Texas A & M University
N M R Newsletter
June, 1981

J. P. Yesinowski, R. J. Sunberg and J. J. Benedict
PH-Statting and Rapid Mixing in Spinning NMR Tubes During Spontaneous Precipitation
1

C. S. Yannoni
Spurious Ringing
3

P. Bladon and B. Acharya
Graphics 13C NMR Data-Terminal
6

R. E. Lenkinski, D. Siminovitch and B. McDonald
Southwestern Ontario NMR Center
7

W. B. Bechtold and J. H. Goldstein
Spiropentane Spectrum and Structure
9

B. D. Nageswara Rao
Postdoctoral Position Available
11

V. J. Kowalewski
Good Results with an INDORE Model; Looking for an Old Nicolet on Sale
14

H. Booth, R. Fleming and M. A. Healy
Operation and Use of Bruker WM-250; Breakage of Probe Glassware
15

A. Briguet, J. Delmau and J. C. Duplan
Cinetique de la Penetration de l'Eau Dans un Echantillon Poreux
17

P. Diehl and F. Moia
PASCAL Version of Program SHAPE
19

M. E. Ando, J. T. Gerig and E. F. Weigand
Deuterium NMR Studies of Tosylchymotrypsin
22

S. Daniello and R. L. Lichter
13C Chemical Shifts of Dehydroquinuclidine
23

U. Henriksson and J. Glaser
205Tl NMR of Tl(III)-Halide Complexes
25

T. Inubushi and E. D. Becker
Efficient Detection of Paramagnetically Shifted Resonances in Solution with a Spectrometer Designed for Solids
27

J. N. Shoalery and S. Patt
Attached Proton Test (APT)
30

C. S. Springer, Jr.
Ionophore-Catalyzed Cation Transport Between Phospholipid Inverted Micelles; Manifest in DNMR
33

E. Oldfield
Position Opening: Operations Manager, Spectroscopy Facility
35

A monthly collection of informal private letters from Laboratories of NMR. Information contained herein is solely for the use of the reader. Quotation is not permitted, except by direct arrangement with the author of the letter, and the material quoted must be referred to as a "Private Communication". Reference to the TAMU NMR Newsletter by name in the open literature is strictly forbidden.

These restrictions apply equally to both the actual Newsletter participant-recipients and to all others who are allowed access to the Newsletter issues. Strict adherence to this policy is considered essential to the successful continuation of the Newsletter as an informal medium of exchange of NMR information.
Consummate care in the storage and preparation of spectroscopic samples is just as integral a part of good spectroscopic practice as running the investigation or analyzing the spectra. And consummate care, of course, begins with equipment.

Our new, expanded Wilmad line of vials, storage and septum bottles, and a broad variety of stoppers, caps, and septa help materially to simplify the handling, storage, and preparation of samples... eliminate expensive sample loss... and save unnecessary waste of time and money.

Wilmad vials and bottles are manufactured of top-quality borosilicate glass to prevent any pH modification of the contents. The variety of caps available match any sampling or storage need. Snap caps of polyethylene, open-top types with elastomer septa, aluminum seals with Teflon-faced septa... whatever you need we now carry in stock.

Write or call for our new Catalog 781.
FT NMR was never "hard," only certain samples were.

Now with the low cost JEOL FX60QS System
High Resolution Solid State NMR becomes routine
Subject: pH-STATTING AND RAPID MIXING IN SPINNING NMR TUBES DURING SPONTANEOUS PRECIPITATION

Dear Professor Shapiro:

We are using high-resolution \(^{31}\)P NMR to follow the spontaneous precipitation of calcium phosphates from supersaturated solutions, a process accompanied by the release of protons. Since the phosphorus chemical shift is pH-dependent, we wish to maintain a constant solution pH. We have, therefore, developed a simple apparatus which permits the acquisition of spectra from spinning 20mm sample tubes while: (1) constantly monitoring the pH; (2) adding a solution of base to maintain constant pH (pH-statting); (3) efficiently mixing the added base with the sample by means of specially-designed mixing vanes. A diagram of the apparatus, which is lowered into a spinning (uncapped) NMR tube in our wide-bore CXP-300 magnet, is shown. The stationary mixing vanes promote turbulent mixing and also prevent vortexing when the tube is spun. In the absence of vanes, we found mixing in spinning 20mm tubes to be extremely slow (>>5 minutes).

There are other areas where features of this apparatus could prove very useful:

1. Automatic acquisition of data for chemical shift "titrations" (chemical shifts vs. pH);

2. Automatic acquisition of data as a function of sample dilution, or as a function of concentration of an additional reagent (e.g. metal ion complexation studies);

3. Kinetic studies of relatively fast reactions (\(t_{1/2} \geq 10\)s);

4. Studies of reactions while maintaining constant ion concentrations using ion-selective electrodes;

5. Decoupling at high-fields and accurate variable-temperature studies (temperature gradients can be minimized by using the mixing vanes).

Very truly yours,

J.P. Yesinowski
R.J. Sunberg
J.J. Benedict
May 7, 1981

Professor Bernard L. Shapiro
Department of Chemistry
Texas A&M University
College Station, TX 77843

Dear Barry:

Spurious ringing is common in pulsed NMR, and we have had our share recently. This has happened because we have built probe bodies from aluminum which was fine until we used the same probe at a lower frequency, for experiments where minimal dead time was required, or have used a larger sample coil. In all three instances, we have solved the ringing problem by using brass instead of aluminum; in the last case, changing only the probe sides was sufficient.

This remedy is one of several in Steve Roeder’s useful note on these effects in J. Mag. Res. (33, 199 (1979)).

Best regards,

C. S. Yannoni

Short Title: Spurious Ringing
Superior sensitivity is only one of the features we put into our Supercons...

...but it takes a great deal more to qualify for excellence.

Bruker continuously succeeds in building supercons with performance characteristics and features that exceed those of any other commercially available system. Here are just a few:

A Data System providing
- true multitasking including simultaneous multiple processing — 24-bit word length for highest dynamic range — virtual memory capability for acquisition and processing of up to 512 K data — high-density disc systems from 24 to 96 megabyte storage capacity

Optional Satellite Terminal for simultaneous processing, plotting and display

A Pulse Programmer of unparalleled flexibility and operator simplicity

Correlation NMR capability
A range of Probeheads
- broadband observe — broadband decouple
- dual-frequency computer-switchable — triple resonance — CIDNP — and many others.

A wide selection of Magnet Systems from 1.9 to 11.7 T (80 — 500 MHz 1H frequencies)

300 KHz ADC for spectral widths up to 150 KHz

The broad range of Bruker high-resolution high-field and high-power NMR systems is illustrated in the selection chart. For a hands-on demo or detailed documentation on the right system for you, simply call or write Bruker Instruments, Inc., Manning Park, Billerica, MA 01821, (617) 667-9580.

In high-field NMR there is simply no alternative.
More evidence:

62.8 MHz 13C lineshape:
80% CH, 10 mm tube;
linewidth at 0.55% peak height: 2.24 Hz

62.8 MHz 13C sensitivity:
single pulse 10% ETB,
10 mm tube; S/N > 200:1

(quod erat demonstrandum)

Please send me detailed information on:

- High-resolution NMR spectrometers
- High-power NMR spectrometers
- NMR Software

My field of application is: ___

The information is needed for future planning □
for purchase after 6 months □ for immediate purchase □
□ Please have your NMR specialist call me.

My phone number is: ________________________________

Name/Title __

Organization: __

Address: __

City/State/Zip __
University of Strathclyde

Department of Pure and Applied Chemistry

Thomas Graham Building,
295 Cathedral Street, Glasgow G1 1XL. Tel: 041-552 4400

8th May, 1981.

Professor B. L. Shapiro,
TAMUNMR
Department of Chemistry,
Texas A and M University,
College Station,
TEXAS 77843
U.S.A.

Dear Barry,

Graphics 13C n.m.r. Data-Terminal

We have recently made a start on a project which I have had in mind for some time, namely to provide ourselves with either our own 13C-data retrieval/data prediction system or (as seems more likely) the local front-end which would afford us access to a network system. We have managed to purchase second-hand (for £3000) a vector graphics system (GEC 928) to form the basis of this.

We have got to the stage in programming where we are able to draw a structure on the display screen and code the structure into a form where it can be transferred to a larger machine for further processing. We have also managed to do some sub-structure identification in the local machine but the store available (32K words) is insufficient for the depth of searching necessary.

The programs have been arranged to be portable requiring only that the 928–Fortran–Graphics subroutines can be emulated in any machine to which the programs are transferred.

Yours sincerely,

Peter Bladon
Binod Acharya
April 30, 1981

Dr. Barry Shapiro
Department of Chemistry
Texas A & M University
College Station, Texas
U.S.A.

Southwestern Ontario NMR Center

Dear Barry:

The Southwestern Ontario NMR Center began operation on December 4, 1980. Since that time we have been running virtually full time (24 hours a day) on our Bruker WH-400. This instrument is fully broodanded between 8 and 177 MHz. Changeover time is ca 15 min between nuclei. In the short few months that we have been in operation we have already observed 1H, 2H, 10B, 11B, 13C, 14N, 15N, 17O, 29Si, 31P, 39K, 41K, 47Ti, 49T, 53Cr, 57Ni, 67Zn, 99Y, 103Rh, 113Sn, 129Xe, 195Pt, 199Hg and 207Pb.

We have also run some interesting non high resolution spectra. One of these is illustrated by the accompanying 31P powder pattern. We are currently experimenting with a "solid echo" microprogram to improve this spectrum. We hope to be able to report on this in the near future.

Sincerely,

Bob

R. E. Lenkinski,
Manager

D. Siminovitch

B. McDonald

/la
^{31}P

SPHINGOMYELIN

162.0 MHz

10000 Scans

PHOSPHORIC ACID

EXTERNAL REFERENCE
Spiropentane Spectrum and Structure

Spirohydrocarbons have been the subjects of numerous detailed theoretical studies of structure, energy, strain, and pi-electron delocalization. However, experimental structural information has been limited to electron diffraction and liquid crystal NMR studies of spiropentane and electron diffraction and microwave of spiro[2,4]-4,6-diene.

Unfortunately, initial structural information for spiropentane appears to have been somewhat contradictory. The electron diffraction study found the four equivalent H-C-H bond angles to be 118.4°, compared to 115.22° determined by liquid crystal NMR. Later ab initio and maximum overlap calculations predicted the angle to be 113.15° and 114.55°. As the angle is sensitive to the hybridization of the carbon, the wide variation of its observed and calculated values appears unusual.

Neither the liquid crystal nor the electron diffraction structures were corrected for the effects of vibrational motion, which can be substantial. Subsequent to the two investigations, the normal coordinate analysis necessary to perform corrections for vibration has appeared. We have used them to apply corrections for harmonic vibrational motion to the two previous experimental studies, and a second liquid crystal study, in an effort to account for the discrepancies.

Results are presented in Table 1, along with ab initio and maximum overlap calculations. The electron diffraction carbon coordinates and C-H bond length have been used to scale the NMR distance ratios. The results indicate general agreement between liquid phase and theoretical calculations, although the gas phase structure still appears to be different. While slight distortions are to be expected in different media, the magnitudes in the present case seem unusually large, especially in light of the previous agreement for cyclopropane studied by the two techniques. The reproducibility of the values in separate liquid crystal phases confirms the condensed phase bond angles.

Please accept this as our "subscription" fee.

Sincerely,

Wm. B. Bechtold

J. H. Goldstein

Professor of Chemistry
Table 1. Comparison of Structural Information for Spiropentane by Different Methods

<table>
<thead>
<tr>
<th>Proton Distances</th>
<th>Phase IV<sup>a</sup></th>
<th>Previous NMR<sup>a,b</sup></th>
<th>EDC<sup>c</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td>r<sub>12</sub></td>
<td>1.817 ± 0.003</td>
<td>1.812 ± 0.003</td>
<td>1.860 ± 0.007</td>
</tr>
<tr>
<td>r<sub>13</sub></td>
<td>2.518 ± 0.004</td>
<td>2.523 ± 0.004</td>
<td>2.467 ± 0.033</td>
</tr>
<tr>
<td>r<sub>14</sub></td>
<td>3.105 ± 0.006</td>
<td>3.106 ± 0.006</td>
<td>3.090 ± 0.026</td>
</tr>
<tr>
<td>r<sub>15</sub></td>
<td>3.131 ± 0.006</td>
<td>3.138 ± 0.006</td>
<td>3.139 ± 0.042</td>
</tr>
<tr>
<td>r<sub>16</sub></td>
<td>3.792 ± 0.007</td>
<td>3.797 ± 0.008</td>
<td>3.801 ± 0.037</td>
</tr>
<tr>
<td>r<sub>18</sub></td>
<td>4.353 ± 0.008</td>
<td>4.358 ± 0.008</td>
<td>4.364 ± 0.034</td>
</tr>
</tbody>
</table>

H-C-H

<table>
<thead>
<tr>
<th>Phase IV<sup>a</sup></th>
<th>Previous NMR<sup>a,b</sup></th>
<th>EDC<sup>c</sup></th>
<th>ab initio<sup>d</sup></th>
<th>Max. Overlap<sup>e</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td>115.0° ± 0.7°</td>
<td>114.5° ± 0.7°</td>
<td>119.4 ± 1.1°</td>
<td>113.9°</td>
<td>114.6°</td>
</tr>
</tbody>
</table>

a. Calculated using vibrationally corrected electron diffraction C-H bond length (1.077 Å) and carbon coordinates
b. Direct couplings from Ref. 2
c. Uncorrected distances from Ref. 1
d. Ref. 3
e. Ref. 4
References

May 20, 1981

Professor Bernard L. Shapiro
Department of Chemistry
Texas A & M University
College Station, TX 77843

Postdoctoral Position Available

Dear Barry:

A postdoctoral position is immediately available in our project concerning magnetic resonance of bioluminescent proteins from jellyfish. We are looking for someone either with NMR experience and interest in biological NMR or with biochemical or biophysical expertise and interest in applying NMR to biological problems. The initial appointment is for one year at an annual salary in the range of $12,000 to $13,000. The term may be extended for one or two additional years contingent upon reasonable progress and mutual satisfaction.

The emphasis of the work will be on experimental NMR although some EPR may also be involved. In the beginning the NMR experiments will be done at the Purdue University regional NMR facility in West Lafayette, IN. Within a year, however, we will have a 250-300 MHz high resolution NMR spectrometer in our laboratory in Indianapolis available for use on this and other projects. EPR experiments will be done in our laboratory. Interested individuals should send a curriculum vitae and arrange for two letters of recommendation to be sent to me.

Sincerely yours,

B. D. Nageswara Rao
Professor of Physics
Signal Noise $\times 2.5 \times 2^{\text{Varian XL-200}}$

Varian's new Zens Probes double NMR sensitivity

Varian's new high-sensitivity probes, available in 10-mm or 16-mm sample sizes and in the frequency range from ^{14}N through ^{31}P, provide double the sensitivity of any other commercial NMR system at 200 MHz. This superior sensitivity of the XL-200 allows you to complete experiments that would previously have taken overnight.

Get all the facts.
For detailed information on the unique capabilities of the XL-200 and the new high-sensitivity Zens Probes, contact your nearest Varian Magnetics Sales Specialist or the Palo Alto Magnetics Product Team.

Research Magnetics Sales Specialists
- **East**
 - 201-822-3700
 - 301-772-3683
- **Midwest**
 - 216-261-8035
 - 312-825-7772
- **South**
 - 713-783-1800
 - 404-955-1392
- **West**
 - 415-968-8141
 - Ext. 2196
 - 213-927-3415
 - 303-425-0413

Research Magnetics Products Team
- **Palo Alto** 415-493-4000
 - Ext.3047

^{13}C Sensitivity Test: Single transient following 90° pulse on 60% $\text{CD}_6/40\%$ dioxane using the 10 mm 20-81 MHz broadband probe.

^{13}C Sensitivity Test: Cholesteryl acetate, 100 mg/ml, 10 mm broadband probe. Transients accumulated using 90° pulses every 2.28 seconds with 0.5 Hz line-broadening.

Additional spectra appear on the following page.
1C Sensitivity Test: 0.02 molar cholesteryl acetate in a 16 mm tube, 200 transients.

15N Sensitivity Test: 90% Formamide in dmsO-d$_6$, 10 mm 20-81 MHz broadband probe. Upper trace: single-transient (with NOE) proton-decoupled. Lower trace: eight transients, coupled (with NOE) 8-second acquisition time, 20-second delay time.

Varian U.S. Sales Offices

CALIFORNIA
9901 Paramount Boulevard
Downey, CA 90240
Phone: (213) 927-3415
375 Diesel Circle
Los Altos, CA 94022
Phone: (415) 968-8141

COLORADO
4665 Kipling, Suite 1
Wheatridge, CO 80033
Phone: (303) 425-0413

GEORGIA
6650 Powers Ferry Road
Suite 100
Atlanta, GA 30339
Phone: (404) 965-1392

ILLINOIS
205 W. Touhy Avenue
Park Ridge, IL 60068
Phone: (312) 825-7772

MARYLAND
4701 Lydell Drive
Cheverly, MD 20781
Phone: (301) 772-3683

MASSACHUSETTS
83 Second Avenue
Burlington, MA 01803
Phone: (617) 272-4152

MICHIGAN
3721 W. Michigan, Suite 300
Lansing, MI 48917
Phone: (517) 321-5000

NEW JERSEY
25 Hanover Road
Florham Park, NJ 07932
Phone: (201) 822-3700

NEW YORK
6489 Ridings Road
Syracuse, NY 13206
Phone: (315) 437-6464

OHIO
333 Babcock Road
Euclid, OH 44123
Phone: (216) 268-9035

TEXAS
Plaza Southwest
5750 Blinnliff Drive, Suite 202
Houston, TX 77036
Phone: (713) 783-1800

WASHINGTON
300 12th Avenue
Building 2, Suite 230
Bellevue, WA 98005
Phone: (206) 454-2910

Cholesteryl Acetate 0.020 M
50.3 MHz 1C
200 Transients
Good Results with an INDOOR Model.
Looking for an Old Nicolet On Sale.

Dear Dr. Shapiro:

After several years of circumstantial silence, I am now very glad to be able to renew my subscription to TAMUN.

After our successful attempt to describe INDOOR spectra as a simultaneous superposition of splitting due to tickling and change of intensity due to redistribution of populations, in an AX and an AB cases, (J. Magn. Reson. 41, 61-73, (1980)), we applied the method to the degenerate AX case (in particular the AX3 case) with equal success. A paper on the subject is to appear shortly in the same magazine.

Now: Since we have here an old Nicolet NMR-812 Data System and we need to keep it operating as long as possible, and also wish to expand it if possible, we are looking for some old similar system on sale, say, an NMR-820 or the 1080, with or without disks. Perhaps some reader may find this offer interesting. This would help him, for instance, to buy a more modern system, like the 1280. For eventually interested people, my address is given below.

Yours, sincerely

V.J. Kowalewski.
Professor.

Dr. V.J. Kowalewski.
Facultad de Ciencias Exactas.
(1428) Buenos Aires.
Argentina.
Operation and Use of Bruker WM-250

breakage of probe glassware

It is approximately 18 months since we acquired a Bruker WM-250 Spectrometer and the way in which the instrument has been used may be of interest to some of your readers.

Time is allocated to Inorganic and Organic sections in the ratio of 1 (week) to 3 (weeks). Inorganic applications have used the following nuclei:

1H, 1H, 1B, ^{13}C, ^{14}N, ^{17}O, ^{19}F, ^{27}Al, ^{29}Si, ^{31}P, ^{35}Cl, ^{51}V and ^{207}Pb.

Organic applications have been largely confined to 1H and ^{13}C, with some work on ^{17}O and ^{2}D. As expected, the availability of a high field magnet has had a considerably greater impact on 1H than on ^{13}C work. Apart from some $^1H-^1H$ n.o.e. experiments, and a moderate amount of variable temperature work, specialised techniques have not been employed. For example, we have done no 2-dimensional NMR, and have not carried out any T, experiments! We have been able to solve our problems by the routine methods of 1H observation (with 1H decoupling, where needed) and ^{13}C observation with 1H noise decoupling, with 1H O.R. decoupling and with specific 1H decoupling. Shift reagents have found some applications.

When there is a queue of problems from up to 50 students and staff, there is no justification for using time-consuming and superfluous (though interesting) techniques. Whilst admitting that this situation is not always to our liking, we have to recognise that the instrument was purchased to
solve problems in Chemistry - not to collect NMR parameters as such! Indeed, most chemical problems can be solved without the need for the complete interpretation of spectra.

The most serious instrumental problem has been the breakage of glassware sections of several probes - due, we believe, to eccentric wobbling of the sample tube during insertion and/or ejection.

Yours sincerely,

[Signature]

Dr. H. Booth.

Dr. H. Booth
R. Fleming
Dr. M.A. Healy.

1 for example, the interaction between lead and adenosine phosphates had been studied (P.G. Harrison, M.A. Healy and M. Aslam).
CINETIQUE DE LA PENETRATION DE L'EAU
DANS UN ECHANTILLON POREUX

Cher Dr SHAPIRO,

En marge d'expériences d'imagerie que nous développons en vue de l'étude de milieux biologiques, il nous est apparu intéressant d'utiliser directement un XL 100 pour étudier la pénétration de l'eau dans des échantillons de plâtre nécessairement de petite dimension (10 mm d'épaisseur).

La largeur de la raie de l'eau absorbée est d'environ 300 Hz, aussi pour une résolution du mm faut-il des gradients supérieurs à 3000 Hz/cm.

Nous avons pu aller jusqu'à des gradients de 3500 Hz/cm selon X en faisant débiter dans les bobines de correction x des courants qui restent tolérables pour ces dernières (cf. TAMU NMR n°259). La linéarité des gradients ainsi réalisés sur le volume étudié a été testée sur un échantillon cylindrique de 10 mm. Nous avons bien vérifié que le profil est proportionnel à \(\sqrt{R^2 - \rho^2} \), \(\rho \) variant de \(-R\) à \(R\).

Nous avons pu étudier la cinétique de la pénétration de l'eau dans le plâtre. En définitive il est intéressant (et presque étonnant) de constater qu'une méthode aussi rudimentaire conduit à des applications intéressantes.

Sentiments les plus cordiaux.

A. BRIGUET J. DELMAU J.C. DUPLAN
Echantillon de platte

X gradient

$t > 1$ heure

$t = 10$ mm
Dear Barry,

The program SHAPE\(^1\) which iteratively derives the geometry and order parameters of oriented molecules from the measured direct couplings by a weighted least-square-fit-method is the most commonly used program of this type. We have therefore thought it worth-while to write a PASCAL version which can be used e.g. on the Bruker Computer Aspect 2000.

The program works with up to 9 nuclei with a possibility of 9 symmetry relations between the coordinates. Any internuclear distance may be kept constant. The program is written as a dialogue with the user so that in principle no manual is needed. Individual input parameters may be changed during the run. Approximate memory requirement is 15 k on a 24-bit computer.

The program will finally be available through the Aspect Users Club but if somebody is very eager to have it earlier he should contact us and will receive a listing.

Yours sincerely

Peter Diehl Franco Moia

\(^1\) P. Diehl, P.M. Henrichs and W. Niederberger, Mol. Phys. 20, 139 (1971)
THE SOLID LEADER in NMR

With Multi-Nuclear/ Multi-Field Solid State Probes

- High field solid sample probe for JEOL's 200 MHz SCM!
- Tunable heads — interchangeable plug-in matching units for observation of
 ^1H (~50 MHz)
 ^3P (~80 MHz)
 ^{29}Si (~40 MHz)
 with one probe!
- Self starting rotor/stator design!
- High speed magic-angle sample spinning (>4.0 KHz)!
- "Magic lift probe" for quick sample change and probe insertion!
- All this, in addition to a full line of dual and broad-band high resolution liquid sample probes!

Low Cost/Low Field Solids Probe

Chemagnetics solids probe for JEOL's 60 MHz NMR.
- Solid sample probe for JEOL's 60 MHz CP/MAS FT-NMR.
- Best results for coal, shale oil & rigid polymers.
- Large sample size (.5cc).
- Probes available for observation of ^1H, ^3P and ^{29}Si.

Chemagnetics SCM Solids probe for JEOL's 200 MHz NMR.
Professor B. L. Shapiro
TAMU NMR Newsletter
Texas A & M University
College Station, Texas 77843

"Deuterium NMR Studies of Tosylchymotrypsin"

Dear Barry:

We have been engaged for sometime in studies of the protein which is formed when the enzyme α-chymotrypsin is treated with tosyl fluoride. This reagent forms a sulfonate ester with a serine residue at the active site which is essential for catalytic activity and X-ray crystallography shows that in the solid the aromatic ring of the tosyl group is partially inserted into a cleft of the enzyme surface. We have explored the motion of the tosyl group in solution by using deuterium

![Chemical Structures](image)

spectroscopy and the enzyme derivatives prepared from II and III. At 76.8 MHz (using the WM-500 at Caltech) the aromatic deuterium signals are 320 ± 50 Hz wide while the methyl deuterons have a linewidth of 150 ± 25 Hz. Predictions made using reasonable quadrupolar coupling constants and the known correlation time (~15 nsec) for the protein suggest the aromatic linewidth should be at least three times larger than the observed value if the aromatic ring is immobilized within the protein structure. Given the experimental observation we conclude that the tosyl group is moving rapidly and independently of the protein molecule. Analysis of the data in terms of a two-state (flip-flop) model indicate that aromatic ring is rotating at a rate greater than 5 x 10^10 times/sec. Thus, it seems unlikely that the tosyl group spends all of its time wedged in a protein cleft when the protein is in solution.

The resolution and sensitivity of the WM-500 make deuterium spectroscopy almost a pleasure and we will be looking at several other derivatives of chymotrypsin by this method in the future.

Sincerely,

M. E. Ando J. T. Gerig E. F. Weigand
May 19, 1981

Dr. B. L. Shapiro
Department of Chemistry
Texas A & M University
College Station, Texas 77843

Title: ^{13}C Chemical Shifts of Dehydroquinuclidine

Dear Barry:

Dehydroquinuclidine (1) is the simplest example of a non-conjugated enamine. For use as a synthetic intermediate, we required more than trivial quantities of (1), whose apparently routine preparation had been reported by Grob et. al. in 1957.\(^1\) In our hands, however, the procedure described did not afford identifiable product, and only low yields of materials expected to be the corresponding salts were obtained upon treatment of the reaction mixture with picric acid or oxalic acid. Indeed, the proton-decoupled ^{13}C spectrum of the reaction mixture obtained from base-induced elimination of 3-tosyloxyquinuclidine had all the appearances of a wheat field after optimum climatic conditions, although some stalks were in regions optimistically expected for (1). Gas-liquid chromatography of the mixture displayed at least nine components including three major ones. The first two of these were collected as colorless mobile oils and the third initially condensed as a white solid, but rapidly turned into a colorless oil on exposure to air. This third one was identified (by preparation of its picrate salt) as dehydroquinuclidine. The ^{13}C chemical shifts are given in Scheme 1. They have been assigned by comparison with values (shown in parentheses) calculated by correcting the chemical shifts for quinuclidine (2)\(^2\) with anticipated effects of the 2,3 double bond. The latter was derived from comparison of bicyclo[2.2.2]octane and bicyclo[2.2.2]-2-octene.\(^3\) Except for C-2, the agreement is very good. Assignment of C-2 was confirmed from $^{1}J_{\text{CH}}$ values, 183 Hz vs 165 Hz for C-3. The higher value for C-2 is consistent with the effect of the adjacent electronegative atom.

The smaller difference between the C-2 and C-3 chemical shifts of 1 (7.0 ppm) compared with other enamines (30-50 ppm)\(^4\) is consistent with reduced (or the absence of) nitrogen lone pair delocalization through the adjacent orthogonal pi system. Similarly, the difference between the chemical shifts of C-3 and C-4 in N,N,N',2,6-tetramethylaniline is smaller (3.4 ppm) than the corresponding difference (6.7 ppm) in the primary aniline.\(^5\) In the former compound, nitrogen lone pair delocalization is reduced owing to steric interactions between the ortho methyls and the dimethylamino group.
A full report of the isolation and spectral properties of (1) will appear shortly.

Sincerely yours,

Stanley Daniello

Robert L. Lichter

Scheme 1

![Chemical shifts in ppm from TMS]

P.S. We have just obtained the 15N chemical shift. Want to guess?
Dear Prof. Shapiro,

205Tl NMR of Tl(III)-Halide Complexes

We have recently studied the formation of Tl(III)-halide complexes in aqueous solutions using 205Tl-NMR. Some of the results are shown in Figs 1 and 2.

For \([\text{Tl}]_{\text{tot}} = 50 \text{mM}\) separate 205Tl signals are observed for the species Tl\(^3+\), TlCl\(^2+\), TlBr\(^2+\) and TlBr\(^+\) at low halide/thallium ratios. For higher halide concentrations only the exchange averaged signal is observed. In this region we have determined the chemical shifts for the different complexes by using known stability constants, determined in the same ionic medium (Ahrland et al. Acta Chem. Scand. 17, 1567 (1963)). The following shifts (given down field from Tl\(^+\) at infinite dilution) were obtained:

<table>
<thead>
<tr>
<th>n</th>
<th>(\delta_{\text{TlCl}}^{3-n}) ppm</th>
<th>(\delta_{\text{TlBr}}^{3-n}) ppm</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>2086</td>
<td>2086</td>
</tr>
<tr>
<td>1</td>
<td>2198</td>
<td>1538</td>
</tr>
<tr>
<td>2</td>
<td>2201</td>
<td>766</td>
</tr>
<tr>
<td>3</td>
<td>2412</td>
<td>1184</td>
</tr>
<tr>
<td>4</td>
<td>2645</td>
<td>1318</td>
</tr>
</tbody>
</table>

When the total concentration is increased for the low halide/thallium ratios the observed signals from the separate complexes broaden and finally coalesce as shown in Fig. 2. This shows that the rate of exchange increases rapidly with increasing thallium concentration. In the bromide system the big difference between the chemical shifts for the different species gives rise to very broad signals (up to \(\sim 50 \text{kHz}\) at \(21 \text{kG}\)) for intermediate exchange rates.

Sincerely yours,

Ulf Henriksson
Julius Glaser
Fig. 1: 205Tl shifts from 50 mM aqueous solutions of Tl(III) as function of the halide/thallium ratio. * indicates experimental points, full lines are calculated using stability constants and shifts for individual complexes.

![Graph showing Tl shifts](attachment:graph.png)

Fig. 2: 51.9 MHz 205Tl spectra from solutions with composition TlCl$_{0.5}$ for a: $[\text{Tl}]_{\text{tot}} = 2.2$ M; b: $[\text{Tl}]_{\text{tot}} = 1.0$ M; c: $[\text{Tl}]_{\text{tot}} = 0.31$ M and d: $[\text{Tl}]_{\text{tot}} = 0.05$ M. Approximate life times are shown in the figure.
Professor Bernard L. Shapiro
Department of Chemistry
College of Science
Texas A & M University
College Station, Texas 77843

May 22, 1981

Dear Barry:

"Efficient detection of paramagnetically shifted resonances in solution with a spectrometer designed for solids"

One of the persistent problems in interpreting proton NMR Spectra of large proteins is disentangling the thousands of overlapping signals. In heme enzymes and other proteins containing paramagnetic ions we are fortunate in having many of the signals shifted by contact interactions. However, the disadvantage of having widely shifted resonances (from about 120 to -50 ppm) is that at high field they cover a large frequency range—often larger than can be readily accommodated with standard high resolution spectrometers.

Recently we have found that a 250 MHz proton NMR spectrometer for solid samples, which has been built by Dennis Torchia and his co-workers in NIH, is very effective in detecting hyperfine-shifted heme signals of some heme enzymes with small sample volumes and low concentrations. This system has a transverse solenoid detecting coil fitted to 5 mm sample tube, and an EIN power amplifier. The signal is collected in a Nicolet Explorer oscilloscope and is transferred to NIC 1080 computer and processed in it. Usually a 1.5 µs pulse provides a 90° flip. Typical sample condition we used was 50 µl of 1 mM heme enzyme (MW: ca. 50,000), which is 30 times less than the usual condition for a commercial NMR, 0.3 ml, 5mM solution. Conventional WEFT (180° - τ - 90°) pulse sequences are found to be helpful to eliminate the residual HDO signal. Careful adjustment of the τ value can reduce the huge H2O signal found in water instead of D2O. Undesired buffer signals, such as 0.5M acetate and 0.1M tris buffers, and some part of protein signals were also effectively suppressed by this pulse sequence. To obtain a good signal to noise ratio 4K transients were accumulated, which took about 10 minutes. The only disadvantage encountered on this system is relatively poor resolution. But this can be overcome by using a capillary (Wilmad #529D, 1mm ID) in which 5 µl of sample was placed. By this method, 3 mM of metmyoglobin could be detected with 1K transients, in about 3 minutes, as shown in the attached figure.
Professor Bernard L. Shapiro

So far we have worked on cytochrome c peroxidase to prove two sets of heme signals in the unitary enzyme. The tremendous reduction of sample volume and concentration is crucial to handle such enzymes because it is usually laborious to obtain a large amount of enzymes and to purify in large scale. From this viewpoint the sample used in the above capillary is truly comparable with the amount usually used for spectrophotometry. By utilizing this advantage, we hope to be able to work on some respiratory enzymes in the near future.

Sincerely,

Toshibo Inubushi

Toshibo Inubushi

Ted

Edwin D. Becker

Attachment
METMYOGLOBIN, 3 mM, 5 μL

1024 SCANS

ppm from TMS

x32
May 27, 1981

Professor Bernard L. Shapiro
Department of Chemistry
Texas A & M University
College Station, TX 77843

Attached Proton Test (APT)

Dear Barry:

Our attention was turned recently to a very nice experiment first described in 1980\(^1\) and elaborated upon in 1981\(^2\),\(^3\), but which has, as far as we know, not been taken up by very many \(^{13}\text{C}\) NMR spectroscopists as a welcome replacement for the single-frequency off-resonance decoupling (SFORD) experiment. If one uses a 90\(^o\)-\(\tau\)-180\(^o\)-\(\tau\) pulse sequence with the decoupler gated "off" during the first \(\tau\) period, and with \(\tau = \frac{1}{J_{CH}}\), J-modulation of the \(^{13}\text{C}\) precession results in a spectrum with the signals from \(\text{CH}_2\) and non-protonated carbons displaying opposite phase from those arising from \(\text{CH}_3\) or CH groups, as shown in Figure 1. The advantages of this way of determining the number of protons attached to each carbon atom are obvious to anyone who has struggled with the interpretation of a badly split-up and overlapped SFORD spectrum from a complex molecule with many closely spaced spectral lines.

The simple spin-echo experiment requires the use of 90\(^o\) pulses, since smaller tip angles leave a component of magnetization along the +z axis which is then inverted by the 180\(^o\) pulse. Refocussing of the x and y components occurs normally, but recovery of the magnetization for nuclei with long \(T_1\)'s requires an additional equilibrating delay with attendant inefficiency of data acquisition. We have overcome this problem by using a double spin echo sequence as shown below:

\[
\begin{array}{c}
\text{\(^{13}\text{C}\)} \quad \theta^0 \quad 180^0 \quad \tau + \Delta \quad 180^0 \\
\text{\(^{1}\text{H}\)}
\end{array}
\]

The purpose of the second 180\(^o\) pulse is to re-invert the z-component of magnetization, leaving it where it would normally be found after a single pulse experiment.
Attached Proton Test (APT)

With this sequence, the only change in the spectra is that carbons with even or odd numbers of attached protons give signals which point in opposite directions. Figure 1 shows a crowded spectrum which presents formidable problems for the SFORD experiment but which is readily interpretable with the double echo sequence. Even with 45° pulses at 0.8 sec intervals, the slowly-relaxing but narrow quaternary carbon signals from carbons 5, 10, and 13 are not suppressed.

Some confusion could arise between methyl groups and CH groups in the crossover region of the chemical shift scale. In practice, this is unlikely. The smallest chemical shift listed for a CH group in a 13C spectral catalog\(^4\) is 24.8 ppm. The only methyl groups with chemical shifts greater than 24.8 in reference(4) are a small number on aromatic rings or double bonds, adjacent to carbonyl functions, or on highly branched quaternary carbons.

Quaternary carbons and CH\(_2\) groups with sp\(^3\) hybridization are overlapped over a larger chemical shift region. Distinguishing between these may require a second experiment in which use is made of the different time evolution of the various signals, shown in Figure 2. If $\tau=4$ msec, only the quaternary carbons should have appreciable amplitudes, except for protonated carbons with $J_{CH}\geq160$ Hz. Noise-modulated off-resonance decoupling will also identify quaternary carbons.

Although similar information can be obtained from the refocussed INEPT sequence such experiments cannot readily be performed on many FT-NMR spectrometers, and quaternary carbons can be eliminated entirely. The pulse sequence described in this letter preserves the NOE intensity gain which is nearly as great as that achieved through polarization transfer by INEPT. Consequently, it appears that for all practical purposes this method may become the method of choice for multiplicity determination.

Since all experiments seem to have to have a name, we have pondered long and hard, seeking a suitably descriptive one, simple enough for routine use. At first, regarding it as an INEPT experiment with Absent Polarization Transfer, we thought of APT, but it didn't seem to be. But then we realized that the experiment is truly an Attached Proton Test and we felt better about it. Therefore, we formally propose that spectra run with this pulse sequence be called APT spectra and hope that our colleagues will agree that they are.
Owners of XL-200's can implement this pulse sequence immediately in the usual way. Owners of FT-80A spectrometers will need a simple patch to the standard program

With best regards,

J.N. Shoolery
Varian NMR Applications Lab
Palo Alto, California

Steve Patt
Varian NMR Applications Lab
Florham Park, New Jersey

5 Obtainable by writing to either of the authors
Dear Barry:

The figure is taken from the work of Dr. Shuenn-Tzong Chen when he was in my laboratory. It depicts the $^{31}p\{^{1}H\}$ spectrum of a dispersion of hydrated dipalmitoyl lecithin (DPL, 70 mM) inverted micelles in benzene ($T = 52^\circ C$). The preparation was such that some of the micelles contain one Pr$^{3+}$ ion each (and three NO$_3^-$ counter ions) in their aqueous cores, some contain one La$^{3+}$ ion, and some contain no ions. Thus, the sharp resonance in spectrum a) is assigned to the lipids in those micelles with no Pr$^{3+}$ ions and the broader resonance downfield to those in Pr$^{3+}$ containing micelles (S.-T. Chen and C. S. Springer, Chem Phys. Lipids, 23, 23 (1979)).

Spectrum b) results when the solution is made 0.91 mM in the sodium salt of the antibiotic lasalocid-A. Both resonances have become noticeably broadened. If the NaX concentration is doubled to 1.82 mM, the two lines coalesce into a single broad resonance; spectrum c). Since the ionophoretic properties of lasalocid-A are well known, a logical assessment is that the ionophore is catalyzing the equilibrium exchange of Pr$^{3+}$ ions among the micelles to the point where it becomes fast on the NMR timescale. Consistent with this is the fact that dilution of the NaX only (spectrum d); obtained by mixing equal aliquots of the solutions of a) and b); thus [NaX] is 0.91 mM again) causes reappearance of the two broadened lines. Resuming the increase in [NaX] (e) 1.82 mM, f) 2.73 mM, and g) 5.45 mM) causes recoalescence and subsequent sharpening.

We have conducted total lineshape analyses on a number of such systems and found, in general, a first order dependence on antibiotic concentration. This has interesting implications as to the mechanism of transport across phospholipid bilayer membranes. We also find, as expected, inhibition by protons or other (diamagnetic) cations. We have recently submitted this work for publication.

Please credit this contribution to the Stony Brook subscription (Paul Lauterbur).

Best regards,

Charles S. Springer, Jr.
Assoc. Prof. of Chemistry

CSS:mb
$^{31}P^\{^1H\}$ NMR, 52°C
Position Opening: OPERATIONS MANAGER, SPECTROSCOPY FACILITY

We seek a person to be in charge of the Molecular Spectroscopy Laboratory of the School of Chemical Sciences (SOCS). The position, with the title of Spectroscopist, requires a broad range of professional, research and educational skills. Minimum qualifications include an MS degree in physical science or engineering, and experience related to the responsibilities of the position.

The successful applicant will be responsible for the supervision, training and evaluation of the three Assistant Spectroscopists and one Engineering Technician who perform the day to day operations, and will also be the Operations Manager of the NSF sponsored Midwest Regional Instrumentation Facility, through 1983. He or she instructs students, post doctorates and faculty in the use of instruments, establishes policies so as to provide fair and general access of all SOCS research personnel to the instrumentation, and is responsible for the proper maintenance of all instruments. He or she should have a good understanding of the physical principles underlying the operation of lab instruments. Magnetic resonance spectroscopy is the major research function of the laboratory which contains 220, 250, 360 and 500 MHz FT instruments and five low field systems, together with FT-IR, UV, ESR and ORD/CD spectrometers. It is therefore especially important that the individual have a strong background in NMR techniques, and be able to help implement modifications and additions to existing instruments.

The desired starting date is September 1, 1981. The position is permanent. The starting salary is competitive and commensurate with experience. Those interested should apply at once. Application materials should be submitted promptly, preferably by August 1, 1981, in order to ensure consideration. Persons wishing to apply should send a resume to the address given at the end of this announcement and arrange for three letters of recommendation to be sent there also.

The University of Illinois is an Affirmative Action/Equal Opportunity Employer.

Inquiries should be addressed to:

Dr. H. S. Gutowsky, Director
School of Chemical Sciences
University of Illinois
505 S. Mathews
Urbana, IL 61801

Phone: 217/333-0710

Yours sincerely,

Eric Oldfield
Associate Professor of Chemistry
Our spectrometer systems have been conceived and designed to provide optimum performance while being fully adaptable to new techniques with minimal cost and difficulty. More than just a collection of instruments, they represent a completely modular approach to FT-NMR instrumentation that allows the user to expand his system as his research needs grow and to easily accommodate new experimental techniques as they develop.

Outstanding Nicolet features include these:

- A full range of superconducting magnets from 4.7T to 11.7T (200MHz to 500MHz proton frequency range), in both wide-bore and narrow-bore configurations.
- Multinuclear observation with a wide variety of fixed-tune and broadband probes.
- Simultaneous acquisition, processing, and plotting for greater sample throughput.
- Simplified control of spectrometer operations and parameters by using easy keyboard commands.
- Advanced Nicolet 1180E Data System with 128K/20-bit memory, 256-step pulse programmer, and the most comprehensive FT-NMR software package available.
- Extended dynamic range performance with 40-bit acquisition and floating-point processing.
- An expandable pulse-sequence library, including T1, T2, Redfield, INEPT, homonuclear and heteronuclear 2D-FT, etc.
- Convenient computer control of field shimming, observe and decoupling frequencies, sample temperature, and probe-tuning.
- Precise digital plotting with full annotation of spectral parameters and flexibility of hardcopy format.

The versatile Nicolet spectrometers provide the user with the ability to easily adapt to the newest techniques and experimental configurations.

Some of these are:

- High resolution studies of solids with Waugh-Pines cross-polarization and magic-angle spinning.
- High sensitivity wide-bore ¹³C studies of high molecular weight polymers.
- Automated T1 and T2 measurements.
- Chemical dynamics studies.
- Temperature-programmed experiments.
- ³¹P experiments on living organs.

Nicolet Supercon FT-NMR Spectrometers

Uncompromising performance, limitless adaptability.
FX SERIES
OF
FT NMR SYSTEMS

FX Features

- Light Pen Control System
- Bilevel Software Package
- 2-D Spectroscopy
- Auto T_1, T_2 Meas./Calculation
- FX Series Work Station
- Programmable Multi-Pulser: INEPT, Selective Excitation, Cross Polarization, Bilevel Decoupling, etc.

- Digital Quadrature Detection
- Oxford SCM Systems
- Programmable Variable Temperature
- Double Precision (32 bit word length)
- Floppy, Moving Head Disc Systems

FX-60QS:
- CP/MAS
- 13C, 31P, 29Si (examples)
- Routine Liquids/Solid State

FX-90Q:
- OMNI Probe™ System
- 10mm, 5mm Micro Inserts
- Wide Band (1H to 103Rh)

FX-200:
- Dual Frequency Probes
- Broad-Band Probes
- CP/MAS Extension

FX-270:
- Dual Frequency Probes
- Broad-Band Probes
- "Tilt" Micro Probe