemours & Company</td>
</tr>
<tr>
<td>GE NMR Instruments</td>
</tr>
<tr>
<td>JEOL (U.S.A.) Inc., Analytical Instruments Division</td>
</tr>
<tr>
<td>The Lilly Research Laboratories, Eli Lilly & Company</td>
</tr>
<tr>
<td>Millipore Corporation</td>
</tr>
<tr>
<td>Waters Chromatography Division</td>
</tr>
<tr>
<td>The Monsanto Company</td>
</tr>
<tr>
<td>New Methods Research, Inc.</td>
</tr>
<tr>
<td>NMR Technologies Inc.</td>
</tr>
<tr>
<td>Procter & Gamble Company, Miami Valley Labs</td>
</tr>
<tr>
<td>Programmed Test Sources, Inc.</td>
</tr>
<tr>
<td>Shelm Development Company</td>
</tr>
<tr>
<td>Spectroscopy Imaging Systems Corporation</td>
</tr>
<tr>
<td>Spectral Data Services, Inc.</td>
</tr>
<tr>
<td>Union Carbide Corporation</td>
</tr>
<tr>
<td>Varian, Analytical Instrument Division</td>
</tr>
<tr>
<td>13</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>FORTHCOMING NMR MEETINGS</th>
</tr>
</thead>
<tbody>
<tr>
<td>30th ENC (Experimental) NMR Conference, April 26-6, 1989; Asilomar Conference Center, Pacific Grove, California; Conference Chair: A. N. Garroway; Contact Ms. Judith A. Watson, ENC Conference Center, 750 Audubon, East Lansing, MI 48823; (517) 332-3667.</td>
</tr>
<tr>
<td>The Society of Magnetic Resonance in Medicine - Eighth Annual Scientific Meeting and Exhibition, August 12-19, 1989; Amsterdam, The Netherlands; Contact: The S.M.R.M. Business Office, 1918 University Ave., Suite 3C, Berkeley, CA 94704; (415)341-1899, T/A (415)341-2340.</td>
</tr>
<tr>
<td>9th International Meeting on NMR Spectroscopy, Sponsored by the Royal Society of Chemistry, July 10-14, 1989; University of Warwick, Coventry, England; Contact: Dr. John F. Gibson, Royal Society of Chemistry, Burlington House, Piccadilly, London W1B 0BN, England; (01) 437-8656.</td>
</tr>
<tr>
<td>3rd Chianti Workshop on Magnetic Resonance Relaxation, May 28 - June 2, 1989; San Miniato (Pisa), Italy; Contact: L. Banci. Dipartimento di Chimica Bioorganica, Universita degli Studi di Firenze, Via Gino Capponi 7, 50121 Firenze, Italy. See Newsletter 362, 68.</td>
</tr>
<tr>
<td>San Francisco Symposium - In Vivo Magnetic Resonance Spectroscopy II, March 31 - April 2, 1989; San Francisco, California; Contact: Veterans Adm. Medical Center, Magnetic Resonance Unit, 4150 Clement Street (11D), San Francisco, CA 94121. See Newsletter 362, 49.</td>
</tr>
</tbody>
</table>

Additional listings of meetings, etc., are invited.
Dr. Barry Shapiro
TAMU NMR Newsletter

Dear Dr. Shapiro:

BIG PLOTS FROM LITTLE LASERWRITERS

Several contributors have commented on using a laser writer as an output device (i.e., plotter) for NMR spectra. We have been doing this for some time, using a little set of programs developed from Hare’s FTNMR. Of possible use to others is a program which will rescale the plot, and also produce 4,9,16,25... sheets of standard paper output expanding a plot to a very large scale for ease of examination. Producing such large plots using our Bruning plotter driven from the spectrometer had been a ticklish proposition, with many runs failing because of dry pens, or more technologically advanced failures, of the kind well known to all readers.

It still takes quite a time to produce these plots, and the program is currently limited to about one million drawn vectors. You also have to trim the pages (there are cut marks), and tape them together. I am also unsure that it uses exactly the same format as Dennis Hare’s current ‘.plt’ files, but that should be easy for users to change.

I am happy to send a listing of the fortran source and a UNIX shell to anyone interested, who requests it via electronic mail (addresses above). The ‘manual’ page for the program is reproduced below.

Sincerely,

David Cowburn

NAME
plotfx1 - expanded and multisheet plots from RUNMR output using the pm=3 option

SYNOPSIS
plotfx1 filename [sheets [scale factor]]

DESCRIPTION
plotfx1 controls filters to produce and reformat the output from runmr to files and into the laserwriter. THIS OPTION SHOULD BE USED FOR LARGE SCALE VERY HIGH RESOLUTION PLOTTING. USE the 4014 emulators and screen dumps on the SUN and NDS terminals for general low resolution work.

Multisheeting can be done by entering a small integer as the second argument after the single filename, usefully in the range 2-4; each axis will be divided by this number (min 1) to give 4,9,16,25... sheets per plot. Higher numbers than 4 are possible but not recommended. If there is no second argument, then one sheet is produced.

Scaling can be accomplished by entering a single number to act as both x and y scale other than 1.0 Useful ranges are 0.5 - 1.5. This is the third argument. The default value is 1.5.

Examples
plotfx1 test.plt - produces a single sheet plot of 1.5x1.5 scale.
plotfx1 test.plt 3 - produces nine sheets with the 1.5x1.5 scale
plotfx1 test.plt 2 1.2 - produces 4 sheets with a 1.2x1.2 scale.

FILES
/usr/local/bin/plotfx1 The shell for plotfx1.
/usr/local/bin/plotfx.out The active fortran program for plotfx1.
/usr/spool/lw The spool area for the laserwriter
/usr/local/src/plotfx.f Source for the program.

AUTHOR
David Cowburn

BUGS
There is a limited buffer, about 1M data entries. A message will be produced and the program continues with the full buffer if the limit is exceeded (unlikely).

There is a built-in overlap of parts of the multisheets, to permit pasting together. Because the toner tends to fade first at the edges, there may be difficulty making multisheet copies that are highly aesthetic. Probably one sheet can ALWAYS be used for illustration purposes.

The algorithm that windows the graphs uses a test for whether a vector enters the displayed space, excluding the overlapped region. The overlapped regions may therefore have SOME missing vectors. The ‘true’ display area will be correct.

The plotting at the laserwriter is slow, and there is the possibility that multiple runs will overflow the spool space. The output files of the form tmp{num} are in the current directory, and should not be deleted before the plot is produced. These files can be previewed with the ‘tek’ filter.

BE PATIENT: A large multiple contour plot may take a considerable time to process and to plot. Unlike previous ‘plot’ commands, this leaves your filename alone. Disposing of the ‘*.plt’ files is your business.
How to bring true computer power to your NMR research

Introducing: the new VXR 5000 Series computers which integrate Varian’s NMR processing and control software with computer workstations from one of the world’s leading manufacturers—Sun Microsystems.*

Now, for the first time, you can add a broad range of true computer capabilities to your NMR research. These features make that possible:

- **Industry-standard computers and advanced version of the UNIX® operating system**—provide high reliability and peak performance
- **Advanced windowing system**—fast and extremely easy to use
- **Flexible data processing**—from routine 1-D spectra to automatic 2-D analysis
- **Image processing**—quickly processes large, multidimensional images
- **Multipurpose and multiuser**—expands laboratory capabilities and increases productivity

Call now for all the facts
In the United States, call 800-231-8134.
In Canada, call 416-457-4130.
In Europe, call Zug, Switzerland, at (042) 44 88 44; Darmstadt, Germany, at (06151) 70 30. In Japan, call (3) 204 1211.

*Sun Microsystems is a trademark of Sun Microsystems, Inc.
UNIX is a trademark of AT&T Bell Laboratories.
How to acquire expert NMR data at the touch of a button

Gemini

Announcing Gemini: Never has any NMR spectrometer been this easy to learn and use.

GuidePath™—our new advanced-menu user interface makes Gemini the world's easiest-to-use spectrometer. And gives you expert results!

Never has FT NMR been this reliable

Gemini's industry-standard design, the complete automation of all spectrometer functions, user-proven expert system software and extensive diagnostics all combine to produce the world's most reliable FT NMR results.

Call now

Get all the facts about Gemini—the new superconducting FT NMR from Varian. In the U.S., call 800-231-8134. In Canada, call 416-457-4130. In Europe, call Zug, Switzerland, at (042) 44-88-44; Darmstadt, Germany, at (06151) 7030. In Japan, call 3-204-1211.

Gemini is designed and tested to meet the most rigorous standards of reliability, including extensive vibration and environmental tests.

Varian is your full-line company for analytical instrumentation
UV-Visible-NIR
LIMS
Data Systems
Atomic Absorption
NMR
Liquid Chromatography
Gas Chromatography

NMR WITH A FUTURE
Dear Dr. Shapiro,

Recently, a Varian VXR-400 NMR was installed in our laboratory and so we did some experiments to get an idea of the possibilities and non-possibilities at this high field. Because of our interest in metal ion coordination in aqueous solution, we performed some ^{17}O NMR experiments on an aqueous solution of Al(NO$_3$)$_3$. Surprisingly, we observed a shoulder to the bulk water signal at 25 °C. Raising the temperature to 75 °C caused narrowing of the signals, and two separated peaks could be observed (Fig. 1). Integration of the signals relative to the NO$_3^{-}$–^{17}O signal, showed that the peak at 24 ppm corresponds to six oxygens. Therefore, this peak can be assigned to the slow exchanging water ligands of the hexa-aquaaluminium-ion: Al(H$_2$O)$_6^{3+}$.

The same experiment was performed on an aqueous solution of Ga(NO$_3$)$_3$ and once again a shoulder to the bulk water signal could be observed (Fig. 2). However, raising the temperature caused coalescence of the signals, presumably due to enhanced ligand exchange rate of the Ga(H$_2$O)$_6^{3+}$ ion.

An ^{17}O NMR experiment on an aqueous solution of In(NO$_3$)$_3$ revealed only one water signal, probably because of fast ligand exchange between the complex and the bulk.

Until recently, the only way to observe the bound water molecules was by adding a shift (Co(II) <1>) or relaxation (Mn(II) <2>) reagent to the solution. Obviously, the introduction of a second metal ion to the solution is a serious disadvantage in coordination chemistry research. Meanwhile, Oldfield et al <3> and Akitt et al <4> reported ^{17}O NMR experiments on base hydrolyzed Al(III) solutions. The peak at 24 ppm was assigned to both bound water and hydroxy oxygens of the Al-dimer.

Currently, we are using ^{17}O NMR of Al(III) bound waters in a study of the coordination of Al(III) by (poly)hydroxycarboxylates.

Sincerely,

F. R. Venema

J. A. Peters

H. van Bekkum
Fig. 1: 54.2 MHz 17O NMR spectrum of 0.5 M Al(NO$_3$)$_3$ solution in D$_2$O (pH = 0.5) at 75 °C.

Fig. 2: 54.2 MHz 17O NMR spectrum of 0.5 M Ga(NO$_3$)$_3$ solution in D$_2$O (pH = 1.2) at 25 °C.

Dear Sir:

Analysis of Nuclear Magnetic Resonance (NMR) Spectroscopy data requires interpretation of data in the time and frequency domains. Our research group in the Chemical Engineering Department at the University of California at Berkeley has developed computer programs for NMR data manipulation and analysis based upon the ASYST software package. ASYST is a popular high level software package for the IBM PC environment available from Macmillan Software Company. The high level matrix manipulation subroutines provided by ASYST simplify the task of processing large data arrays.

One program, NMRAST, apodizes, left shifts, smooths, Fourier transforms complex time domain data, and interactively phase corrects resultant frequency domain data. This program also autobaseline corrects the data upon loading. The data fitting programs developed, FIT and TSFIT use the newton-raphson convergence method to fit data to model functions. The programs return a plot of the data and best fit, optimized parameters, and parameter uncertainty based upon the goodness of fit. In TSFIT (or "time space" fit), the user must enter amplitude-time data pairs. For time domain fitting, some model functions are linear combinations of exponential decays. Variations of this program can use the general solution to the first order decay equation as it's model function as well as fit the logarithm of the data. Figure 1 shows an example of TSFIT applied to the rotating frame relaxation of protons in p-hydroxybenzoic acid/polyethylene terephthalate 80/20 copolymer. There is also a routine called FIDASYST which integrates the norm of the free induction decay. The systematic error caused by noise is corrected for and the uncertainty of the integration is calculated using a determination of the baseline noise amplitude. The free induction decay (FID) can also be fit with a polynomial using the GO routine. This program treats the FID as a complex array, phases both the x and y data sets, and given the dead time will extrapolate to time=0 before fitting a polynomial (using an F test) to the free induction decay from a data file.

The FIT programs used for the frequency domain fitting take Fourier transform data directly from data files on floppy or hard disks. For frequency domain fitting, the model functions available include: simple lineshapes (gaussian or lorentzian); compound lineshapes made up of linear combinations of gaussian and lorentzian lineshapes (specifically two and three gaussian lineshapes, and a gaussian lineshape with either one or two lorentzian lineshapes); and some specialized convoluted "heterogeneous" lineshapes found in solid state NMR spectroscopy (in particular a gaussian-convoluted Pake doublet with possible addition of a gaussian and/or lorentzian lineshape). An example of the latter two lineshapes can be found in figures 2 and 3 below. Figure 2 shows a proton magnetic resonance spectrum of amorphous hydrogenated silicon with a gaussian lineshape (dark line) of about 25 kHz FWHM, combined with a lorentzian lineshape to yield the dark curve through the data. A built-in subroutine in the TSFIT programs calculates the zeroth, first, second, and fourth moments of the data. Another version, which uses an asymmetric chemical shift powder pattern as it's model function is under development (but will probably first be implemented in Mathematica, see below). Other frequency domain programs include integration routines which both baseline correct and integrates FFT data directly from data files.

Data and fitted lineshapes can be ported from the ASYST environment on the IBM PC's to many useful graphics programs on the Apple Macintosh for POSTSCRIPT display and laserwriter output. In addition to standard Mac programs like MacDraw II and Cricket Graph, more advanced software is beginning to be utilized to perform everything from data acquisition and analysis, to technical presentations on a Mac II. Specifically, Mathematica (a system for both numerical and symbolic calculations from Wolfram Research, Inc.) is being used to replicate and expand the functionality of the ASYST programing mentioned above. Hopefully, this environment will prove useful as powerful graphics implementations of Mathematica become widely available on UNIX platforms, Sun workstations, IBM's OS/2 PCs, and even as the standard computing environment to be bundled with the new NeXT workstation (scheduled for release on October 13, 1988 as of this writing). Mathematica is an interpreted language itself and can output expressions in C or Fortran as well as TeX for typeset papers or presentations. Mathematica also produces two and three-dimensional color graphics in POSTSCRIPT. The faster coprocessor and larger RAM available (8 Megabytes) in the Mac II allow for more complex data analysis techniques within a single platform.

The goal is to implement the aforementioned functionality of the ASYST programs above within the standard

(Received 9/28/88)
computing environment of the Mathematica kernel on the graphical interface of the Mac II front end. The Mathematica kernel can also be run on another machine (like a microVAX) and accessed over a network by the Mac front end. Mathematica "notebooks" on all aspects of NMR data analysis are being worked on to form a user library with which various lineshape fitting algorithms can be applied to spectra within the Mac environment.

Figure 1: Rotating frame relaxation in HBA/PET 80/20

Figure 2: Gaussian and Lorentzian

Figure 3: Gaussian Convoluted Pake Doublet

Sincerely,

Karl Amundson
Research Associate
Chemical Engineering

Bruce Berkoff
Research Associate
Biophysics

Jeffrey A. Reimer
Associate Professor
Chemical Engineering
The NMR evolution continues:

The NMR microscope, at last.

The new Bruker microscopy accessory provides the medical, biological and materials researcher with an exciting new NMR capability: very high resolution NMR imaging on small samples. An unprecedented variety of experiments are now possible using the NMR microscope:

- T_1/T_2 Imaging
- Multi-Echo
- Multi-Slice
- Volume Selective Spectroscopy
- Chemical Shift Imaging
- Diffusion Imaging
- Multi-Nuclear Imaging

The Bruker NMR microscope accessory comes as a comprehensive package, requires virtually no modification of the standard spectrometer, and includes software and image processor.

Designed to work on both Bruker wide-bore AM and MSL systems, this versatile new accessory redefines the limits of spatial resolution.

The power of this technique is illustrated by the images shown above, which were obtained using an AM-400WB spectrometer with 9.4 Tesla operating field strength.

Fig. A: Cross sectional image of a philodendron stem. Resolution 19µ x 19µ x 300µ.

Fig. B: Cross sectional image of a mouse brain tumor. Resolution 100µ x 100µ x 500µ.

Fig. C: A cross sectional image of a mouse eye, 3 mm in diameter. Resolution 20µ x 20µ x 250µ.

Fig. D: Image of an ovum from laevis (frog egg). Resolution 10µ x 10µ x 250µ.

Fig. E: Diffusion of water through a piece of nylon. Resolution 50µ x 50µ x 1000µ.

Explore the potential of this technology. Ask your nearest Bruker representative for more details on the new microscope or other NMR products.

Bruker Instruments, Inc.
Manning Park, Billerica, MA 01821
In Europe: Bruker Analytische Messtechnik GmbH, Silberstreifen, D-7932 Rheinstetten 4, W. Germany

NMR systems designed to solve problems.
New Proton* Micro-Imaging Accessory
for AM and MSL Widebore Systems.

The standard configuration includes:
1. High resolution image graphics display processor and high resolution B/W monitor
2. Gradient amplifiers (x, y, and z)
3. Gradient pre-emphasis unit and gradient wave form memories
4. Selective Excitation Unit consisting of:
 a. RF wave form memory
 b. RF pulse amplitude modulator
 c. Linear RF amplifier
5. Probehead with integral gradient assembly
6. Imaging software
*Other nuclei available upon request

Micro-Imaging Accessory

- Image graphics display processor
- Display monitor
- Gradient pre-emphasis unit
- Gradient amplifiers (x, y, z)
- Wave form memories
- RF amplitude modulation
- Linear-RF amplifier
- Selective Excitation Unit
- Variable temp. air
- Main console
- Spectrometer
- RF AMP
- High power

Contact Information

- Australia: BRUKER (Australia) Pty. Ltd., Earlwood, New South Wales, Tel. 02-55393747
- Belgium: BRUKER SPECTROSPIN S.A./N.V., Brussels, Tel. (02) 648-53-93
- Canada: BRUKER SPECTROSPIN LTD., Milton, Ontario, Tel. (416) 876-4644
- England: BRUKER SPECTROSPIN LTD., Coventry, Tel. (02) 6463770
- France: SADS BRUKER SPECTROSPIN SA, Wissembourg, Tel. (088) 94-58-77
- India: BRUKER INDIA SCIENTIFIC Pvt. LTD., Bombay, Tel. 22 62 72 32
- Italy: BRUKER SPECTROSPIN SRL., Milano, Tel. (02) 23 50 09, 2 38 40 89
- Japan: BRUKER JAPAN CO., Ltd., Kobe, Tel. 07-54-72 32 51
- Netherlands: BRUKER SPECTROSPIN NV, Wormer, Tel. (75) 28 52 51
- Scandinavia: BRUKER SPECTROSPIN AB, Älvsborg, Sweden, Tel. (07 64) 6 90 03
- Spain: BRUKER ESPANDA S.A., Madrid, Tel. 341-259-2371
- Switzerland: SPECTROSPIN AG, Fallanden, Tel. 182 59 111
- W. Germany: BRUKER ANALYTISCHE MESSTECHNIK GMBH, Rheinstetten, Tel. 0721-5161-0
- USA: BRUKER INSTRUMENTS, INC., Billerica, MA 01821, (617) 687-9020
- Regional Offices in Chicago IL, Wilmington/DE, Houston/TX, San Jose/CA
Dear Barry, Sept. 27, 1988 (received 10/7/88)

As the letterhead indicates, I have left Energy, Mines & Resources to start my own private company. We will be offering multinuclear (solution and solid state) nmr services near the end of the year - when our Bruker spectrometer arrives. Anyone wishing additional information should write to me at the above address.

In order to initiate my subscription to the newsletter, I would like to briefly discuss some recent results obtained (during my final EMR days) concerning the characterization of clay - organic complexes derived from oil sands. Previous (non-nmr) work has indicated that the amount of insoluble organic matter present correlates with the relative efficiency of recovery of bitumen (through the formation of stable water - in - oil and oil - in - water emulsions). Therefore the nature of the organic component of the insoluble clay - organic complexes extracted from various streams in an oil sands recovery process was examined. In particular, we were interested in determining whether the exact carbon functional group distribution was a better measure of processability than the total amount of insoluble organic matter present. Although I will dwell on the nmr results, we also employed interfacial tension measurements, thermogravimetric analysis, photoacoustic infrared, and scanning electron microscopy / image analysis in this project.

The general observations to be made actually represent a distillation of a long, on-going, study of samples taken from various points in the extraction process, including feed samples. Both 'good' (ie, low water (<5%) content emulsions) and 'bad' (high water (>5%) content emulsions) were collected over a period of 18 months. The solids (insoluble organic matter - clay mineral complexes) were extracted from these samples by both the Dean -Stark and ultracentrifugation methods. All data were obtained on a Bruker CXP200 at 50.3 MHz with 4 kHz magic angle spinning in boron nitride rotors, 4K data points, 5 µs (90°) pulse width, 1 ms contact time, quadrature detection, and 5 s recycle delay. The low carbon content of some complexes (<10% by weight, corresponding to <300 µg carbon) necessitated data acquisition times of 12 to 150 hours/sample.

The most dramatic differences found are illustrated by the final centrifuge feed samples shown in Figure 1. The low water content sample (bottom spectrum) contained no detectable carboxylic acid group peaks, whereas the high water sample (upper spectrum) contained a significant intensity in this region. The remaining carbon functional group distribution was similar in all respects in these samples.

These constant differences between such sample pairs indicate that the high water content emulsions arise from the presence of very hydrophilic organic materials attached to the clay mineral surfaces. Correlations were found with processability, emulsion stability, amount and nature of bound organic matter, amount and nature of bound heavy metal minerals, and interfacial tension measurements.

Best regards,

Dr. David Axelson
Figure 1. C-13 solid state CPMAS spectra of clay-organic complexes.

October 3, 1988

Dr. Bernard L. Shapiro
TAMU NMR News Letter
944 Elsinore Court
Palo Alto, CA 94303

RE: Position available for Assistant Professor of Radiology in Residence

Dear Dr. Shapiro:

A position is available for an Assistant Professor of Radiology in Residence in the Magnetic Resonance Unit at the Veterans Administration Medical Center, Department of Radiology, University of California, San Francisco. This individual should possess a Ph.D. and postdoctoral training in in vivo localization techniques, proton water suppressed spectroscopy, and brain metabolism.

Sincerely,

MICHAEL W. WEINER, M.D.
Associate Professor of Medicine and Radiology
Dear Dr. Shapiro:

Recently we have made the spin dynamics calculation of the response, in the frequency domain, of half integer $I > 1$ nuclei in anisotropic systems to the quadrupolar echo (QE) pulse sequence \((\pi/2)_x \cdot \tau \cdot (-\pi/2)_y \cdot \tau \cdot \), including the effects of relaxation\[1\]. Contrary to the $I = 1$ case, the response as a function of τ is modulated by the quadrupolar precession (Fig. 1). When the QE experiment is carried out in the 2-D fashion, interesting spectroscopic and relaxation information can be extracted from the F1 spectra.

The salient features of the 2D QE spectra in the F1 dimension are as follows. The number of satellite peaks depends on whether the F1 cross-section is taken at a satellite \((\omega_2 = \omega_0) \) or at the central line \((\omega_2 = 0) \) position in F2. The splitting/linewidth ratio is reduced by an integral factor. The most important feature, however, is that the F1 spectra derived from satellite positions in F2 have a central line whose width contains a contribution from the zero-frequency spectral density, \(j_0 \). This linewidth is free from the effects of inhomogeneous broadening due to orientational distribution. This is in sharp contrast to the conventional 1-D spectra in which the satellite linewidth which contains the contribution from \(j_0 \) is usually severely broadened by such effects. Since \(j_0 \) can be determined accurately, the width of the orientational distribution can also be measured from the satellite linewidths in the F1 dimension.

Experiments have been performed for \(^{23}\text{Na}\) (counterions) and \(^{17}\text{O}\) (water) nuclei in lyotropic liquid crystals for both oriented and powder samples. The purpose of these experiments is to measure the spectral densities, particularly, \(j_0 \), to study the "slow" motion arising from diffusion of these species. Two systems have so far been studied, a reversed hexagonal liquid crystal (F) phase of AOT/water/isoctane and a lyotropic nematic phase of sodium dodecylsulfate/water/decanol/sodium sulfate. Two examples can be given here from the preliminary results to illustrate the usefulness of this technique. First, the \(j_0 \) of \(^{23}\text{Na}\) in the powder samples of the F phase is considerably larger than that of the partially oriented samples. The difference can be attributed to the presence of an additional slow motion, most likely diffusion of the counterions between domains of different orientations in the powder samples. Second, the \(^{17}\text{O}\) spectral densities measured for the nematic and the oriented F phase samples showed significant difference from the \(^2\text{H}\) relaxation results which are affected by deuteron exchange.

Sincerely yours

Bertil Halle
Univ. of Lund

Istvan Furo
Univ. of Lund

Tuck C. Wong
Univ. of Missouri

Figure 1. Experimental 1-D QE spectra for \(I = 3/2 \) nuclei (\(^{23}\text{Na}\)) in a uniformly oriented sample. The delay \(\tau \) between the two \(\pi/2 \) pulses is
A. \(\tau = 2\pi/\omega_Q \), B. \(\tau = 2.3\pi/\omega_Q \), C. \(\tau = 3\pi/\omega_Q \), where \(\omega_Q \) is the quadrupolar splitting. The small residual satellite signals in C are due to pulse imperfections and to a small distribution of orientations in the "uniformly" oriented sample.

Figure 2. (left) Contour plot for a 2-D QE experiment for \(^{17}\text{O}\) in a partially oriented system. The negative contours are circled. (right) F1 cross-sections at A. \(F_2 = 0 \); B. \(F_2 = \omega_Q \); C. \(F_2 = 2\omega_Q \). The central lines in these F1 spectra are marked by arrows, and their linewidth in terms of spectral densities indicated. In actual linewidth measurements, the imaginary signal in \(t_1 \) is zeroed and a real FT is used to produce spectra in the F1 dimension.\(^{[1]}\)
Sample Changer

Samples. They’re your lifeblood. But they’re also a pain in the neck. And that’s why you’ve been pricing automatic sample changers. But how will you fit one into the budget?

At Fremont Magnetic Resonance we think that you shouldn’t have to abandon your current instrument, or write a major equipment proposal simply to get an instrument accessory. So we offer an alternative to the expensive, overpowered changers offered by the major vendors—a simple, 20-sample carousel system that can be added to many modern and not-so-modern instruments.

Naturally, our changer package includes easy integration with your system, both hardware and software (the degree of integration depends on the instrument). You have complete flexibility to specify all the acquisition parameters for each sample, including v/t. The queueing order can be adjusted at any time, so when a rush job arrives, it can simply be moved to the top of the queue.

There are some applications where the sophisticated capabilities of a robot changer, or the large capacity of the other vendors’ changers are essential. But if your needs are more modest, we can meet them at a more modest price.

V/T Accessory

Accurate and steady control of temperature is increasingly being recognized as important to obtaining high quality spectra. But you couldn’t tell that from the obsolete or temperamental v/t controllers on some instruments.

Good v/t control cannot be done as an afterthought, or with yesterday’s hardware. That’s why at FMR we’ve taken another look at temperature regulation. Our new design consists of three components: a digital proportional controller with dynamically sensed airflow, that fits in an IBM PC or compatible, a separate power controller unit, and a state-of-the-art heater/sensor. The heater provides better than 0.1 degree stability, and the dynamic control algorithm sensing permits accurate regulation even during slow changes in the flow rate. Because of our novel design, the regulated temperature can be as little as 15 degrees above the input temperature.

Our heater/sensors can be fitted to most commercial probes; the control software can integrate smoothly with many NMR systems. This product can be purchased with or without the host PC; call for prices and details on the degree of user transparency with your particular spectrometer.

Off-line Plotting

Plotting takes a lot of time. Even if your spectrometer is capable of multi-tasking and plotting in background, you’ve probably found that fiddling around with the details of a plot has taken time that could better be used in setting up the next experiment. You may even have had to schedule additional time simply to plot some data.

PLOT is a tool that allows you to plot off-line. It requires an IBM PC or compatible computer, and supports all common graphics devices, mice, plotters and printers. After you have transferred the data file, either by serial transfer (in background on NT, QE, and GN spectrometers), Ethernet, or by emulating the spectrometer’s plotter port, you may format your plot exactly as you wish, without tying up valuable instrument time.
From time to time, we all have the need to measure RF voltages on an oscilloscope and determine how much power is present. The tables below make a handy reference.

Voltage to Watts

<table>
<thead>
<tr>
<th>V_{PP}</th>
<th>V_{RMS}</th>
<th>dBm</th>
<th>Watts</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.01</td>
<td>0.0035</td>
<td>-36.0</td>
<td>0.25 μWatts</td>
</tr>
<tr>
<td>0.03</td>
<td>0.01</td>
<td>-26.5</td>
<td>2.25 μWatts</td>
</tr>
<tr>
<td>0.05</td>
<td>0.02</td>
<td>-22.0</td>
<td>6.25 μWatts</td>
</tr>
<tr>
<td>0.08</td>
<td>0.03</td>
<td>-18.0</td>
<td>16 μWatts</td>
</tr>
<tr>
<td>0.1</td>
<td>0.04</td>
<td>-16.0</td>
<td>25 μWatts</td>
</tr>
<tr>
<td>0.3</td>
<td>0.1</td>
<td>-6.5</td>
<td>225 μWatts</td>
</tr>
<tr>
<td>0.5</td>
<td>0.2</td>
<td>-2.0</td>
<td>625 μWatts</td>
</tr>
<tr>
<td>0.8</td>
<td>0.3</td>
<td>2.0</td>
<td>1.6 mWatts</td>
</tr>
<tr>
<td>1</td>
<td>0.4</td>
<td>4.0</td>
<td>2.5 mWatts</td>
</tr>
<tr>
<td>3</td>
<td>1.1</td>
<td>13.5</td>
<td>22.5 mWatts</td>
</tr>
<tr>
<td>5</td>
<td>1.8</td>
<td>18.0</td>
<td>62.5 mWatts</td>
</tr>
<tr>
<td>8</td>
<td>2.8</td>
<td>22.0</td>
<td>0.2 Watts</td>
</tr>
<tr>
<td>10</td>
<td>3.5</td>
<td>24.0</td>
<td>0.3 Watts</td>
</tr>
<tr>
<td>30</td>
<td>10.6</td>
<td>33.5</td>
<td>2.3 Watts</td>
</tr>
<tr>
<td>50</td>
<td>17.7</td>
<td>38.0</td>
<td>6.3 Watts</td>
</tr>
<tr>
<td>80</td>
<td>28.3</td>
<td>42.0</td>
<td>16 Watts</td>
</tr>
<tr>
<td>100</td>
<td>35.4</td>
<td>44.0</td>
<td>25 Watts</td>
</tr>
<tr>
<td>300</td>
<td>106.1</td>
<td>53.5</td>
<td>225 Watts</td>
</tr>
<tr>
<td>500</td>
<td>176.8</td>
<td>58.0</td>
<td>625 Watts</td>
</tr>
<tr>
<td>800</td>
<td>282.8</td>
<td>62.0</td>
<td>1600 Watts</td>
</tr>
</tbody>
</table>

Watts to Voltage

<table>
<thead>
<tr>
<th>Watts</th>
<th>dBm</th>
<th>V_{RMS}</th>
<th>V_{PP}</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.001</td>
<td>0.0</td>
<td>0.2</td>
<td>0.6</td>
</tr>
<tr>
<td>0.003</td>
<td>4.8</td>
<td>0.4</td>
<td>1.1</td>
</tr>
<tr>
<td>0.005</td>
<td>7.0</td>
<td>0.5</td>
<td>1.4</td>
</tr>
<tr>
<td>0.008</td>
<td>9.0</td>
<td>0.6</td>
<td>1.8</td>
</tr>
<tr>
<td>0.01</td>
<td>10.0</td>
<td>0.7</td>
<td>2.0</td>
</tr>
<tr>
<td>0.03</td>
<td>14.8</td>
<td>1.2</td>
<td>3.5</td>
</tr>
<tr>
<td>0.05</td>
<td>17.0</td>
<td>1.6</td>
<td>4.5</td>
</tr>
<tr>
<td>0.08</td>
<td>19.0</td>
<td>2.0</td>
<td>5.7</td>
</tr>
<tr>
<td>0.1</td>
<td>20.0</td>
<td>2.2</td>
<td>6.3</td>
</tr>
<tr>
<td>0.3</td>
<td>24.8</td>
<td>3.9</td>
<td>11.0</td>
</tr>
<tr>
<td>0.5</td>
<td>27.0</td>
<td>5.0</td>
<td>14.1</td>
</tr>
<tr>
<td>0.8</td>
<td>29.0</td>
<td>6.3</td>
<td>17.9</td>
</tr>
<tr>
<td>1</td>
<td>30.0</td>
<td>7.1</td>
<td>20.0</td>
</tr>
<tr>
<td>3</td>
<td>34.8</td>
<td>12.2</td>
<td>34.6</td>
</tr>
<tr>
<td>5</td>
<td>37.0</td>
<td>15.8</td>
<td>44.7</td>
</tr>
<tr>
<td>8</td>
<td>39.0</td>
<td>20.0</td>
<td>56.6</td>
</tr>
<tr>
<td>10</td>
<td>40.0</td>
<td>22.4</td>
<td>63.2</td>
</tr>
<tr>
<td>30</td>
<td>44.8</td>
<td>38.7</td>
<td>109.5</td>
</tr>
<tr>
<td>50</td>
<td>47.0</td>
<td>50.0</td>
<td>141.4</td>
</tr>
<tr>
<td>80</td>
<td>49.0</td>
<td>63.2</td>
<td>178.9</td>
</tr>
<tr>
<td>100</td>
<td>50.0</td>
<td>70.7</td>
<td>200.0</td>
</tr>
<tr>
<td>300</td>
<td>54.8</td>
<td>122.5</td>
<td>346.4</td>
</tr>
<tr>
<td>500</td>
<td>57.0</td>
<td>158.1</td>
<td>447.2</td>
</tr>
<tr>
<td>800</td>
<td>59.0</td>
<td>200.0</td>
<td>565.7</td>
</tr>
<tr>
<td>1000</td>
<td>60.0</td>
<td>223.6</td>
<td>632.5</td>
</tr>
</tbody>
</table>

20dB Attenuator

<table>
<thead>
<tr>
<th>V_{PP}</th>
<th>Watts</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.01</td>
<td>25 μWatts</td>
</tr>
<tr>
<td>0.03</td>
<td>225 μWatts</td>
</tr>
<tr>
<td>0.05</td>
<td>625 μWatts</td>
</tr>
<tr>
<td>0.08</td>
<td>1.6 mWatts</td>
</tr>
<tr>
<td>0.1</td>
<td>2.5 mWatts</td>
</tr>
<tr>
<td>0.3</td>
<td>22.5 mWatts</td>
</tr>
<tr>
<td>0.5</td>
<td>62.5 mWatts</td>
</tr>
<tr>
<td>0.8</td>
<td>160 mWatts</td>
</tr>
<tr>
<td>1</td>
<td>0.25 Watts</td>
</tr>
<tr>
<td>3</td>
<td>2.25 Watts</td>
</tr>
<tr>
<td>5</td>
<td>6.25 Watts</td>
</tr>
<tr>
<td>8</td>
<td>16 Watts</td>
</tr>
<tr>
<td>10</td>
<td>25 Watts</td>
</tr>
<tr>
<td>30</td>
<td>225 Watts</td>
</tr>
<tr>
<td>50</td>
<td>625 Watts</td>
</tr>
<tr>
<td>80</td>
<td>1600 Watts</td>
</tr>
<tr>
<td>100</td>
<td>2500 Watts</td>
</tr>
</tbody>
</table>

30dB Attenuator

\[
V_{PP} = V_{RMS} \times 2 \times \sqrt{2}
\]

\[
P_{Watts} = \frac{(V_{RMS})^2}{50Ω}
\]

\[
P_{dBm} = 10 \times \log_{10} \left(\frac{P_{Watts}}{0.001 W} \right)
\]
Dear Barry:

The COSY Spectra of Singlets: Not As Stupid As You Might Think!

During the seemingly interminable struggle to come to grips with two-dimensional NMR spectroscopy, the arcane topic of N-type and P-type peaks sometimes rears its ugly head. Phase cycles often contain comments such as do "this" for N-type or do "that" for P-type detection. It is easy to gain the impression that the N- and P-type peaks have roughly equal intensity and although no one doubts that there is an advantage to detecting N-type peaks, it is easy to believe that the advantage is small. The diagrams sometimes used to explain the differing phase properties of the components of COSY spectra tend to perpetuate this myth.

In reality, P-type peaks decrease in intensity with respect to the N-type peaks quite rapidly as the acquisition time in either dimension increases. The major reason for this is that the N-type peaks are "real" echo peaks and are essentially insensitive to the inhomogeneity of the magnetic field, whereas there is no such refocussing available for the P-type peaks. This has important consequences for phase-sensitive COSY spectra.

Unfortunately we live in a world of inhomogeneous magnetic fields, where people seem to believe that sample spinning is undesirable in 2-D NMR. They say "It's an echo experiment". "You don't need to spin the sample during an echo experiment". "In fact, its a bad idea", they say. Well, it is undoubtably a bad idea to allow the P-type signals to decay away if you wish to obtain phased COSY spectra, because the P-type peaks are used to cancel the phase-twist component of the N-type peaks. If there is a large difference in intensity between the N- and P-type peaks, the resulting pure phase spectra will have low intensity.

The figure shows the result of increasing the acquisition time in the second dimension on the F_1 response from a unspun sample of lightly doped water ($T_1 = T_2 = 1.2$ s) using a COSY sequence without phase-cycling (i.e. 90°-90°-Acq. The signals are (left to right) P-type, axial and N-type in each of the three separate experiments. The only parameter which was changed was the acquisition time in the second dimension which increased (left to right) from 80 to 160 to 320 ms. Even with acquisition time in the second dimension of less than 100 ms the P-type peaks are still less intense than those of the N-type.

The whole purpose of phase-sensitive 2-D spectroscopy is to provide an increase in resolution over the older method of echo selection. However if the acquisition time in either dimension is increased to make full use of the improvements in resolution that phased data offers, then the intensity of the P-type peaks will fall off, leading to lower overall sensitivity despite the fact that the intensity of the N-type peaks might even improve.

This seems to suggest a strange twisted, almost recursive, loop in logic, whereby the pursuit of resolution in 2-D spectra seems initially to lead away from the principal of echo selection but leads back there since echo selection itself is inevitable.

Best Wishes

C. J. Turner

Columbia University in the City of New York
Department of Chemistry

New York NY10027
Havemeyer Hall

27 Sept 1988
(received 9/30/88)
Dear Professor Shapiro:

Re: Comparison of HOGWASH with GM.

ASPECT 3000 HOGWASH software.

There are times when, despite careful sample preparation and instrument adjustment, one needs to improve the resolution of an NMR spectrum. One of the newer resolution enhancement techniques is the unfortunately named 'HOGWASH' procedure developed by Professor Ray Freeman's group (1-3). HOGWASH has to be one of the more honest enhancement techniques in that it can subtract an experimentally determined instrument lineshape function from the spectrum.

HOGWASH has already been compared with, and generally found superior to, the Maximum Entropy Method (3). What we have done is to compare HOGWASH with the more commonly used Lorentz to Gauss transformation (GM in Brukerese). We have found that, while GM is more convenient for routine enhancement, HOGWASH can have advantages in certain situations.

Spectrum 1a shows a simulated 1 Hz doublet with a 50:1 signal to noise ratio, a T_2 of 0.2 s and a 4.1 s acquisition time. The splitting is lost in the linewidth.

Spectrum 1b shows the effect of GM while spectrum 1c has been HOGWASHed. HOGWASH provides the same degree of resolution enhancement with less amplification of the noise.

Spectrum 2a shows a simulated 1 Hz doublet with no added noise and a T_2 of 0.2 s. The acquisition time has been restricted to 1.0 s. In this case HOGWASH (spectrum 2c) is clearly superior to GM (spectrum 2b). This situation sometimes occurs when trying to observe very small couplings (the acquisition times become very long). The distortions in the GM spectrum are a truncation artifact. The removal of such artifacts in the Fl dimension of 2D spectra was one of the first applications of HOGWASH to NMR (2).

Spectrum 3a is the endo cyclopropyl proton of 17β-acetoxy-3a,4a-cyclopropano-5α-androstane (4). Both GM (spectrum 3b) and HOGWASH (spectrum 3c) show additional fine structure from long-range coupling to $H-2S$, but the signal to noise ratio of 3c is clearly better.

We have also noted that the lineshape distortions caused by severe application of GM can falsify the positions of lines in multiplets. HOGWASH is much better in this regard in that the lineshape is more natural.

All computations were performed on an ASPECT 3000 computer in PASCOM Pascal. FIDs for the simulated doublets were generated with Alex Bain's SIMPLTN program. All HOGWASH computations used a loop gain (γ) of 0.04 and a termination threshold of 0.05 times the highest peak in the spectrum. The reconstruction linewidth was 0.2 Hz.

As a final caveat we should point out that any resolution enhancement technique (GM included!) can produce false splittings and spurious peaks if abused. Even when...
applying GM it is prudent to have a known singlet in the spectrum to assess the effects of the enhancement.

Interested readers can obtain a copy of the program from me provided they supply a formatted 8" floppy disk.

Please credit this letter to Ted Schaefer's account.

Sincerely,

Kirk Marat

4. A complete account of this and other ring-A cyclopropyl steroids is being prepared for submission to Magn. Reson. Chem.

DESCRIPTION OF POSITION:

Raychem Corporation of Menlo Park, California has an immediate opening for a materials scientist with experience in NMR and FTIR spectroscopy.

The ideal candidate should have a PhD with postdoctoral or equivalent industrial experience in chemistry or material science. Proven experience in the application of analytical techniques to fundamental or applied problems is also required.

Job responsibilities include interacting with various materials development groups to apply state-of-the-art methods of molecular spectroscopy. This individual will be responsible for the identification, selection, and initiation of joint research and analysis programs. Additionally, he/she will participate as staff scientist on one or more major R&D projects making technical contributions in the development of novel polymeric, metallic or ceramic materials as appropriate to his/her area of expertise. He/she will supervise a junior staff member.

The laboratory is currently equipped with a Varian XL-300 NMR spectrometer and an IBM FTIR-98. Also included in the Materials Science and Characterization Department are scanning and transmission electron microscopy, x-ray diffraction, ion chromatographs, and surface analysis equipment.

Person to Contact: Dr. Lee M. Middleman, Corporate Technology, Raychem Corporation 300 Constitution Drive, Menlo Park, CA 94025

EQUIPMENT WANTED

200 MHz widebore magnet with or without RT shims and power supply and/or 360 MHz narrowbore magnet with RT shims and power supply. Cash ready. Call Eric at (217) 333-3374 or (217) 352-8995.
<table>
<thead>
<tr>
<th>CAT. NO.</th>
<th>ISOTOPIC LABELLED WATER</th>
<th>NATURAL ABUNDANCE %</th>
<th>ISOTOPIC ABUNDANCE %</th>
<th>NATURAL ABUNDANCE %</th>
<th>ISOTOPIC ABUNDANCE %</th>
<th>QUANTITIES</th>
<th>PRICE U.S.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>4 x 25g</td>
<td>90.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>10 x 25g</td>
<td>200.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>20 x 25g</td>
<td>300.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>30 x 25g</td>
<td>400.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1kg</td>
<td>500.</td>
</tr>
<tr>
<td>82-70001</td>
<td>D₂O (²H₂O) [Deuterium Oxide]</td>
<td>0.015</td>
<td>99.9</td>
<td>1</td>
<td>76.778</td>
<td>100g</td>
<td>40.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>5 x 100g</td>
<td>190.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>10 x 100g</td>
<td>375.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1kg</td>
<td>360.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>5 x 1kg</td>
<td>1775.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>10 x 1kg</td>
<td>3500.</td>
</tr>
<tr>
<td>82-70901</td>
<td>D₂O (²H₂O) [Deuterium Oxide]</td>
<td>0.015</td>
<td>99.8</td>
<td>1</td>
<td>76.778</td>
<td>min. 10kg</td>
<td>3350.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>25kg</td>
<td>8275.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>50kg</td>
<td>16250.</td>
</tr>
<tr>
<td>82-70002</td>
<td>D₂O (²H₂O) [Deuterium Oxide *100%]</td>
<td>0.015</td>
<td>99.96</td>
<td>1</td>
<td>76.778</td>
<td>10g</td>
<td>15.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>5 x 10g</td>
<td>50.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>5g</td>
<td>575.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>10g</td>
<td>1100.</td>
</tr>
<tr>
<td>87-70003</td>
<td>H₂¹⁷O [Water-¹⁷O, normalized]</td>
<td>0.037</td>
<td>20</td>
<td>5/2</td>
<td>67.805</td>
<td>0.5g</td>
<td>300.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1g</td>
<td>450.</td>
</tr>
<tr>
<td>87-70004</td>
<td>H₂¹⁷O [Water-¹⁷O, normalized]</td>
<td>0.037</td>
<td>40</td>
<td>5/2</td>
<td>67.805</td>
<td>50g</td>
<td>190.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>100g</td>
<td>365.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>500g</td>
<td>1775.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1kg</td>
<td>3500.</td>
</tr>
<tr>
<td>88-70023</td>
<td>H₂¹⁸O [Water-¹⁸O, normalized]</td>
<td>0.204</td>
<td>10</td>
<td>76.778</td>
<td>1</td>
<td>85.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>5g</td>
<td>410.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>10g</td>
<td>800.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>25g</td>
<td>1950.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>50g</td>
<td>3800.</td>
</tr>
<tr>
<td>88-70005</td>
<td>H₂¹⁸O [Water-¹⁸O, normalized]</td>
<td>0.204</td>
<td>95</td>
<td>76.778</td>
<td>1</td>
<td>140.</td>
<td></td>
</tr>
<tr>
<td>81-70002</td>
<td>D₂¹⁸O (²H₂¹⁸O) [Water-¹⁸O, not normalized]</td>
<td>0.204 (¹⁸O)</td>
<td>97 (¹⁸O)</td>
<td>70 (²H)</td>
<td>1</td>
<td>550.</td>
<td></td>
</tr>
</tbody>
</table>

Please request prices for larger quantities.

IF YOU DON'T SEE WHAT YOU NEED, CALL

(513) 859-1808 (800) 448-9760
Are you aware that **ISOTEC INC.** is a reliable, affordable source of compounds labelled with the above stable isotopes?

Our product line ranges from the very simple — 1H$_2$O (deuterium-depleted), D$_2$, D$_2$O, 13CO, 13CO$_2$, 13CH$_3$I, K13CN, KC15N, K13C15N, 15NH$_4$Cl, H15NO$_3$, H$_2$17O, H$_2$18O, 18O$_2$, etc. — to the more complex — Benzaldehyde-α13C$_2$,d, Glycine-$2$13C,5N, D-Glucose-$1$13C, D-Glucose-13C$_6$, Styrene-$\alpha$$,\beta$13C$_2$, etc.

We now have hundreds of compounds available from stock and are making more each day. We are also able to carry out many custom syntheses; please let us quote on your requirements.

ISOTEC INC. is also a primary supplier of 3He and the other noble gas stable isotopes, including 21Ne, 83Kr, 129Xe and 131Xe.

Numerous other stable isotopes, enriched and depleted, are available as well as most enriched metal stable isotopes including NMR-active ones such as 28Si, 57Fe, 65Cu, 77Se, 87Rb, 113Cd, 125Te, 157Gd, 199Hg, etc.

ISOTEC INC. provides very high quality stable isotope labelled compounds at very, very affordable prices. Please call Myra Gordon or Maureen Kalloo to place your orders or to receive additional information.
September 27, 1988 (received 10/4/88)

Dr. B. L. Shapiro
TAMU NMR Newsletter
966 Elsinore Court
Palo Alto, CA 94303

Homebuilt Broadline NMR Spectrometer

Dear Dr. Shapiro:

We have recently completed construction of a homebuilt broadline NMR spectrometer. A Nicolet 1080 computer with 293 I/O controller and Diablo disk drive, Biomation 805 fast transient recorder, Rockland 5600 frequency synthesizer, and Nalorac 4.2T superconducting magnet were inherited from earlier projects at IUPUI and form the starting point of the machine. The transceiver was constructed from connectorized components, with the exception of an Amplifier Research 200L high power amplifier, a Cryomagnet's probe, and a little digital electronic circuitry. Minimal experience in rf engineering was consequently required and, hopefully, ease of repair should be insured. I shall be pleased to provide circuit diagrams, which will be included in a manuscript I intend to submit to J. Mag. Reson.

At present the spectrometer is configured for 3H NMR only and an example of a spectrum is shown below. Construction of a 1H decoupler to enable 31P and 13C NMR is currently underway.

Please credit this contribution to B. D. Nageswara Rao's account.

Yours truly,

Bruce D. Ray
Assistant Scientist

SRW:ml

$^{[2^H_{62}]DPPC/Linoleic acid}$ (4:1 molar ratio)/50mM phosphate buffer, pH 7.0

Quadrupolar echo sequence:

$90^\circ - \tau - 90^\circ - 90^\circ - \text{data acquisition.}$

Pulse width = 2.5 μs
$\tau = 50 \mu$s

Indiana University - Purdue University at Indianapolis
"Things are seldom what they seem",

or What is the NMR time-scale ?

Dear Prof. Shapiro,

Thank you for your colorful remainders. Recently, we investigated kinetics of ligand exchange between the different thallium(III) chloride complexes by means of 205Tl-NMR at 9.4 Tesla. We found it amusing to compare different computer-simulated Tl-NMR spectra for this chemical system and would like to share this experience with your readers.

In absence of chemical exchange between the complexes a spectrum of a solution containing 50% TlCl$_2$ + and 50% TlCl$_3$ may look like the one in Fig. 1a. However, such solutions normally contain small amounts of other species, such as Tl$^3+$ or TlCl$_4$. Especially, the presence of the latter complex may introduce some undesirable effects because of the very fast reactions:

$$
\text{TlCl}_3 + \text{TlCl}_2 \rightarrow \text{TlCl}_4 + \text{TlCl}_2
$$

and

$$
\text{TlCl}_3^+ + \text{Cl}^- \rightarrow \text{TlCl}_3
$$

The chemical shift of the species TlCl$_3$ is about 2412 ppm and only slightly more than 1% of TlCl$_3$ may move the signal of TlCl$_2$ to the other side of that of TlCl$_3$ (cf. Fig. 1b). At lower rate constants for the reactions (1) and (2) another fortuitous effect may appear, namely that shown in Fig. 1c., where the signal of TlCl$_3$ is not visible any more since it is so broad that it disappears in the baseline. A different case giving nearly the same spectrum occurs when the concentration of TlCl$_3$ is about 0.8% of the total thallium(III) and the reactions (1) and (2) are very fast: the peaks of TlCl$_3^+$ and TlCl$_4$ happen to be at the same frequency (Fig. 1d.). Under such circumstances it is easy to misassign these peaks and this is also what happened to us in our previous contribution to your Newsletter (no. 352).
In this system also other exchange reactions take place, e.g.

\[
\text{TlCl}_2^+ + \text{TlCl}_2^+ \rightleftharpoons \text{TlCl}_2^+ + \text{TlCl}_2^+ \quad (3)
\]

and

\[
\text{TlCl}_2^- + \text{Cl}^- \rightleftharpoons \text{TlCl}_2^- \quad (4)
\]

The NMR time-scale for this exchange, determined by the chemical shift difference in Hz between the exchanging sites, illustrates nicely the meaning of the (sometimes misunderstood) concept of the NMR time-scale. The chemical shift difference between the signals of \(\text{TlCl}_2^+ \) and \(\text{TlCl}_2^- \) decreases from about 1000 Hz (Fig.1a) to 0 Hz (Fig.1d) and increases again to about 500 Hz (Fig.1b). This difference varies not only with the composition of the solution but will also depend, for example, on the temperature, because of the temperature dependence of the reactions (1) and (2).

Fig.1. Simulated \(^{203}\text{Tl}\)-NMR spectra for aqueous solutions of thallium(III) and chloride (see text).

Sincerely,

Istvan Banyai

Julius Glaser

\[^1\text{Abstracts of XIX International Conference on Solution Chemistry, Lund, August, 1988.}\]
Simultaneous observation of exchange reactions by 1H and 17O NMR

Dear Prof. Shapiro,

In the course of our investigations of exchange reactions on Rhenium compounds we measured the exchange of pyridine and oxygen atoms on ReO$_4$(py)$_4^+$ in D$_2$O. Both exchange rates are very slow (half-life several hours). Therefore we used isotopic substitution techniques to follow the reactions. In this kind of experiment one site is prepared enriched (or depleted) in one isotope and isotopic equilibration is followed by NMR. To study the pyridine exchange we mixed the complex, dissolved in D$_2$O, with deuterated pyridine and recorded 1H-NMR spectra. To monitor the oxygen exchange we enriched the complex in oxygen-17 and dissolved it in D$_2$O. The reaction was followed by 17O-NMR. At low temperature the half-lives exceed 10 h and we had to use the spectrometer for a week-end to obtain only one exchange rate. To save time we studied therefore the two reactions simultaneously. We mixed the complex, enriched in 17O with D$_2$O and deuterated pyridine (final concentrations: 6.6 x 10$^{-3}$ m in ReO$_4$(py)$_4^+$, 13 x 10$^{-3}$ m in pyridine-d$_5$ in D$_2$O) and put them into the NMR probe.

The spectrometer (Bruker AM 400 with 10 mm broad-band probe) was set up to measure 1H (via the decoupling coil) and 17O spectra. We recorded alternatively 17O- and 1H-NMR FIDs and stored them on disc. 60 FIDs of each series were measured in a fully automatic way. The spectral data used were for 1H-NMR (17O-NMR): frequency = 400 (54.24) MHz, spectral width = 6024 (50'000) Hz, data points = 8k (2k), number of scans = 32 (100'000), pulse-length = 20 (14) µs. An example of the data obtained after Fourier transformation is shown in Fig. 1. The exchange rates calculated are 6.8 x 10$^{-6}$ s$^{-1}$ for the pyridine exchange and 1.2 x 10$^{-5}$ s$^{-1}$ for the oxygen exchange.

This work was done in collaboration with E. and K. Deutsch, University of Cincinnati. Please credit this contribution to the account of Prof. A.E. Merbach.

[Signature]

Dr. Lothar Helm
A Siemens and Varian joint venture. You benefit from single-source access to systems combining Siemens expertise in clinical MR imaging with Varian's leadership in high-resolution NMR. Only Spectroscopy Imaging Systems gives you both the resources of a large corporation and the innovative responsiveness of a dedicated company. You also receive the combined expertise of site planners, system engineers, technical support personnel, and application scientists.

For systems, service and support in imaging spectroscopy, call 415-659-2600 today. Or write to 1120 Auburn Street, Fremont, California 94538.

Spectroscopy Imaging Systems Corporation
A Joint Venture of Varian and Siemens
(415) 659-2600

Non-destructive monitoring of the solidification of plaster at 4.7 Tesla. H-1 images obtained at (A): 18 minutes, (B): 28 minutes and (C): 38 minutes after a mixture of plaster and water (2:1 ratio) was prepared. The centers of the images are an intensity reference made of water doped with copper sulfate.
Imaging spectroscopy is steadily increasing its field of application in a variety of scientific studies. To accommodate the diverse interests of SIS users, a wide range of system configurations allows you to match your instrumentation precisely to your experimental requirements.

If your experimental needs require configurations beyond the illustrated combinations, our technical staff will help establish the appropriate equipment configuration.

System Configurations
- Single-channel or dual-channel RF
- Broadband to 200 MHz or 300 MHz
- Standard or compact host computer
- 300/180, 200/330, 200/400, or 85/310 magnet systems
- Range of computer peripherals and enhancements
- Additional data station(s) with Ethernet

Magnet Specifications

<table>
<thead>
<tr>
<th>Magnet</th>
<th>Center Field</th>
<th>Magnet Bore</th>
<th>Clear Bore</th>
<th>Maximum Gradient</th>
<th>Plotted Homogeneity</th>
<th>HHLW Resolution</th>
<th>5 Gauss On-Axis</th>
<th>5 Gauss On-Radius</th>
</tr>
</thead>
<tbody>
<tr>
<td>300/180</td>
<td>7.05T</td>
<td>183 mm</td>
<td>125 mm</td>
<td>4.0 G/cm</td>
<td>±6 ppm</td>
<td>35 mm DSV 0.1 ppm</td>
<td>5.60 m</td>
<td>4.45 m</td>
</tr>
<tr>
<td>200/330</td>
<td>4.7T</td>
<td>330 mm</td>
<td>254 mm</td>
<td>2.3 G/cm</td>
<td>±5 ppm</td>
<td>70 mm DSV 0.1 ppm</td>
<td>6.95 m</td>
<td>5.60 m</td>
</tr>
<tr>
<td>200/400</td>
<td>4.7T</td>
<td>400 mm</td>
<td>324 mm</td>
<td>1.8 G/cm</td>
<td>±4 ppm</td>
<td>80 mm DSV 0.1 ppm</td>
<td>8.50 m</td>
<td>6.75 m</td>
</tr>
<tr>
<td>85/310</td>
<td>2.0T</td>
<td>310 mm</td>
<td>225 mm</td>
<td>3.0 G/cm</td>
<td>±5 ppm</td>
<td>100 mm DSV 0.1 ppm</td>
<td>4.50 m</td>
<td>3.63 m</td>
</tr>
</tbody>
</table>

DSV = Diameter Spherical Volume
HHLW = Half Height Line Width
PPM = Parts Per Million

Spectroscopy Imaging Systems

1120 Auburn Road
Fremont, California 94538
(415) 659-2600

200/400, 200/330, and 300/180 magnets for the NMR Imaging Spectrometer System.
(Photos courtesy Oxford Instruments.)

Note: Equipment described is intended for investigational purposes, and is not approved by the FDA for clinical use.
Fig. 1: Pyridine and oxygen exchange on ReO$_2$(py)$_4^+$ in D$_2$O. (A) Decrease of the 1H-NMR signal of bound pyridine (protons in 2,6 positions) and increase of the signal of the corresponding protons on free pyridine due to pyridine exchange. (B) Decrease of the 17O-NMR signal with time due to exchange between the bound 17O-enriched site with non enriched D$_2$O. The time interval is 147 min. The temperature was 296.6 K.

(A)

(B)

POSTDOCTORAL POSITION AVAILABLE

A postdoctoral position is available in my laboratory, involving the use of modern NMR techniques to study the three-dimensional structures and ligand-binding attributes of HIV proteins. Facilities include a VXR-500-S spectrometer which is dedicated to biomolecular studies; off-line processing on a VAX-8800 running FTNMR, DISGEO, and CHARMM; access to an E&S graphics system; and close interactions with our molecular modeling and X-ray crystallography groups. Applicants should be familiar with two-dimensional NMR experiments and methods of assigning resonances in protein spectra. Experience in purifying and maintaining protein samples is desirable.

Interested applicants should send me a c.v. and the names of three references.

Dr. David C. Fry
Department of Physical Chemistry
Hoffmann-La Roche, Inc.
Nutley, NJ 07110
Dear Barry:

For the past two years our home-brew 500 MHz system has run on an IBM-AT clone (Kaypro) computer, aided by a data-station based on an identical computer. Some aspects of this setup may be of interest to your readers, even though I described it in a previous newsletter two years ago, because the data station has been revised considerably. The data station is a standard 6 MHz AT clone with a 30 MB hard disc, 80287, and EGA graphics. It uses a reliable and inexpensive 11 x 17" Houston DMP 40 plotter (~$1200) which is buffered by a 1 meg buffer ($600, Ditron Corp., 4026 W. St. John, Glendale, AZ 85308) that plugs into a slot of the AT, and a new coprocessor board ($1250 with utility software, Symmetric Research, 15 Central Way, Kirkland, WA 98033) based on a 10 mips TI TMS320c25 chip and carrying 128 K of 32 bit memory. It is controlled by, in addition to the usual keyboard, a front panel containing wheel switches for gain, expansion, and other numerical entry. The NMR instrument uses an identical computer minus the plot buffer and coprocessor board but with an added input processor/buffer and a timing system. It is "networked" to the data station via floppy discs carried down the hall. A 2D data set containing one million 32 bit words is automatically compressed (by eliminating leading zero bytes and words) to about two 5" floppy's, and it takes about 7 minutes to do such a transfer (assuming one minute for walking) which also automatically provides a convenient archive. The NMR's capabilities are intentionally limited to that which is needed to set up runs.

I have written a true 32 bit integer FT program for the TMS320x25 coprocessor which will handle up to an 8k FT (8k real output, from 4k complex input points zerofilled two-fold). Larger data sets would require more programming which would be straightforward. A 1k FT takes 85 msec including preweighting by an arbitrary real function. Post-multiplication by an arbitrary (phase correcting) function, and moving data into, and later out of, the on-board memory take another 20 msec, for this size FT. This is more than 10 times faster than a highly efficient program I wrote for the 80287/86 (6MHz). Times for 2D are harder to describe: the actual hypercomplex processing time for the 2D run I mentioned above, zerofilled 2X in both dimensions to provide a 1K by 1k 32 bit data set, is theoretically 1.5 x 1024 times the one-D time, or about 3 minutes, but lots of time is spent in disc swapping (see J. Magn. Res. 52, 310 [1983]). Without the new coprocessor it now takes 40 minutes. This is cut to about 15 minutes by the coprocessor board, and may be cut to about eight or ten minutes if I install a newer faster-access hard disc, and maybe 5 minutes if I install the required extended memory and spend some time setting up efficient timesharing of FT's with other operations. The largest FT we have done is a 1K x 2K x 32bit, in 35 minutes, but I think we can do 2K x 2K with a little more programming, on 640 kB RAM.

The data station unfortunately does not now have contour plotting and for that we send the data to a central VAX via Kermit (very slow, but sometime we will spend the required $1500 to couple the AT to our ethernet). We use Dennis Hare's software, for which we are very grateful, to have the VAX plot on a laserjet whose output has to be hand-pasted to get a big 2D map. Often, instead, for simpler 2D maps we use the plotting capability of our own data station. It produces rather primitive stack-plots, and also has a new threshold plotting mode that has some of the virtues of both contours and stacks: Points above a certain positive threshold are plotted, and also points below a negative threshold, as well as points within two horizontal data points of these points. See J. Magn. Res. 78, 150 (1988) for a sample. A stacked plot takes up to 40 min., which is where the plot buffer is useful: it can be loaded with a plot in about 1/5 the time required for the plot, and the computer can then be used for data processing or analysis during the plot. A threshold plot generally takes much less time; it is not as good as a contour map for analyzing low-noise well-resolved data but is useful for finding and evaluating peaks that are shoulders of other peaks, and for displaying the quality of data (S/N ratio). We would certainly like to have a large-bed plotter and/or a plotter with paper feed but these cost over $2000 (has anyone had experience with a Zericon plotter?).

The EGA graphics has only 400 lines vertically, yet we routinely use it to display and analyze up to 200-line 2D stack plots. Peaks are generally visible as dark blobs on such a plot, but are easily picked out by our cursor which can be moved about on the screen with, currently, pushbuttons (soon a joystick). The horizontal cursor is the usual vertical line but the vertical cursor is an intensified horizontal slice though the spectrum at the cursor position (in other words, the horizontal plot at the cursor position is intensified). It is this feature which makes
the low-resolution graphics useful at high resolution, but only because the cursor can be moved by the touch of a button. I will soon provide a similar vertical slice at the position of the vertical cursor, to aid in connectivity searches. Such a display mode is useful when looking for low S/N peaks in the presence of baseline curvature due to other peaks. Currently it takes about 40 ms to draw a 256-point horizontal line, or 8 sec to draw 200 lines, starting from raw FT'd data in RAM and including gain, clipping, and thresholding routines. I expect to reduce this by at least fivefold with the aid of the new coprocessor board. In comparing this performance to that of other systems remember that a 32 bit FT has much more dynamic range than a floating point routine (which really has only 24 bit dynamic range) or, of course, a 16 bit FT which is much faster with this class of coprocessor.

I don't know if it would be hard to write a contouring program for the AT and I would like to hear from anyone who has done so, or has used an available routine.

The NMR timing system was upgraded a year ago by Sara Kunz, and is based on PALS and EPROMs. It is a state machine of hierarchical architecture. A master card based on an EPROM and a few PALS can call routines (like 214 or 1331 or soft pulses, or HOHAHA or heteropulses, or t1 intervals) that are stored on, and controlled by, several slave cards. This allows for unlimited incremental hardware expansion. The system is separate from the computer, which only provides tl and t3 information and specifies phases via fast homemade serial output. The timer runs continuously (thereby avoiding delays due to computer-loading and also facilitating development and debugging). To try a new pulse sequence you have to burn a new EPROM, which is a pain. However, this step is generally the easy part of developing a new 2D sequence. The EPROM could be replaced by a RAM loaded from the computer, or both systems could exist side-by-side. If we did not already have this system in place I would seriously consider using the new coprocessor board to control a simplified timer, since it runs at 10 MHz and has 14 8-bit I/O ports available.

The NMR's computer does almost nothing because we have an input processor front-end that can buffer and cyclops four FIDS of 14 bit precision (see Rev. Sci. Instrum. 54, 503 [1983]). Again, if we did not already have this reliable system in place, I would seriously consider using the new coprocessor board as an input buffer. It can hold up to nearly 64K 16 bit words and I think it could handle most kinds of NMR applications.

The disadvantages of this setup are obvious: You have to write all the routines yourself and the result inevitably is inferior in looks, and much less so in function, to the commercial product.

The advantages are that the Intel-based AT computers and their successors are likely to continue to evolve compatibly in the future with inexpensive enhancements and they already provide great power for the money. There are several other coprocessors similar to the TI chip I used, or faster ones, but this one is fast enough for my purposes and is well supported and continues to evolve. The data station cost about $6000 and requires construction of a front panel, but I have written a keyboard-only version which is not quite as convenient but requires only a base computer costing about $2500 (without plotting or fast coprocessor board) so that collaborators can look at data anywhere. The NMR computer system cost around $4000 (the instrument overall cost less than $250,000 for hardware, based on an Oxford microbore). The data station was supposed to be a spare for the NMR computer but both have operated without failure for two years (downtime is always a result of some half-assimilated upgrade of the systems). This instrument has often operated without failure when the room temperature has exceeded 80 °C, long after the commercial instrument in the same room has kicked off.

I expect to have the TMS320c25 software available unsupported but with good documentation fairly soon (if anyone is interested). Integrating it into a system would require some simple programming. The main software for our computer is written in C and assembly using an obsolete compiler/assembler. It is sporadically documented and the useful parts are constantly being modified. However, parts of it would be useful to someone seriously developing an AT system, and it is available unsupported to individuals.

Sincerely,

Alfred G. Redfield
Biochemistry, Brandeis University, Waltham MA 02254 USA
Dear Barry:

It is possible to monitor the rate of isomerization of Z-D-ribose oxime by 1H-NMR in D$_2$O as it is transformed into an equilibrium mixture of both E and Z isomers. D-Ribose oxime crystallizes in aqueous ethanol in the Z-form. This Z-form is less favored thermodynamically than is the E-form, as the equilibrium percentages are 80% E and 20% Z. By dissolving pure crystalline Z-D-ribose oxime in D$_2$O the demise of the Z-form and the increase of the E-form is measured as a function of time.

Tautomerization of Z-D-ribose oxime is observed to be kinetically simple as shown in Figure A. This is a reversible first-order process and very similar to that shown previously for Z-arabinose oxime1. The rate of tautomerization, which is determined by the sum of the rate constants of the forward and reverse reactions is equal to 1.0 x 10^{-3} \text{ min}^{-1} \text{ (Fig. B). This rate constant is approximately 50 times smaller than D-ribose mutarotation (4.92 x 10^{-2} \text{ min}^{-1})}^2.$

References:

A
Isomerization of Z-Ribose Oxime in Deuterated Water at 20°C

B
Isomerization of Z-Ribose Oxime in Deuterated Water at 20°C
A Platform for Vibration Damping, Leveling, and Height Control of High Resolution Superconducting Magnets

Dear Barry:

Three years ago, we designed and constructed a platform that provides good vibration isolation, level control, and height control for a high-resolution superconducting magnet. This platform was installed under the magnet of a 200 MHz (1H frequency) spectrometer, as part of our efforts to develop ultrahigh resolution. Recently, we have observed that a perfectly vertical magnet significantly improves the resolution for a spinning sample in a 500 MHz spectrometer. Also, we have received several inquiries from users of 500 MHz spectrometers who are encountering problems caused by mechanical instabilities. Therefore, we have decided to share the design of our platform. A paper will appear in the Journal of Magnetic Resonance about April, 1989. The platform requires a constant source of compressed air, at a pressure dependent on the load (see below). It provides (i) a high degree of vibration isolation, (ii) the ability to adjust the level of the platform, and (iii) an invariant vertical position independent of load. The last feature may be important for maintaining homogeneity of magnets located above concrete floors which contain embedded steel rods. The 'rubber tire' vibration isolators provided as extra-cost accessories by some instrument manufacturers obviously yield a gradual change in vertical position as the weight of liquid nitrogen (1.76 lb/L) changes.

Figure 1 shows the components of the system and how they are connected together with air hoses. Figure 2 is a top view of the aluminum platform; the dashed lines show the location of the components of Fig. 1, sandwiched between the aluminum platform (which holds the magnet) and two rectangular aluminum slabs on the floor. The platform is 1 inch thick and 40x40 inches in size. For a Bruker AM-500 system, it is probably necessary to increase the length to about 50 inches, and to drill holes for attaching an adapter for an automatic sample changer. The floor slabs are 3/4-inch thick and 11x44 inches. Figure 3 shows a frontal view, and Fig. 4 gives a cross-section of one of the four vibration-isolation components (labeled S in Figs. 1-3). Details are presented below.

The four items labeled S in Figs. 1-3, are 1S3-011 Super-Cushion Air Springs from Goodyear Tire & Rubber Co., Greensburg, Ohio 44232, each designed for a load of 60-370 lb. Our magnet weighs about 500 lbs when full of liquid nitrogen. The required compressed air pressure for a 125 lb (per
device) load is about 35 psi. The pressure gauge shown in Fig. 1 acts as a load monitor; it shows the effect of load change as a result of liquid nitrogen evaporation. The much larger weight of a magnet of a 500-MHz instrument (about 1200 lb fully loaded) will require a pressure of about 80 psi; we recommend a source of compressed air at 100 psi. An alternative would be to use Goodyear 153-005 Super-Cushion Air Springs, which are designed for loads in the range 200-1120 lb per device; then the operating pressure would be about 30 psi. We suggest the use of the “Super-Cushion Air Spring Industrial Engineering Manual”, available from Goodyear, for design decisions. Please note that, unlike the convolute-bellows (“rubber tire”) devices, the 153-011 and 155-005, which are sleeve-type rolling-lobe assemblies, have to be placed inside restraining metal cylinders, because they are designed to resist vertical loads only. Figure 4 is a cross section of the 153-011 inside its aluminum restraining cylinder, made in our machine shop. The two important dimensions of the restraining cylinder, in millimeters, are shown in Fig. 4. Other features of this cylinder are based on recommendations contained in the Super-Cushion Air Spring Industrial Engineering Manual. The top of each restraining cylinder is bolted to the platform; the bottom aluminum plate of Fig. 4 rests on one of the rectangular aluminum slabs (see Figs. 2 and 3).

Each air spring has a needle valve attached to its 1/8-inch NPTF fitting (in order to create a flow restriction), which is then connected to a 1-liter stainless steel ballast tank (3041-HDF4-1000 sample cylinder from Whitey Co., Highland Heights, Ohio 44143), labeled T in Fig. 1. Each of the two front ballast tanks is then connected to an automatic servo air level control, labeled L in Figs. 1-3, purchased from Peabody Noise Control of Dublin, Ohio 43017; this item did not have a part number. A single level control device is connected to the two back ballast tanks (Fig. 1). Filtered, dry building air is supplied to the input of each level control device; it then flows through the ballast tanks and needle valves into the air springs. The flow rate is very low, and is a function of the intensity of floor vibration and consumption rate of liquid nitrogen (and to a lesser degree liquid helium).

Long brass bolts located above the level control devices (see Fig. 3) are in contact with the level sensing rods of these devices. They are threaded (3/4-16) through the aluminum platform and can be adjusted individually to compensate for floor irregularities.
The items labeled B in Figs. 2 and 3 are 3/4-inch linear bushings from Thomson Industries, Manhasset, New York 11030, attached to the platform. They enclose Thomson 3/4-inch case-hardened rods attached to the bottom aluminum slabs. This arrangement prevents lateral motion and tilting.

The compressed air lines (Fig. 1) consist of 3/8-inch O.D. and 1/16-inch wall polyvinyl chloride tubing reinforced with braid molded into the tubing, purchased from Bay Rubber Co., Oakland, CA 94621. For ease of installation and service (see below), we use Swagelok Quick-Connect type QC4 fittings from Crawford Fitting Co., Solon, Ohio 44139 at most connection points of Fig. 1.

In three years of operation, this platform has not had any component failures. However, we have suffered from failures of the building compressed air system. Even though we "protect" the air source with our own high-efficiency water and oil removal filters, after a shutdown the building compressed air source produces such copious amounts of oily water that some of it has reached the platform components. We do not know the short-term and long-term effects of water and oil on these items. Therefore, we are now setting up an automatic switch from building air to nitrogen gas (from a tank) upon building air shutdown. It will be a latching system that will require manual switching back to compressed air.

Best regards,

Adam Allerhand

Steven R. Maple

Postdoctoral Position

A postdoctoral position in peptide conformational studies is available at Ciba-Geigy Pharmaceuticals. The individual we are seeking should have a Ph.D. or equivalent and extensive experience in 2-dimensional NMR techniques, particularly as it relates to peptide structure determination. Knowledge of DISGE0 and/or HARE software programs is also desired. Opportunities to work with an academic institution involved in solutions of peptide or protein conformations will be included.

The position could become available as early as January 1989. Interested persons should apply to Dr. Nina C. Gonnella, CIBA-GEIGY Corp., 556 Morris Ave., Summit, N.J. 07901. Tel. (201) 277-7265
HOHAHA of Strychnine on an Omega 600
T

here's only one way to be certain you're getting the best NMR system—
test it yourself. Challenge its capabil-
ities with your samples. Compare its results
against your requirements.

See for yourself how GE spectrometer
and CSI imaging systems measure up.

In RF performance

For outstanding RF stability in
phase-sensitive work, inverse
transfers and INADEQUATE
experiments:

■ Amplitude stability of 0.43% in 90°
pulse test of single acquisition in doped
water, repeated 10 times. Amplitude
stability of 0.17% with 1 microsec. pulse.

■ Average deviation in 13° test of 0.5% in
amplitude, representing stability of 0.07°
in phase.

■ High-performance 200 kHz ADC with
up to 32 MByte of 64 bit on-board
memory for direct acquisition of
experiments into memory.

In gradient control

The GE Acustar™ and Microstar™
shielded gradient systems improve
image quality and localization by

eliminating eddy current effects for
submillisecond settling times and better
signal-to-noise performance. They
also expand applications into
oil core analysis, chemical tox-
icity testing, and monitoring
of microscopic processes
and reactions.

In data processing

GE opens NMR data pro-
cessing and system opera-
tion to users at every level
of expertise.

Mouse-directed panel
menus let beginners use the
system immediately. And programming
designed by GE specifically for NMR
applications lets experienced users attempt
the most complex experiments.

In customer service and support

At GE, we're with you before and after the
sale, with convenient financing packages
and prompt service—as well as equip-
ment upgrades, software updates and
advanced applications.

To arrange a demonstration
or for more information, write
us today at 255 Fourier Ave.,
Fremont, CA 94539.

Or call 800-543-5934.
You'll be pleased with
the results.
Dynamic range vs. spectral width; spectral width vs. digital resolution. Trade-offs have been required due to NMR system hardware limitations. With the Omega™ Data system's Alpha HDR digitizer, no trade-offs are necessary. As shown in Figure 2 with a 16-bit dynamic range, 200 KHz spectral width, 64-bit complex acquisition word size, and up to 32 MBytes (4 MWords complex) of on-board acquisition memory available, the spectrometer is no longer the limiting factor when designing the most demanding experiments. Other outstanding features of the Alpha HDR include variable dwell periods, phase shifts of each sampled data point as small as 0.05 degrees, and segmentation of the digitizer memory into as many as 64K blocks. These features further distinguish the GN-series spectrometer equipped with the Omega Data System as the leader in NMR technology.

Fig. 1
The Alpha HDR digitizer.

Fig. 2
200 KHz spectral width 1F spectrum acquired on a GN-500 Omega System. Note the extremely flat baseline obtained with the Alpha HDR.
Dear Barry,

Our continuing interest in weak C-H bonds to Pt(II)\(^1\) has prompted us to study the interaction of the methyl group of 8-methylquinoline, 8-MQ, with the metal in trans-PtCl\(_2\)(PhCH=CH\(_2\))(8-MQ), \(1\). As in previous examples\(^1\) we observe, for \(1\), a coupling from the methyl to the \(^{195}\)Pt, \(J = 12.8 \text{ Hz}\). The complex is dynamic on the NMR time scale at RT as shown by 2-D Exchange Spectroscopy (see figure) suggesting rather weak Pt-H-C bonding.

Best wishes

Suggested Title: Weak Pt-H-C Interactions

5th October, 1988
(received 10/12/88)

Professor B. L. Shapiro,
966 Elsinore Court,
PALO ALTO. CALIFORNIA. 94303.
U.S.A.

Dear Barry,

Inverse detected, Long Range C-H Correlation
spectrum of a bisbenzimidazole on a JEOL GSX400

In connection with our work on the synthesis of DNA binding
compounds, we have prepared a range of bisbenzimidazoles related to Hoechst
33258. One such molecule prepared by Dr Robert Hook is the 3-amino-5"-
piperidino-analogue shown in the Figure, for which we have now assigned all
the quaternary carbon resonances using the inverse (I^H) detected long range
CH correlation technique.

With the assistance of the staff at the JEOL Applications Laboratory
in Tokyo, we obtained the long range correlated 2D map shown in the Figure.
The pulse sequence (ZKMOD) Vnmrc was used, together with values PI1 = 60 ms
(2 JCH)^-1 and PI3 = 3ms (2 JCH)^-1, PW1 = 12 µs, 128 points in F1, 512
points in F2 and 128 scans for a relatively concentrated solution in C3DOD at
40°C (sealed, degassed, non-spinning). The pulse sequence is that of Bax and
Summers^2, although other sequences are available.3,4

Assignments of the protonated carbons are straight forward and based
on our previous assignments for iodo-Hoechst and model compounds^5 and normal
2D homonuclear and heteronuclear correlation spectra run previously on our
GX400 in Melbourne. Carbon 4" is uniquely shielded between two ortho N
atoms, at 101.8 ppm, from which point H-H and C-H correlation spectra allow
identification of the three aromatic spin systems; (2, 4, 5, 6), (4", 6", 7") and
(4", 6", 7")

Now the recent long range CH spectrum shows only the three bond
correlations (4 JCH = 0) and allows the assignments of C3,3a" and C5,5a"
from H7,7a"; C7a",7a" from H6",6a"; C2",2" from H6",6a" and C1,3 from H5.

Further details are available for anyone who is interested.

Yours sincerely,

D. P. Kelly

Micronotices:
* Timely responses to 'Reminder' notices would be appreciated, for sending 'Ultimatum' notices is an expensive nuisance. Removing someone from the mailing list and restoring his/her listing is also expensive and a burden. Thanks.
* I'll be happy to include meeting notices, etc., if such are sent to me.
* Am still hoping for some feedback, sequels, or whatever type of response to the cartoons by Wendy Goldberg.

B.L.S.
Our ref JKMS/JJ

3 October 1988 (received 10/13/88)

Professor B L Shapiro
966 Elsinore Court
Palo Alto, CA 94303,
USA

Dear Barry

NMR of Polyhydroxybutyrate in vivo

It's always satisfying when a simple NMR experiment solves a long-standing problem in biology or chemistry. Here is an example from Glenn Barnard, one of my graduate students.

Polyhydroxybutyrate (PHB), and its copolymer with hydroyxyvalerate, are storage polymers produced by a range of micro-organisms. They are high-melting solids with exciting potential as biotech competitors to traditional polyethlenes. So what's the problem? Well, 'everybody' in the field 'knows' the polymers are solid, so they have worried for many years how the biosynthetic and degradative enzymes could operate effectively on lumps of plastic.

Our natural abundance 13C spectra of the live cultures (see figures), acquired with 1000 transients or less, immediately provide an answer: the polymer is not solid in vivo! To be more precise, its physical properties (T_1, T_2, NOE...) are consistent with an amorphous polymer well above its glass point. Much easier for an enzyme to munch.

That solves the enzymes' problems, but why is the polymer so mobile in vivo? We have evidence that it is kept in this metastable state by hydration, that it solidifies on isolation or on being mistreated. All previous physical studies on PHB were actually on the dehydrated, solid form. We believe that ours is the first study of PHB physical chemistry in vivo.

Best wishes

Jeremy
Figure: Natural abundance 13C spectra of live suspensions of Alcaligenes eutrophus. The culture producing pure PHB was grown on acetate, while the copolymer was produced by a propionate-fed culture. The benzene standard was in an external capillary.
Dear Barry,

Stable nitroxides radical have been early recognised as "spin labels" and studies as such by EPR. Instead, the use of NMR has been limited to proton spectra of concentrated solutions (1). With selectively labelled 13C compounds, a new conformational tool is proposed from 13C spectra of dilute solutions.

A glucosidic example is given, compound 1 (Fig. 1) : tetrathymylpiperidin-1-oxyl-4-yl 2,3,4,6 tetra-O-acetyl-\(\beta\)-D-glucoside. The main distance between the 13C and the NO group depends principally on the Psi angle, with a new way to test the variations of this angle with external parameters. The compound 1 has been prepared according H.R. PLESSAS and J.J. GOLDSTEIN with some adaptations. Scales for concentrations, separation of contributions governing the relaxation value T1 of the 13C enriched compound, are indicated on Fig. 1.

The following procedure is used:
- a determination of the relaxation T1 values of the 13C-1 at different concentrations.
- an extrapolation at infinite dilution for 1/T1 values (suppression of the intermolecular paramagnetic contribution, proportional to the concentration).
- subtraction of the intramolecular diamagnetic contribution (by use of a diamagnetic model : hydroxyamine form of compound 1).

The following procedure is used :
- a determination of the relaxation T1 values of the 13C-1 at different concentrations.
- an extrapolation at infinite dilution for 1/T1 values (suppression of the intermolecular paramagnetic contribution, proportional to the concentration).
- subtraction of the intramolecular diamagnetic contribution (by use of a diamagnetic model : hydroxyamine form of compound 1).

Legend:
- 13C : intermolecular electronic spin
- 13C : intra molecular electronic spin
- 13N : intra molecular nuclear contribution
- NS : number of spin

Fig. 1

Références
Doty Scientific MAS probes are designed to provide solid state NMR with the versatility to match the expanding opportunities of the field. We respond to the needs of the NMR community by providing innovative probes and accessories. Our standard probes also have many options, allowing the scientist to match the probe to the research requirements.

MAS PROBE FEATURES:

- Complete multinuclear range using plug-in capacitors. Provides continuous coverage from 31P to 103Rh in a single probe.
- High sensitivity and efficiency: 3µs 90° pulses with only 160W for 1H at 300MHz and 500W for 1H at 75 MHz with 350µl sample volume.
- Available for all spectrometers.
- Choice of 5, 7, and 19mm sample sizes.
- Variety of rotors and spinner assembly materials available.
- Standard VT range: -120°C to 160°C.

SPECIAL PROBE OPTIONS:

- Ultra high speed spinning option. 5mm spinning 14 kHz routine, 17kHz optimum. 7mm spinning 9 kHz routine, 11kHz optimum.
- Variable temperature options -150° to 250°C on standard MAS.
- Fiber optics spin rate detection.
- Triple tuned.
- Variable angle: 50° to 90°.
DOTY SCIENTIFIC VT MAS PROBES

Note - Unless noted, prices on this page do not include the necessary starter kits.

DOMESTIC PRICES

VT MAS Double Tuned Probe for Supercon Below 250MHz

$13,000.

Options:

- Ultra high speed (5mm - 14KHz, 7mm - 9KHz) 3,500.
- Multinuclear Observe Channel 2,500.
 (Complete multinuclear capability using plug in capacitor "wands", can provide continuous coverage from 3P to ^{10}Rh in a single probe)
- Capacitor wands 200. to 600.

Adders for higher field probes:

- 250MHz to 350MHz 500.
- 360MHz to 400MHz 1,000.
- 500MHz 1,500.
- 600MHz 2,000.

- Variable angle (50° to 90°) 800.
 (Variable angle is not available for all probes)
- Extra-narrow bore probes (37mm) 1,000.
- Extra-wide bore probes (over 73mm) 1,000.
- Triple tuned 2,000.
- Top loading 1,100.
- 19mm rotor diameter 2,500.
- Fiber optics spin rate monitoring 800.
- Extra VT range on standard probes - wide bore extra VT range on standard probes - wide bore 1,000.
 narrow bore narrow bore 2,000.
 (Standard range is -120°C to 160°C, Extra VT range is -180°C to 250°C)

VT MAS Probe for Electromagnet with ext. 2H lock

12,300.

Additional Features:

- Multinuclear 1,500.
- Triple Tuned 1,800.

CRAMPS Probe: Single tuned VT probe 1H or $^1^9F$

8 kHz 5mm MAS, 1.5µs 90°

<table>
<thead>
<tr>
<th>STARTER KIT</th>
<th>STANDARD</th>
<th>HIGH SPEED</th>
</tr>
</thead>
<tbody>
<tr>
<td>7mm</td>
<td>2400.</td>
<td>4000.</td>
</tr>
<tr>
<td>5mm</td>
<td>2450.</td>
<td>4050.</td>
</tr>
</tbody>
</table>

Doty Scientific, Inc.
600 Clemson Road
Columbia, SC 29223 USA
PHONE (803) 788-6477
FAX (803) 736-5495
Deuterium NMR study of adsorbed polymers

Dear Barry:

Thank you very much for your recent yellow Reminder Ultimatum. Recently we have attempted to probe the dynamics of block terpolymers adsorbed on silica surface. The block terpolymers chosen for the study were made of two different triblocks namely, poly(vinylpyridine-styrene-deuterostyrene) (PVPSDS) and poly(vinylpyridine-deuterostyrene-styrene) (PVPDSS). These have previously been studied by Granick et. al. (JACS, 108, 1986, 2869). The structure of these are:

\[
\begin{align*}
\text{D(H)} & \quad \text{H(D)} \\
\text{---(CH}_2\text{-CH}_3\text{---(CH}_2\text{-C} \text{)}_x\text{-(CH}_2\text{-C} \text{)-2---N} \\
\end{align*}
\]

These polymers were adsorbed on silica (Cab-O-Sil M-5) from toluene solutions such that a monolayer coverage of the polymers was obtained on the surface. The monolayer coverage for these polymers from toluene was experimentally determined to be about 1.9 mg/m² of silica surface. When this polymer is adsorbed on silica the vinylpyridine portion of the polymer attaches itself to the surface while the styrene portion remains in solution forming mainly tails of adsorbed polymer in solution.

The deuterium T₁ values for the two swollen terpolymers, PVPSDS and PVPDSS, saturated with toluene were found to be 4.18 msec and 4.47 msec respectively and the T₂ values were 2.20 msec and 2.51 msec, respectively. The T₁ and T₂ values are larger for PVPDSS compared to PVPSDS indicating that the segmental motion of deuterostyrene is relatively more restricted when it is closer to vinylpyridine (and hence to the surface) as in PVPDSS than in PVPSDS. The figure shows a plot of T₁ as a function of deutero-polystyrene in toluene at room temperature. At room temperature the concentration of PVPDSS and PVPSDS based on T₁ was found to be about 14.5% and 12.0%, respectively (shown in the figure).

We believe that one can determine the concentration of the polymer as a function of the position of the label, with T₁ providing the local concentration. T₂ gives a measure of longer range perturbations of the motion of the labelled moiety. We are currently applying this technique to other polymer/surface systems.

Sincerely,

[Signature]

Brijenesh Sinha
Associate Professor
Typically it is possible to assign the proton NMR resonances to and determine the structures of individual amino acid fragments in peptides by identifying cross peaks in COSY experiments. However, it is not possible to determine the primary amino acid sequence from these spectra since the network of vicinal J-coupling interactions needed to produce cross peaks is broken by the presence of the backbone amide carbonyl group. We have used heteronuclear 2D-NOE spectroscopy (HOESY) to sequence low molecular weight peptides. The method utilizes the fact that a carbonyl resonance receives a substantial fraction of its NOE from the alpha-proton of the amino acid fragment and the NH proton of the adjacent amino acid fragment. By correlating the carbonyl carbon resonances with the alpha- and NH-proton resonances by virtue of NOE it is possible to identify both the source of the carbonyl signal and the identity of the NH on the adjacent amino acid. Proton resonance assignments are obtained from the double quantum filtered COSY spectra.

The technique of amino acid sequencing is demonstrated using the decapeptide Gramicidin-S(1); a spectrum is shown in Figure 1. Simultaneously, the carbonyl assignments obtained from this experiment resolved the disputed assignments of the phenylalanine and praline carbonyl resonances which have been reported by other workers.

Combined application of COSY and HOESY offers an excellent method for determining the primary structure of small peptides. It also provides a means of simultaneously assigning the carbonyl 13C resonances. We have performed 13C HOESY experiments with a solution of 1 in DMSO at 4.7, 7.05, and 9.4 T. From these experiments we conclude that the optimum field strengths for obtaining HOESY spectra appear to be 4.7 - 7.0 T. At higher field strengths chemical shift anisotropy dominates the relaxation of carbonyl groups reducing the magnitude of the NOE and offsetting any sensitivity gain which might be expected. Therefore, in order to successfully apply this methodology at higher field where higher sensitivity and better spectral dispersion will be achieved, heteronuclear rotating frame experiments must be employed, analogous to the CAMELSPIN/ROESY experiments used for proton homonuclear NOE. The onset of slower molecular motion and higher field strength also produce broader carbon lines (linewidth at half height >3 Hz for our sample) as well as smaller NOE's. This degrades the sensitivity of experiments such as COLOC which rely on the ability to resolve...
long range couplings. We have not been able to obtain COLOC spectra correlating alpha-CH and NH protons with the carbonyl resonances using the same Gramicidin-S sample which produced the HOESY spectrum in Figure 1.

Sincerely,

Peter L. Rinaldi Fred J. Swiecinski

Phase sensitive 13C(1H) HOESY spectrum of 35 mM 1 in DMSO-d$_6$ obtained at 75 MHz and 50°. Exact experimental conditions are described in the text. Cross peaks are observed between each 13C-carbonyl resonance and a single 1H resonance in the CH$_\alpha$ region, permitting the assignment of the 13C signal to a specific amino acid fragment. With the exception of Phe carbonyl (171.2 ppm) which is bond to the nitrogen of Pro, each 13C resonance also exhibits a cross peak to an NH proton resonance, allowing identification of the adjacent amino acid fragment.
Dear Prof. Shapiro

Deuterium isotope Effects on 14N and 1H Nuclear Shielding of Ammonium Ions

The large variation in $\Delta N(D)$ found by various authors made me suggest in a previous contribution, that pH could play a role. We (Antonin Lycka and myself) have now looked more closely into this problem and have found that it is actually the counterions, that makes the difference: $\Delta N(D)_{tot}$ in ppm (~2 M solutions)

$$\begin{align*}
ND_4Cl & : 1.32 \\
ND_4Br & : 1.43 \\
ND_4I & : 1.56 \\
ND_4NO_3 & : 1.09
\end{align*}$$

$\Delta N(D)$ depends both on the nature and the concentration of the counterion. With this in mind literature values can now be explained. A value at infinite dilution of 1.19 ppm can be estimated. $\Delta H(D)$ is negative in the isotopomers of the ammonium ion and it depends both on the nature and the concentration of the counterion according to our findings. $\Delta H(D)$ is numerically largest (most negative) in dilute solution suggesting that hydrogen-bonding may be the cause of the negative sign and that the direct isotope effect is positive as found for $\Delta N(D)$ and becoming more positive with increasing concentrations of the counterion.

One way of explaining the negative isotope effect could be non-directional hydrogen bonds.\(^1\) Jameson and coworkers\(^2\) have recently suggested that the unusual sign could be due to intermolecular effects such as eccentricity and hydrogen-bonding, but suggesting that the counterions contribute to these intermolecular effects. This is clearly contrary to our findings.

Yours sincerely,

Paul E. Hansen

PS! As I am spending a sabbatical year at the University of New South Wales would it be possible to redirect my copy to the above adress until the end of June next year?
For people who want automatic nucleus selection but also want to observe X from ^{31}P to ^{15}N. With the 4+ probe you can switch among ^{1}H, ^{19}F, ^{31}P and ^{13}C automatically and still observe ^{113}Cd and ^{29}Si two days a week. With the 4+ probe you may never change probes again! The 4+ probe is available in 5 and 10 mm formats from . . .

Z·Spec Probes

For more information about Z·Spec Probe products contact Toby Zens, manager, Special Products Group.
Z·Spec Probes

OFFER

Double Tuned Surface Coils with...

* Multiple Plug in Coil Sizes
* 1H/X Detection or Decoupling $X(^{31}\text{P}-^{13}\text{C})$
* Remote Tuning
* High 1H and X channel efficiency

Z·Spec Probes are available with Nalorac Cryogenics Quest 4000 series NMR Spectrometers and as after-market Probe products for all major NMR spectrometer systems. For more information about Z·Spec Probe products contact Toby Zens, manager of Special Products Group.

NALORAC CRYOGENICS CORPORATION
837 Arnold Drive Suite 600, Martinez, CA 94553
Tel: (415) 229-3501 FAX (415) 229-1651
DEPARTMENT OF CHEMISTRY, BOWNE HALL, SYRACUSE UNIVERSITY, SYRACUSE, N.Y. 13244-1200

Dr. Barry Shapiro
TAMU NMR Newsletter
966 Elsinore Court
Palo Alto, California 94303

UTILIZATION OF GRAPHICS SUPERCOMPUTERS IN LABORATORY COMPUTER NETWORKS FOR NMR DATA PROCESSING

Dear Barry:

The advent of the new graphics supercomputers: Ardent Titan, Stellar GS-1000, Silicon Graphics 4D/200 series, Apollo DN-10000 — brings extraordinary opportunities to the NMR laboratory. These new workstations combine near-Cray IS compute power with ultra-high-speed 2D and 3D graphics. Furthermore, these systems, or less-expensive compute server versions (starting at ca. $70K for a 32 MB RAM Titan with 700 MB disk) can be configured as main nodes of NMR laboratory computer networks, supporting 5 to 8 or more users simultaneously with minisupercomputer NMR data processing.

All of these new computers use UNIX and X-windows graphics, Version 11. Thus, users at very inexpensive workstations can process on the net with local graphics, but at near-supercomputer speeds. Also, early in 1989, X-windows will become available on new high-speed Ethernet graphics terminals costing less than the lowest priced Tektronix serial terminal. Furthermore, PCs and all DEC computers will support X-windows by mid-1989.

The NMR scientist gains tremendous flexibility in this environment. Who would have thought that 4K x 4K 2D FT processing could be brought to less than 10 minutes in 1989, at practical cost. Equally important, speed on non-vector calculations is also efficient, supporting the full range of NMR processing algorithms at speeds at least comparable with the largest VAX systems — and significantly faster in most cases.

In about two months, after we have had some experience with our Stellar GS-1000 and NMRi’s Ardent Titan (2-processor version, to be upgraded to 4-processors in February), we will report specific NMR processing benchmarks. We will also tell you how well our new optical fiber-based 1.5 MHz network works, between NMRi and Syracuse University. This new network link runs both TCP/IP and DECnet protocols and fully supports high speed X-windows graphics across the 1.5 mile connection. (For that matter, for more than six months, Cornell University scientists have used NMR2 software on S.U.’s VAX 8800 and Alliant FX/80 computers. The 60 mile NYSERnet TCP/IP connection between Cornell and S.U. also runs at 1.5 MHz).

Scientists on NYSERnet or NSFnet can now access our software on Stellar, Alliant, Sun-4 or, soon, Silicon Graphics computers. Just call Dr. William Curtiss and ask for a user account.

Yours sincerely,

George C. Levy
Science & Technology Professor
GCU/dg

NATIONAL INSTITUTES OF HEALTH RESOURCE FOR MULTI-NUCLEI NMR AND DATA PROCESSING
As you may recall from several previous contributions to your famous NMR Newsletter, I have been using aluminum MAS NMR to characterize clay minerals. As enlightened NMR spectroscopists already know, a 2:1 clay mineral is composed of stacked aluminosilicate layers which are sandwiches of an octahedrally coordinated sheet between two tetrahedrally coordinated sheets. The octahedral sheet typically contains Al and/or Mg atoms each of which is in the center of an octahedron which has oxygen atoms at the vertices. The tetrahedral sheet contains Si atoms in the center of tetrahedrons which have oxygen atoms at the vertices; however, many clay minerals have varying amounts of Al for Si substitution in this sheet.

A forthcoming publication (American Mineralogist, sometime in 1989) describes the results of Al MAS NMR measurements on tetrahedral aluminum in 2:1 clay minerals made at magnetic fields of 6.35T and 11.74T. These measurements enable the evaluation of the isotropic chemical shift \(\delta_i\) and the second-order quadrupole effect parameter \(\text{SOQE} = \text{QCC}(1 + n^2/3)^{1/2}\) from the first-moment of the NMR peak. Atomic substitutions (typically, Mg for Al in the octahedral sheet and Al for Si in the tetrahedral sheet) result in changes in the \(\delta_i\) and SOQE values of the aluminum in the tetrahedral sheet.

A long time ago, Ghose and Tsang (American Mineralogist, 1973) published QCC and \(\eta\) values (determined from CW measurements on single crystals) for tetrahedral aluminum in framework (three-dimensional) aluminosilicates along with the tetrahedral shear strain (sum in the tetrahedron of the absolute values of the tangent of the deviation of the O-Al-O bond angles from the tetrahedral angle). Figure 1 shows that in these minerals there is a linear relationship between QCC (and SOQE) and tetrahedral shear strain.

As shown recently by Weiss et al. (American Mineralogist, 1987), the atomic substitutions in the two-dimensional clay layer cause distortions in the tetrahedral sheet which change the silicon chemical shift. Figure 2 shows that this also occurs for aluminum, in agreement with Kinsey et al. (American Mineralogist, 1985). Figure 3 shows that the atomic substitutions also increase SOQE, paralleling the increase in SOQE and QCC resulting from O-Al-O angle deviations from the tetrahedral angles in three-dimensional aluminosilicates. This congruency may indicate that the atomic substitutions in two-dimensional 2:1 clay mineral layers cause O-Al-O angle distortions. If the aluminum \(\delta_i\) changes result from these same angular distortions, we might expect a correlation between \(\delta_i\) and SOQE. Figure 4 shows good correlations for both dioctahedral layers (squares) and trioctahedral layers (circles). (In Figures 2-4, the unfilled symbols represent special cases and are not included in the regression calculations which yield the straight lines.) Hence, 0-T-O angular distortions (T=Al or Si) correlate well with both \(\delta_i\) and SOQE in \(\text{SiO}_4\) and \(\text{AlO}_4\) tetrahedrons.

Sincerely,

D. E. Woessner
Senior Research Associate

DEW/non
Attachment
Figure 1

QCC vs. shear strain for \(\delta \)Al in aluminochlorite.

(Ghose & Tsang, 1973)

Figure 2

Figure 3

Figure 4
Dear Dr. Shapiro:

We are currently working on the development of several experiments which are based on 13C(1H)(6Li) triple resonance. Here we report on the selective observation of alkyllithium aggregates using 6Li J-modulated 13C spin-echo spectra.

Shown in the figure are 13C spectra for the alpha carbons of [t-BuLi 20Et$_2$]$_2$ at 12.8 ppm and non-fluxional (t-BuLi)$_4$ at 10.8 ppm. Spectrum A is the normal 13C(1H) spectrum showing 13C-6Li coupling. Spectrum B is the 13C spin-echo spectrum with t=0. Spectrum C is a spin-echo spectrum with t=0.128 sec (optimized for observation of dimers) and spectrum D is the spin-echo spectrum with t=0.184 sec (optimized for observation of static tetramers). As can be seen in these spectra, different alkyllithium aggregates can, in fact, be selectively observed. A complete discussion of the method will appear elsewhere.

All spectra were run on a Varian VXR-300 with a Varian triple resonance accessory. The probe was a 10 mm tunable Varian probe with the lock channel modified for 6Li irradiation at 44.1 MHz. 6Li decoupling was accomplished by use of the output of an external synthesizer, amplified to 10 watts. We would like to thank John Kilstead of Varian for his design and set-up of the triple resonance hardware.

Please credit this to Alan Marchand’s account.

Sincerely,

Ruthanne D. Thomas
Associate Professor of Chemistry

Donald H. Ellington
NMR Sample Tubes

For evidence of Norell's high performance quality, we reproduce CERTIFICATES submitted by individuals who actually tested and compared our tubes vs those of our competition. SEE OTHER SIDE:

Don't let them fool you!

Claims of infinitely better bargains are worthless! In general, such claims are made only by those who do not have credible data or perhaps do not comprehend the meaning of finite values.

If you want to be "THRIFTY", we recommend our economical No. 502 NMR Sample Tube, which is of higher quality with closer tolerances than competitor's "Thrift Tube" and yet sells for $0.75 each in lots of 100 tubes, and $0.70 each in lots of 300 tubes.

For HIGH PRECISION and ULTRAPRECISION work, we recommend our No. 507-HP and No. 508-UP NMR Sample Tubes.

5mm o.d. THIN WALL NMR SAMPLE TUBES

No. 508-UP ULTRA PRECISION for ultra high resolution NMR
Standard tube length: 178mm (7 inches); o.d. 4.97 ± 0.025mm (0.001 in.);
camber ± 0.013mm (0.0005 in.).
For additional length,
add $0.04 per cm ($0.20/in).

No. 507-HP HIGH PRECISION for high resolution NMR
Standard tube length: 178mm (7 inches); o.d. 4.97 ± 0.03mm (0.001 in.);
camber ± 0.025mm (0.001 in.).
For additional length,
add $0.21 per cm ($0.50/in).

No. 506-P PRECISION for medium and high resin NMR
Standard tube length: 178mm (7 inches); o.d. 4.97 ± 0.05mm (0.002 in.);
camber ± 0.025mm (0.001 in.).
For additional length,
add $0.16 per cm ($0.40/in).

No. XR-55 PRECISION FOR medium and high resin. NMR
Standard tube length: 178mm (7 inches); o.d. 4.97 ± 0.025mm (0.001 in.);
camber ± 0.013mm (0.0005 in.).
For additional length,
add $0.08 per cm ($0.20/in).

No. 505-P PRECISION FOR medium and high resin. NMR
Standard tube length: 178mm (7 inches); o.d. 4.97 ± 0.03mm (0.001 in.);
camber ± 0.025mm (0.001 in.).
For additional length,
add $0.08 per cm ($0.20/in).

No. 502 THROWAWAY TYPE
Standard tube length: 178mm (7 inches); o.d. 4.97 ± 0.05mm (0.002 in.);
camber ± 0.025mm (0.001 in.).
For additional length,
add $0.08 per cm ($0.20/in).

LARGE VOLUME NMR SAMPLE TUBES

10mm o.d. THIN WALL NMR SAMPLE TUBES

No. 1008-UP ULTRA PRECISION for ultra high resolution NMR
Standard length: 178mm (7 inches); o.d. 10.00 ± 0.025mm (0.001 in.);
camber ± 0.025mm (0.001 in.).
For additional length,
add $0.20 per cm ($0.50/in.).

No. 1005-P PRECISION for medium and high resin. NMR
Standard length: 178mm (7 inches); o.d. 10.00 ± 0.025mm (0.001 in.);
camber ± 0.025mm (0.001 in.).
For additional length,
add $0.20 per cm ($0.50/in.).

20mm o.d. THIN WALL NMR SAMPLE TUBES

No. 2005-P PRECISION for medium and high resin. NMR
Standard length: 178mm (7 inches); o.d. 20.00 ± 0.025mm (0.001 in.);
camber ± 0.025mm (0.001 in.).
For additional length,
add $0.20 per cm ($0.50/in.).

PTFE VORTEX PLUGS
All sizes - specify tube size...$4.00/lot of 5
Rod for all Vortex Plugs.....$10.00 each.

PTFE Machined Tube Caps
4mm ... $23.25/caps; $45.50/caps
10mm ... $28.25/caps; $50.50/caps

NOTE: Other tube sizes available, please inquire.
Performance Test Results

Norell's XR-55 NMR Sample Tubes

Date: [Date]

Type of NMR equipment used: [Type]

Manufacturer: [Manufacturer]

Tube used: [Tube]

Date: [Date]

Name: [Name]

Address: [Address]

Phone: [Phone]

Norell's XR-55 NMR Sample Tubes

Date: [Date]

Type of NMR equipment used: [Type]

Manufacturer: [Manufacturer]

Tube used: [Tube]

Date: [Date]

Name: [Name]

Address: [Address]

Phone: [Phone]

Norell's XR-55 NMR Sample Tubes

Date: [Date]

Type of NMR equipment used: [Type]

Manufacturer: [Manufacturer]

Tube used: [Tube]

Date: [Date]

Name: [Name]

Address: [Address]

Phone: [Phone]

Norell's XR-55 NMR Sample Tubes

Date: [Date]

Type of NMR equipment used: [Type]

Manufacturer: [Manufacturer]

Tube used: [Tube]

Date: [Date]

Name: [Name]

Address: [Address]

Phone: [Phone]

While our competition makes many empty claims... we give you instead actual performance test results carried out by NMR Spectroscopists who signed their name to authenticate them. Norell, Inc., 314 Arbor Ave., Landisville, NJ 08326 USA
The Departments of Radiology (University of Massachusetts Medical School) and Biomedical Engineering (Worcester Polytechnic Institute) are seeking a postdoctoral research associate. Salary is commensurate with experience. The successful candidate will be expected to participate actively with basic and clinical researchers and to take the lead in several new projects. The individual will also help supervise graduate students. Qualifications for the position include a doctoral degree in a basic science and hands-on experience with in vivo NMR spectroscopy and imaging.

The joint program in NMR spectroscopy and imaging is located in a new building in the Massachusetts Biotechnology Research Park, adjacent to the campus of the University of Massachusetts Medical School and a five minute drive from the Worcester Polytechnic Institute. Equipment currently includes a 2.0T/45 cm GE CSI-II imaging spectrometer, exclusively for research, and a 1.5T GE Signa system, available for both clinical and basic research. A second 1.5T GE clinical unit, with a spectroscopy accessory, will be delivered in December.

Worcester is located less than one hour from Boston. The magnificent beaches of Cape Cod, the Rhode Island shore, and Maine are 1-1/2 hours away, and the best skiing in the East is within 2 hours. Interested candidates should contact Professor Chris Sotak, Department of Biomedical Engineering, Worcester Polytechnic Institute, 100 Institute Rd., Worcester, MA 01609.
October 6, 1988 (received 10/15/88)

Professor Bernard L. Shapiro
Department of Chemistry
Texas A&M University
College Station, TX 77843

Model-Independent and Dependent Analysis of the Global and Internal Dynamics of Cyclosporin A

Dear Professor Shapiro:

Recently we have used 13C NMR relaxation studies to investigate the dynamics of a small cyclic peptide, cyclosporin A (Figure 1). By using the model-independent theory of Lipari and Szabo, we have simultaneously determined both the overall correlation time for the molecule and the amplitudes and timescales for the internal motions of all resolvable proton-bonded carbons.

The model-free approach proposes a simple form for the spectral density function $J(\omega)$:

$$J(\omega) = \frac{2}{5} \left[S^2 \left(\frac{\tau_1}{1 + (\omega \tau_1)^2} A + \frac{\tau_2}{1 + (\omega \tau_2)^2} (1 - A) \right) + (1 - S^2) \left(\frac{\tau_1}{1 + (\omega \tau_1)^2} A + \frac{\tau_2}{1 + (\omega \tau_2)^2} (1 - A) \right) \right]$$

where $1/\tau_{1e} = 1/\tau_1 + 1/\tau_e$ and $1/\tau_{2e} = 1/\tau_2 + 1/\tau_e$

Here, τ_1 and τ_2 are two correlation times describing anisotropic overall correlation times, with A a "mixing" parameter ranging from 1 to 0. For each carbon an effective correlation time τ_e for the internal motion is measured, as well as the generalized order parameter S^2 between 1 and 0 describing the amplitude of that motion. When overall molecular reorientation is isotropic, the formula can be simplified, such that $\tau_1, \tau_2 = \tau_m$ and $A = 1$.

The generalized order parameter has a model-independent significance since no specific model for the internal motion has been assumed in the formula above. On the other hand, τ_e has no physical meaning unless interpreted within the framework of a specific motional model. We have used this form of the spectral density to fit the 13C relaxation data obtained at 75 and 125 MHz for cyclosporin A. Calculated values for the dipolar spin-lattice relaxation time T_1 and steady state NOE can be least-squares fit to experimental values using the well-known expressions

$$\left(\frac{1}{T_1} \right)^{DD} = \frac{2 \gamma^2 \tau_e^2}{4\pi^2} \left[J(\omega - \omega_0) + 3J(\omega_0) + 6J(\omega + \omega_0) \right]$$

$$\text{NOE} = 1 + \frac{\gamma_c [J(\omega + \omega_0) - J(\omega - \omega_0)]}{\gamma_c [J(\omega_0) + 2J(\omega_0) + 3J(\omega_0) + 6J(\omega + \omega_0)]}$$

A fitting algorithm was developed which finds the best parameters S^2 and τ_e for each carbon at a given constant value of the global parameters $\tau_1, \tau_2,$ and A. The error function used was as follows:

$$\text{Error} = \sum_{\omega_1, \omega_2} \sum_{i=1}^{N} \left(\frac{(\text{NOE}_{\text{obs}} - \text{NOE}_{\text{calc}})^2}{T_1} \right)_{i} + \left(\frac{\text{NOE}_{\text{obs}}}{T_1} - \frac{\text{NOE}_{\text{calc}}}{T_1} \right)_{i}$$
FIGURE 1: Cyclosporin A, molecular weight 1201.5. MeBMT is (4R)-4((E)-2-butenyl)-4,N-dimethylthreonine. Abu is α-aminobutyric acid. Sar (= Sarcosine) is N-methylglycine.

A contour plot of the relative error versus τ_1 and τ_2 at $A = 0.5$ is shown (Figure 2). Our results show that cyclosporin exhibits isotropic reorientation with a correlation time τ_m of 0.475 ns/rad (in chloroform at 298K). Using a simple hydrodynamic calculation when $\tau_m = 4\pi^2 \eta \lambda kT$, $\eta = 0.00542$ gnt/cm2s, λ is calculated to be 10Å. The estimated dimensions of cyclosporin A from the crystal structure correspond to a prolate ellipsoid with major and minor axes of 23Å and 10Å; a sphere of equivalent volume would have $\tau = 13Å$.

The generalized order parameters obtained indicate that a range of motions of varying degrees of restriction are present. These order parameters may be compared to order parameters generated by specific motional models, such as the Woessner model for rotation of methyls, or diffusion in a cone. An indepth analysis of our results is being published elsewhere. A number of interesting conclusions may be obtained from this study. For instance, the generalized order parameters for motion of the N-methyl groups correlate well with participation of the carbonyl of the same peptide bond in a hydrogen-bonding interaction. Also, the dynamic information obtained from the order parameters yielded information about the static geometry. We were able to confirm solely on the basis of the model-free parameters the presence of a trans rather than cis configuration of the double bond in the sidechain of MeBmt 1.

Our results indicate that this method of analysis is sufficient to define both the internal dynamics of macromolecules as well as the overall reorientational behavior. Combined with new techniques for both selective isotopic enrichment and detection of low sensitivity nuclei such as 13C and 15N, this technique promises to expand our abilities to quantitatively study the dynamics of larger macromolecules of biological interest.

Sincerely,

Martin Dellwo

P.S. Please credit this contribution to R.W. Dykstra

Compensating for Differential T_1 Relaxation in the STEZQC Technique

Dear Dr. Shapiro:

The STimulated Echo Zero Quantum Coherence (STEZQC) spectral editing technique has recently been suggested for obtaining in vivo lactic acid spectra from a localized volume [1]. The STE sequence (Figure 1), in addition to localization [2-5], creates ZQ (and higher order) coherences in coupled spin systems following the first two 90° pulses. The ZQ's evolve during the interval T_1 and manifest themselves as an amplitude modulation of the corresponding single quantum signal generated following the third 90° pulse. The ZQ modulation frequency equals the chemical shift difference (in Hz) between the coupled spins. Non-coupled spins, on the other hand, experience no modulation during the T_1 period since isolated spin-1/2 nuclei only undergo single quantum transitions. Subtracting two volume localized spectra with the appropriate ZQ evolution periods constructively add signal from metabolites with coupled spins and cancels signal from interfering non-coupled resonances.

The STEZQC technique is illustrated in Figure 2 using a phantom containing 100 mM N-acetylalanine in 90% D$_2$O. This compound contains an AX3 spin system similar to that found in lactic acid as well as a non-coupled methyl resonance at 2.0 ppm from the N-acetyl moiety. The data were acquired from a 0.5 cc volume within the phantom using our 2.0T/45 cm GE CSI-11 imaging spectrometer. Spectra A and B in Figure 2 were acquired with T_1 periods of 12 and 14 msec, respectively. This temporal difference is equal to a half cycle of the ZQ modulation frequency (250 Hz at 2.0T) and gives amplitude-modulated signals which are antiphase with respect to each other. The absolute value of one of the T_1 periods is chosen to coincide with the most negative or positive excursion of the amplitude modulated signal. The resulting difference spectrum, Figure 2C, edits the non-coupled methyl resonance from the spectrum.

It should be noted that a small residual signal is present in the difference spectrum arising from the edited resonance. This results from different extents of T_1 relaxation of the longitudinal STE magnetization stored along the z axis during the two ZQ evolution periods. For example, a T_1 relaxation time of 200 msec (a typical value for in vivo lipid -CH$_2$- protons) will give rise to an approximately 1% difference in signal amplitude for the T_1 periods employed. Since the in vivo lipid concentration can be as much as 400 mM (in muscle), a 1% residual signal would be of the same order of magnitude as the lactic acid concentration one is trying to measure.

This problem can be circumvented by acquiring the data such that the extents of T_1 relaxation are the same for both component spectra. Consider the component of the difference spectrum where the AX3 methyl resonance is inverted, that is, at $T_1=12$ msec and 4 msec increments (or decrements) thereof. If half of the data is acquired with $T_1=12$ msec and the other half with $T_1=16$ msec, then the average T_1 relaxation during the T_1 interval will equal that which occurs during an equal number of $T_1=14$ msec acquisitions. The difference spectrum from data acquired under these conditions, Figure 3C, shows essentially no residual signal. The improvement is better appreciated in the expansion in Figure 4. This acquisition scheme should enhance the performance of the STEZQC technique, particularly when measuring lactate in environments containing large concentrations of interfering lipid signal.

Sincerely,

Chris Sotak
Assistant Professor
Department of Biomedical Engineering

Figure 1. Stimulated echo (STE) pulse sequence for volume localized spectroscopy.

Figure 2. STE spectra from a 0.5 cc volume within a phantom containing 100 mM N-acetyl alanine in 90% D₂O (only the upfield methyl resonances are shown). The TE/2 interpulse delay was 68 msec (1/2J for the coupled methyl doublet). (A) Spectrum is the sum of two blocks of 16 averages with t₁ = 12 msec. (B) Spectrum is the sum of two blocks of 16 averages with t₁ = 14 msec. (C) Spectrum B minus spectrum A.

Figure 3. STE spectra from same volume as in Figure 2. The TE/2 interpulse delay was 68 msec. (A) Spectrum is the sum of a block of 16 averages with t₁ = 12 msec and a block of 16 averages with t₁ = 16 msec. (B) Spectrum is the sum of two blocks of 16 averages with t₁ = 14 msec. (C) Spectrum B minus spectrum A.

Figure 4. (A) Expansion of Figure 2C. (B) Expansion of Figure 3C.
Dear Dr Shapiro,

Risk-free Sample Insertion for Hands-on NMR

We have recently installed a Bruker AC200 for open access use by chemists. This complements an overnight proton and carbon service using an AM250 with autosampler and heteronuclear and specialist NMR services on an AM360.

The operating philosophy for any hands-on machine was that it should be capable of producing a rapid throughput of good quality proton spectra for a wide range of users. Also, that the training and expertise required to achieve these objectives would not be a barrier to its initial or continuing use.

The 1988 Bruker software release allows an 'EXE' control program to be written which initiates all of the automatic functions necessary to lock, shim, acquire and plot a spectrum, simply by presenting the operator with a screen display of input instructions and options, which can be initiated on single key commands. A combination of overlapping use of different jobs for acquisition and for processing and plotting, together with plot queueing has resulted in a potential throughput of up to 10 spectra/hr. 100 people were trained to prepare samples and operate this system, in a series of group sessions lasting 45 minutes each.

For operational reasons, it was decided not to purchase an autosampler so this required manual loading of the sample into the magnet. The EXE program co-ordinates the timing of the sample inject/eject with an instruction to place the sample in the top of the magnet. However, with so many users our greatest fear was that sooner or later someone would place a sample in the magnet without the sample-lift air being on. With a hands-on machine, anything that can go wrong, will eventually.

The safety guard which we have designed is attached to the top of the probe assembly and when the sample-lift air is off, covers the inlet port thereby preventing insertion of a sample.

However, when the sample-lift air is off on a piston, activated from the same compressed air supply, retracts the guard. A beryllium spring returns the guard over the inlet port when the air pressure is reduced as a sample is lowered into the magnet.

The fitting of this simple mechanical device constructed in non-magnetic materials of aluminium, acetyl and beryllium caused no noticeable changes to the shim values or the effectiveness of the sample-lift. It has worked faultlessly for 7 months and in doing so, has removed the major risk of probe damage. How many of us would wish to see the same risk removed from our own working environment?

Please credit this to David Reid’s subscription (if he still has one after the ULTIMATUM).

Yours sincerely

P J Moore

D Harrison

S A O’Connor
POSTDOCTORAL RESEARCH ASSOCIATE

Position available 1/1/89 for in vivo NMR spectroscopic study of liver metabolism in tumor-bearing animals with CSI and Nicolet spectrometers. Ph.D. degree in biochemistry, chemistry or physiology with primary experience in NMR spectroscopy required. Prior experience in animal procedures preferred but not required. Send resume and 3 references to: Katherine Liu, M.D., Department of Surgery, University of Illinois at Chicago, Box 6398, Chicago, IL 60680. The University of Illinois is an affirmative action/equal opportunity employer.
SECOND ANNOUNCEMENT

The Workshop aims to bring together those involved with the theory and application of nuclear or electron spin relaxation to the study of the structure and dynamics of molecules. The topics to be discussed will include the structure of biologically active molecules, particularly by the combination of nuclear Overhauser measurements with molecular dynamics simulations, natural and synthetic polymers, micellar and molecular liquid crystals, model membranes and motion of molecules within clathrates. The Workshop will also embrace the development of experiments, the testing of theories against data obtained on model systems, and computer simulations of molecular dynamics.

The speakers will include: G. Bodenhausen (Lausanne), V. Bystrov (Moscow), C. Chachaty (Saclay), J. H. Freed (Cornell), E. Gaggelli (Marseille), P. J. Hore (Oxford), J. S. Hyde (Wisconsin), J. Huttermann (Hamburg), G. Kothe (Stuttgart), J. Kowalewski (Stockholm), G. Lindblom (Umea), D. Marsh (Gottingen), K. Mobius (Berlin), A. Schweiger (Zurich), M. J. Stapleton (Illinois), Y. D. Tsvetkov (Novisibirsk), R. L. Vold (San Diego), N. Yordanov (Sofia), C. Zannoni (Bologna).

The meeting is to be held in the Tuscan town of San Miniato, near Florence, and intending participants should write for further details to L. Banci, Dipartimento di Chimica Bioinorganica, Universita degli Studi di Firenze, Via Gino Capponi 7, 50121 Firenze, Italy.
The 30th ENC
(Experimental NMR Conference)
April 2-6, 1989
The Asilomar Conference Center, Pacific Grove, CA

The 30th ENC will emphasize the experimental aspects of magnetic resonance and will feature invited lectures, contributed posters, and short talks selected from the submitted posters. Time will also be allocated for informal meetings of special interest groups.

Program Highlights

<table>
<thead>
<tr>
<th>Day</th>
<th>Schedule</th>
</tr>
</thead>
<tbody>
<tr>
<td>SUN</td>
<td>Evening (7:30 p.m.): Solid-State NMR Methods; Structure, Order and Dynamics; B. D. Bluemich, Chair.</td>
</tr>
</tbody>
</table>
| MON | Morning: New Directions in Sample Rotation; F. D. Doty, Chair.
 Morning: NMR of Atomic Clusters; J. A. Reimer, Chair.
 Evening: EPR by Echoes and FIDs; H. Thomann, Chair. |
| TUES | Morning: 2D and 3D NMR in Liquids; G. Bodenhausen, Chair.
 Morning: NMR for Analysis; Large Fields and Small Molecules; M. W. Baum, Chair.
 Afternoon: Open. Special Interest Group Meetings.
 Evening: Spectral Calculations and Spectral Databases; C. G. Wade, Chair.
 Evening: Extremes (Miscellany); A. N. Garroway, Chair. |
| WED | Morning: Novel Physical Phenomena in NMR; R. Tycko, Chair.
 Morning: Protein NMR Spectroscopy; S. J. Opella, Chair.
 Afternoon: Poster Session B.
 Evening: Banquet. |
| THURS | Morning: Advances in Biological Imaging and Gradient Techniques; J. J. H. Ackerman, Chair.
 Morning: Stress and Relaxation; R. G. Bryant, Chair. |

Asilomar, "the refuge by the sea", occupies 105 secluded acres at the tip of the Monterey Peninsula overlooking the Pacific Ocean. The beautiful, natural setting offers a relaxed environment for scientific exchange and for recreation.

The deadline for registration and poster abstracts is January 13, 1989. To obtain registration information, contact the ENC Office, 750 Audubon, East Lansing, MI 48823, (517) 332-3667.
Sequencing Peptides with HOESY Experiments
Rinaldi, P. L., and Swiecinski, F. J. 50

Deuterium Isotope Effects on ^{14}N and 1H Nuclear Shielding in Ammonium Ions
Hansen, P. E. 52

Utilization of Graphics Supercomputers in Laboratory Computer Networks
Levy, G. C. 55

Aluminum NMR and Distortions in Minerals
Woessner, D. E. 56

$^{13}C[^{1}H][^{6}Li]^{1}$ Triple Resonance Experiments. Selective Observation of Alkyl lithium Aggregates
Thomas, R. D. and Ellington, D. H. 58

Position Available
Sotak, C. H. 61

Model-Independent and -Dependent Analysis of Global and Internal Dynamics of Cyclosporin A

Compensating for Differential T_1 Relaxation in the STEZOC Technique
Sotak, C. H. 64

Risk-Free Sample Insertion for Hands-On NMR
Moore, P. J., Harrison, D., and O'Connor, S. A. 66

Position Available

Third Chianti Workshop on Magnetic Resonance Relaxation
Banci, L. 68

30th ENC (Experimental NMR Conference)
Watson, J. A. 69

Please take a few minutes to look at the lists on page 1 of each issue of the **Advertisers** and **Sponsors** of the Newsletter - these are the organizations whose continued generosity and support is so essential to the Newsletter's existence. Note that these lists are growing, and new supporters are joining those who have been with us in the past - in some cases, for many years. There is still a need, however, for additional advertising and sponsorship revenue, so that the need for increases in the subscription rate will be less frequent.

To all our Sponsors and Advertisers, a most sincere ‘thank you’ for your cordial and vital expressions of support, both tangible and intangible. Newsletter readers are asked to make their appreciation known to our **Advertisers** and **Sponsors**, so that they will be moved to continue to support this activity.

B.L.S.
CSI 2T Applications

Shielded Gradients and Localized Spectroscopy

Eddy current effects are the leading cause of errors and lack of consistent results in gradient localization methods. It is not surprising, then, that actively shielded gradients, which have dramatically reduced eddy currents, represent a significant technology advance for all forms of B_0 gradient volume localization and spectroscopic imaging methods. The fast rise time and high gradient strength characteristics of the coil used in these experiments are also important.

Even without pre-emphasis, shielded gradients recover fast enough to obtain spectroscopic information at 1 msec or less after a strong gradient has been turned off (Fig. 1).

As an example, a 4DFT spectroscopic imaging technique can resolve the four frequency domains that are associated with an NMR signal from an object: x, y, z-spatial coordinates and chemical shift δ. The above technique can be a practical alternative to single volume localized spectroscopy. This method allows phosphorous spectra to be obtained from well-defined regions as demonstrated in the following experiment, which was carried out on a GE CSI 2T system using high-strength, shielded gradient coils (Fig. 2). The phase-encode time is kept short (on the order of the dwell-time) to minimize phase-errors in the final spectra, as well as to avoid loss of signal due to T_2 decay, which is significant in biological phosphates.

Fig. 1—Using an oil/water phantom, a 10 G/cm gradient will create a water frequency profile extending from 156 KHz to 280 KHz away from normal water resonance. Residual gradient effects of less than 0.01% (60 Hz at 10 G/cm) are observed in a spectrum acquired beginning 1 msec after a 20 msec gradient pulse.

Fig. 2—Stacked plot showing 512 phosphorous spectra from 60 mm cubed region of a live rat. Each trace corresponds to 7.5 mm cubed region (voxel) from within the region of interest. The offset traces clearly show the achievable spectra and spatial resolution of the technique, as well as demonstrating localization of the liver phosphorous metabolites from that of overlying skeletal muscle. Total acquisition and processing time was two hours.
Application: Pulse Programming

The GSX pulse programmer was designed with sufficient flexibility and range to do the most sophisticated routines you see in the current literature. While these routines may be of no interest for your present NMR applications, the next issue may have just the perfect experiment. As an example of these capabilities, consider HOHAHA.*

The HOHAHA experiments which use MLEV-17 for spin locking are very good for providing connectivity, especially in small molecules which produce poor RELAY experimental results. The spin locking allows coherence transfer which can be controlled by the mixing times. Directly coupled protons can be detected with short mixing times (20 ms) while longer mixing times result in relayed coherence transfers — many times with more sensitivity than RELAY experiments.

The data below are from a wide bore GSX-270 and compares the normal COSY experiment using 3 mg of sucrose in D2O with the HOHAHA experiment run on the same sample. The spin locking used for the HOHAHA produces relayed coherencies which are shown by the additional cross peaks in the contour plot.