No. 252

September, 1979

R. Skarjune, E. Oldfield, D. Rice, M. Rothgeb, A. Scheiman and E. DeRose
NMR of Protein Crystals; NMR of Deuterated Spin-Labels; Phospholipid Headgroup Conformations; Postdoc Positions

H. Booth and J. E. Everett
^{12}C/^{13}C Isotope Effect on a Conformational Equilibrium

P. Diehl
Postdoctoral Position Available

T. Ahnas
Resolution Optimization by Proper Choice of Environment

G. E. Maciel
21st Enc, Tallahassee, Florida

R. I. Willing and S. R. Johns
^{19}F Centre Band Decoupling

R. E. Block
Progress on Minicomputer Interface for NMR Signal Averager

H. Degani
Proton and Oxygen-17 NMR Studies of Water Permeability of Membranes

D. T. Loehr and J. T. Gerg
Studies of Enzyme-Polymer Conjugates; Positions Available

S. Berger
^{13}C/^{13}C Spin Coupling Constants in Azulenes

R. Kaptein
"Photo-CIONP of Nucleotides; Postdoctoral Position Available"

T. P. Pittner
Position Available Notice

S. Y. Kang, S. Rajan, H. S. Gutowsky, B. Kinsey and E. Oldfield
^{2}H and ^{31}P NMR of Membrane Systems

C. Filer, D. Atern, R. Seguin, L. Thomas and P. S. Srinivasan
Carbon-13 NMR Spectral Parameters of L-a-Kainic Acid

M. L. Maddox
^{13}C Spectrum of Quinmoxaline Monoaide

J. Wright and S. Aubert
Extending the Useful Life of the Worn and Torn Teletype: an Electronic Keyboard and Interface for NTEFI on Nicolet 1080-NIC-80 Computers

S. Sternhell
Non-Bonded Interactions from Dynamic NMR Results

D. A. Netzal
^{13}C Chemical Shifts Assignments of Gammacerane Isolated from Oil Shale Bitumen

J. L. Bomig
Carbon-13 Cross Polarization/Magic Angle Spinning Spectra of Polymides; Postdoctoral Position Available

G. N. La Mar
Proton Relaxation in Lanthanide Shift Reagents; Postdoctoral Positions Available

R. H. Cox
^{13}C/^{13}C Coupling Constants in Benzo[a]pyrene Derivatives

G. Fraenkel
Position Available Notice

C. B. Storm
Preliminary Results on a Nicolet NT-20 Spectrometer

A monthly collection of informal private letters from Laboratories of NMR. Information contained herein is solely for the use of the reader. Quotation is not permitted, except by direct arrangement with the author of the letter, and the material quoted must be referred to as a "Private Communication". Reference to the TAMU NMR Newsletter by name in the open literature is strictly forbidden.

These restrictions apply equally to both the actual Newsletter participant-recipients and to all others who are allowed access to the Newsletter issues. Strict adherence to this policy is considered essential to the successful continuation of the Newsletter as an informal medium of exchange of NMR information.
Consummate care in the storage and preparation of spectroscopic samples is just as integral a part of good spectroscopic practice as running the investigation or analyzing the spectra. And consummate care, of course, begins with equipment.

Our new, expanded Wilmad line of vials, storage and septum bottles, and a broad variety of stoppers, caps, and septa help materially to simplify the handling, storage, and preparation of samples... eliminate expensive sample loss... and save unnecessary waste of time and money.

Wilmad vials and bottles are manufactured of top-quality borosilicate glass to prevent any pH modification of the contents. The variety of caps available match any sampling or storage need. Snap caps of polyethylene, open-top types with elastomer septa, aluminum seals with Teflon-faced septa... whatever you need we now carry in stock.

Write or call for our new Catalog 781.

WILMAD GLASS COMPANY, INC.
World Standard in Ultra Precision Glassware
Route 40 & Oak Road • Buena, N.J. 08310 U.S.A.
Phone: (609) 697-3000 • TWX 510-687-8911
For those who expect more in FT NMR Spectrometers... it's JEOL

The FX60Q, FX90Q & FX200 Feature:

- (DQD) DIGITAL Quadrature Detection System
- Multi-Frequency TUNEABLE Probe observation
- Dual Frequency probes
- 4-channel DIGITAL phase shifters (DPS)
- Comprehensive auto-stacking system
- Foreground/Background system
- Computer based pulse programmer with Multiple Pulse Sequence Generator
- CPU Expandable to 65K words (MOS)
- 2-channel 12-bit AD/DA
- T/6 spin locking system
- Disc storage systems
- Multi-Mode HOMO/HETERO decoupling capabilities
- Programmable Variable Temperature Unit
- Simplex Y/Curvature gradient controller
July 25, 1979

Professor B. L. Shapiro
Department of Chemistry
Texas A & M University
College Station, TX 77843

Dear Barry:

NMR of Protein Crystals; NMR of Deuterated Spin-Labels;
Phospholipid Headgroup Conformations; Postdoc Positions.

We thought we would report some results obtained in the above areas using our new wide-bore 360 spectrometer (which has the surprisingly good drift rate of $5 \times 10^{-9} \text{ hr}^{-1}$).

First, we have obtained a number of ^{13}C and ^2H NMR spectra of specifically isotopically labelled protein crystals. These experiments are of course of great interest both from the point of view of crystal-solution structure comparisons, and from the standpoint of protein-hydration investigations.

The following Figure shows the 55 MHz ^2H spectrum of ribonuclease A (EC 2.7.7.16) containing a Me-SCD$_3$ sulphonium group at position 29 of the polypeptide chain, as a lyophilized powder (A) and hydrated with a concentrated $(\text{NH}_4)_2 \text{SO}_4$ solution (B).

![Lyophilised powder](image1)

![Hydrated with Satd. $(\text{NH}_4)_2 \text{SO}_4$](image2)
These spectra were obtained in only ~20 minutes of data accumulation, opening up the way to numerous studies of motions in protein crystals.

Second, we have been investigating the differences between phospholipid order parameters as determined by ESR (of spin-labelled molecules) and 2H NMR (of 2H-labelled species). One always has, of course, the problem of the different timescales between the two measurements, so that slow motions may easily reduce the 2H NMR order parameter but might not have any effect on the ESR spin-label order parameter. Investigations aimed at finding out just how much of a perturbation the nitroxide radical causes, or whether it might be involved in some specific interactions (eg. hydrogen bonding with a protein) are clearly complicated by this problem.

We have therefore synthesized a 2H-labelled phospholipid spin label and determined the 2H quadrupole splittings of the labelled compound (in a DMPC bilayer) together with those of a pure 2H-labelled DMPC bilayer. The results are shown in the accompanying Figure.

2H-Labelled DMPC
$\Delta v_Q = 19.2, 21.5$ kHz

2H-Labelled Spin-Label in DMPC Bilayer
$\Delta v_Q = 14.2, 8.5$ kHz
and indicate quite clearly that the spin-label Δv_0 (or order parameter) values are some 20% smaller than those of the pure bilayer the label is supposed to be probing. These results are of course not subject to any "timescale" rationalizations.

Third, we have been calculating phospholipid headgroup structures using 2H NMR Δv_0 and 31P $\Delta \sigma$ values and a straightforward Cartesian transformation method first outlined by Seelig and co-workers (BBA 467 (1977) 109). Contrary to our expectations there are exceedingly large numbers of possible headgroup conformations which can satisfy all the NMR observables. The following plots are representative:

Solutions for DPPE in excess water at 49°C using ± 30 degree torsion angle ranges, two degree increments, the tensor of Kohler and Klein, and the NMR parameters $\Delta \sigma = -37.5$ ppm, $\Delta v_{12,13} = \pm 9700$ Hz, and $\Delta v_{10,11} = \pm 3700$ Hz.

It isn't possible to be unambiguous even when the results of Herzfeld et al. (Biochem. 17, 2711 (1978)) are included, as shown in the accompanying Figure.
Finally, I shall have several postdoctoral positions available in the coming year for outstanding candidates to work on "biological NMR" problems, in solids or liquids, using in addition to our current 150/220/360 MHz systems a new 500 MHz instrument.

Sincerely yours,

Bob Skarjune Eric Oldfield Dave Rice
Mike Rothgeb Andrew Scheinman Eugene E. DeRosa

msh
Professor B.L. Shapiro,
Department of Chemistry,
Texas A and M University,
College Station,
Texas 77843,
U.S.A.

Dear Professor Shapiro,

12C/13C Isotope Effect on a Conformational Equilibrium?

Recently we attempted to decide whether the degenerate conformational equilibrium in cis-1,4-dimethylcyclohexane is altered by a change of the 1-12CH3 to l-13CH3. As a consequence of such an alteration, the room-temperature averaged 13C chemical shift (δ4) of the methine carbons C-4" and C-4' in (1⇌2) would be different from the room-temperature averaged shift (δ1) of carbons C-1" and C-1'.

The signal for C-4',4" is a singlet, whereas that for C-1',1" is a doublet, being the low-field half of an AB system (JAB = J13C--13C). Now the observed δ1 must be corrected in view of the well-established, direct, 1-bond isotope effect; however, we assumed that a direct isotope effect over 4-bonds would be negligible and that the observed δ8 needed no correction.

The 1-bond isotope effects were determined from the 13C spectrum of (1⇌2) at 172 K, where the rate of conformational interconversion is so slow that the spectra of both (1) and (2) are observed. In the F.T. experiments at 25.15 MHz we employed 16 K data points over 1000 Hz, for a digital accuracy of + 0.06 Hz. In the event, the direct 1-bond isotope effects were -0.14 Hz (i.e. an upfield isotope effect) for both equatorial and axial
substitution of methine carbon.

The ^{13}C spectrum at 300 K gave $\delta_1 - \delta_4$ as -0.15 Hz (i.e. upfield shift). Consequently an isotope effect on the position of equilibrium is either non-existent, or is too small to be measured by the chosen method of analysis.

Yours sincerely,

Dr. H. Booth,
J.E. Everett.

Postdoctoral Position Available.

Dear Barry,

I will have funds available for a postdoctoral position for one year beginning November 1st 1979 (or later). The work will involve NMR-research in oriented molecules. We have a multinuclear FT-spectrometer (WH 90 DS, Bruker).

The salary amounts to Swiss Francs 37'000.- per year. There is no travel allowance. Any person interested should write to me as soon as possible.

Sincerely yours

Prof. Dr. P. Diehl
Dear Professor Shapiro,

Resolution optimization by proper choice of environment

When studying the three component systems $H_2O - Potassium cis 9, 10, Oleate-Pentanol$ we found the ^{13}C-chemical shifts to be concentration dependent in the L_2-phase, which contains inverted micelles.

By plotting chemical shifts as a function of concentration we got the results given in Fig. 1 (the figure is just meant to clarify the idea).

From the diagram you can choose the optimum chemical composition, i.e. the largest chemical shift difference for the carbon atoms of greatest interest. As an example we have been able to separate the shifts of all carbon atoms of Potassium Oleate (see Fig. 2).
We think that in this system the main reasons for changes of the chemical shifts are

- entropy changes, which are connected to the motional freedom of alkylchains
- electric field effects, induced by changes in hydrogen bonds to the carbonyl group.

As a conclusion we think that this kind of chemically induced shifts can be very helpful in assigning spectra.

Sincerely yours,

Thomas Ahlás

PS Please credit this letter to the account of Professor Pekka Pyykkö.
Professor B.L. Shapiro
August 17, 1979
Department of Chemistry, TAMU NMR Newsletter
Texas A and M University
College Station, Texas 77843

Dear Barry:

The next annual meeting of the Experimental NMR Conference (ENC) will be held at Tallahassee, Florida. Registration will begin on Sunday, March 16, and the program will run through Thursday, March 20. Sessions will focus on new experimental techniques and developments in a variety of nmr areas, probably including: Cross Polarization and Magic-angle Spinning; Refocussing and 2-Dimensional Techniques; NMR Imaging; Probe Design for Superconducting Magnets; Progress in Very High Field Spectrometers; Multiple-Pulse Line-narrowing Techniques for Solids; Developments in High Resolution Techniques for Liquids; Quadrupolar Nuclei.

Most of the talks will be given by speakers invited by session chairmen. There will be some time reserved for shorter contributions, and poster sessions will be held. Anyone who has not been invited by a session chairman by November 1, but believes strongly that his or her talk would be more appropriate for one of the above-mentioned sessions than for a poster session, should contact me before November 15, 1979. Those interested in presenting a poster talk should contact the chairman of the poster session, Dr. James Frye, Regional NMR Center, Department of Chemistry, Colorado State University, Fort Collins, CO. 80523, before January 15, 1980.

Everyone who attended the ENC in 1975, 1976, 1977, 1978 or 1979 is on the current mailing list, and will receive registration information and a copy of the preliminary program in mid-December. Anyone who is not on the mailing list or for some other reason does not receive the registration material during December should contact the ENC Secretary, Dr. A.A. Bothner-By, Department of Chemistry, Carnegie-Mellon University, 4400 Fifth Avenue, Pittsburgh, PA. 15213. The local arrangements chairman for the 21st ENC is Dr. George C. Levy, Department of Chemistry, Florida State University, Tallahassee, FL. 32306.

Sincerely,

Gary E. Maciel
Chairman, 21st ENC
Department of Chemistry
Colorado State University
Fort Collins, CO. 80523
Dear Professor Shapiro,

TITLE ¹⁹F Centre Band Decoupling

For many years we have used our HA100 to obtain ¹⁹F spectra and in the process solved the problem of successfully performing ¹⁹F homonuclear decoupling. The extended chemical shift range and large JFF values (~200 Hz) makes it very difficult to transfer sufficient decoupling power into a side band generated some 5000 Hz or more from the centre band.

The answer is to place the peak to be decoupled, directly under the 94.1 MHz centre band, where up to a maximum of 0.5 watt decoupling power is available. This may require extending the lock oscillator frequency range which can be achieved by its substitution with an external audio oscillator e.g. Wavetek # 111.

The recorder swept oscillator now requires a presettable frequency start point as well as usual chart sweep widths. We have achieved this by using either a Varian C-1024 coupled to a voltage controlled oscillator e.g. Wavetek # 111 or a Varian spectrosystem with a programme patch to bypass any frequency measurement.

The technique is illustrated by the ¹⁹F spectrum of the cis-trans isomer mixture:

Spectra A and B show "centre band decoupling" of peaks at 4480 and 4650 Hz respectively at 20 db RF attenuation.

Please credit this contribution to Dr. D.P. Kelly's subscription.

Yours sincerely,

S.R. JOHNS

R.I. WILLING
KHz. UPFIELD FROM TRIFLUORO ACETIC ACID LOCK SIGNAL.
If your superconducting FT NMR can't achieve a dynamic range of 6,000,000:1 or better...

...you just don't have an XL-200!

Without the 32-bit word size of its acquisition processor and the floating-point arithmetic used in the weighting and Fourier transformation of the accumulated data, you haven't got a chance. You simply can't match the extraordinary dynamic range attainable with the XL-200—evidenced in the 200 MHz 1H NMR spectrum you see here.

There are other unique aspects of the XL-200's data handling and spectrometer control system: a 13-bit ADC, which accommodates stronger signals on each transient; a standard 32K CPU, independent of the acquisition processor and programmed in a high level language; a built-in, interactive 51/2 word disk with dual platters; a large, flicker-free raster scan display.

The software is exceptionally sophisticated. It permits multitasking (simultaneous acquisition, processing, printing, etc.) and queuing (automatic sequential execution of requested tasks) on the same or different NMR experiments. You can also array parameters (up to three variables, including temperature) within a given experiment; create your own convenient macrocommands; generate your own special or general-purpose pulse sequences in a simple, English-like language.

Then, there's the matter of the XL-200's broadband accessory which, with only a single probe, enables you to observe a host of nuclei (including 13C) between 20 and 81 MHz. And there's the remarkable low-loss dewar system, which operates over three months on only 25 liters of liquid helium.

The XL-200 is in a class by itself—with a price tag and an operating economy that belies its advanced design.

For more information on the features you may be missing, write Varian Associates, Inc., Box D-070, 611 Hansen Way, Palo Alto, CA 94303.

Regional Offices:
Florham Park, NJ (201) 822-9700
Park Ridge, IL (312) 825-7772
Houston, TX (713) 783-9000
Los Altos, CA (415) 968-8141

100,000 Transients
14 Hours

80% H2O

0.0040% CH3CN

0.067% CH3OH

0.0012% (CH3)3COH

X 10,000

X 500

X 1
Sales Offices

CALIFORNIA
9601 Paramount Boulevard
Downey, CA 90240
Phone: (213) 927-3415
375 Distel Circle
Los Altos, CA 94022
Phone: (415) 969-8141
COLORADO
4903 Kipling, Suite 1
Westbridge, CO 80033
Phone: (303) 425-0415
GEORGIA
6650 Powers Ferry Road
Suite 100
Atlanta, GA 30096
Phone: (404) 565-1392
ILLINOIS
205 W. Touhy Avenue
Park Ridge, IL 60068
Phone: (312) 825-7772
KENTUCKY
Executive Park, Suite 110
Louisville, KY 40207
Phone: (502) 897-0171
MARYLAND
4701 Lydell Drive
Cheverly, MD 20718
Phone: (301) 772-3683

MASSACHUSETTS
83 2nd Avenue
Burlington, MA 01803
Phone: (617) 272-4152
NEW JERSEY
20 Hanover Road
Florham Park, NJ 07932
Phone: (201) 825-0700
NEW YORK
5489 Ridings Road
Syracuse, NY 13206
Phone: (315) 437-6664
OHI0
2500 Euclid Avenue
Evel, OH 44117
Phone: (216) 261-2115
TEXAS
Plaza Southwest
5750 Birlift Drive, Suite 202
Houston, TX 77036
Phone: (713) 783-1800
WASHINGTON
300 120th Avenue
Bldg. 0, Suite 230
Bellevue, WA 98005
Phone: (425) 454-2015

MEXICO
fco. Petracca 300
Mexico 5, D.F.
Phone: (55) 545-4977
SOUTH AMERICA
Varian Industrias e Comercio Ltda.
Av. Dr. Cardoso de Mello, 1644
CEP 04045, Sao Paulo, Brazil
Phone: 240-1802
CANADA
Varian Associates of Canad a Ltd.
45 River Drive
Georgetown, Ontario
Canada L7G 2J4
Phone: (416) 457-4150

PARTS AND SUPPLIES CENTER
670 East Arques Street
Sunnyvale, CA 94086
Phone: (408) 245-5420

Service Centers

VID Service Headquarters
670 East Arques Street
Sunnyvale, CA 94086
Phone: (408) 245-5420

Eastern Service Center
26 Hanover Street
Florham Park, NJ 07932
Phone: (210) 222-3700

Midwestern Service Center
265 West Touhy Avenue
Park Ridge, IL 60068
Phone: (312) 825-7772

Southern Service Center
5750 Birlift Drive
Houston, TX 77036
Phone: (713) 783-1800

Western Service Center
375 Distel Circle
Los Altos, CA 94022
Phone: (415) 969-8141

Canadian Service Center
45 River Drive
Georgetown, Ontario
Canada L7G 2J4
Phone: (416) 457-4150

Other Instrument Division sales offices and representatives are located in: Argentina, Australia, Bahamas, Belgium, Brazil, Canada, Chile, Colombia, Costa Rica, Denmark, Dominican Republic, Ecuador, England, Finland, France, Germany, Guatemala, Hong Kong, Indonesia, Israel, Italy, Japan, Korea, Malaysia, Netherlands, New Zealand, Panama, Peru, Philippines, Puerto Rico, Republic of China, Singapore, Sweden, Switzerland, Thailand, United States, Venezuela, West Indies.
August 11, 1979

Dr. Bernard L. Shapiro
Department of Chemistry
Texas A&M University
College Station, Tx 77843

Dear Dr. Shapiro:

Progress on Minicomputer Interface for NMR Signal Averager

We wish to report progress on building a special purpose minicomputer interface for an NMR signal averager. Basically, we wanted an interface which could take data from a Varian C-1024 signal averager in one part of the building, and send the data to a minicomputer about 60 feet away for analysis. We decided to go with a serial data interface in order to avoid having to string 16 or 17 wires through the building. Serial data transmission can be accomplished with just 1 or 2 lines, and need not be as slow as teletype baud rates. In fact our interface can theoretically send data at up to 9600 baud, which is less than two seconds for complete memory transmission.

The CAT parallel output is first shifted to TTL compatible levels using the level shifter (S). In order to insure stability, each 16 bit word then goes into latches (L). Then 2:1 multiplexers (MUX) split each word into two 8 bit bytes. The 8 bit bytes are then converted from parallel to serial in the universal asynchronous receiver/transmitter (UART). Lastly, the UART output is shifted to RS 232-C levels by the line driver (D). Timing circuits not shown here change the CAT address, set the latches, control the MUX, and strobe data through the UART. Preliminary testing has been carried out at 1200 baud. R. Thomas, D. Dubin, and N. Lefkove made major contributions to this project.

Sincerely yours,

Ronald E. Block, Ph. D.
Associate Scientist

A non-profit institution for medical research and education—supported by tax-deductible contributions
An equal opportunity employer
Dear Prof. Shapiro:

July 31, 1979

Proton and oxygen-17 NMR studies of water permeability of membranes

We have been recently interested in studies involving the very fast process of water diffusion through membranes. Employing a vesicle suspension of DDPC (dipalmitoyl phosphatidylcholine), as a model membrane system, we have studied the exchange of water between the external and the intravesicular media by 1H and 17O NMR relaxation measurements of the water nuclei. In order to differentiate between the nuclear relaxation rates in the two media, the vesicles were prepared in such a way that paramagnetic ions (e.g. Mn^{2+}) were entrapped in the intravesicular medium, thus enhancing markedly the relaxation rate of the inner water nuclei. Since paramagnetic ions diffuse very slowly across the membrane the nuclear relaxation rate of the inner water remain enhanced relative to that of the external water throughout the experiments.

The transport of water across the membrane induces an exchange of water between the fast relaxing and slow relaxing media which can be treated in an analogous way to a two sites chemical exchange process. The fraction f, of the fast relaxing water is small (~5%), therefore the Swift and Connick treatment for exchange could be applied giving:

$$\frac{1}{T_2} = \frac{1}{T_{20}} + f\left(\frac{1}{T_{2i}} + \frac{1}{T_1}\right)$$

where $1/T_2$ and $1/T_{20}$ are respectively the measured relaxation rate, the relaxation rate of the external water and the relaxation rate in the internal medium without exchange. Fig. 1 presents the temperature dependence of 1H and 17O relaxation rates of water in a DPPC vesicle suspension containing MnCl_2 inside the vesicles. The water exchange rates derived from the results in Fig. 1 are presented in Fig. 2. Both Figs. exhibit a conspicuous change at about 40°C, which is the temperature in which the lipid chains undergo a phase transition. This change indicates that water permeability is sharply reduced at the phase transition on going from the liquid crystalline phase to the gel phase. It is also clear from Fig. 2 that the activation energy for water diffusion in the gel phase is much higher than in the liquid crystalline phase. The diffusion rates calculated from the 1H and 17O measurements...
were the same (within experimental error) thus indicating that the rates measured correspond to a transport of a whole water molecule.

Similar investigations into other transport processes are currently in progress in our laboratory.

Please credit this contribution to Dr. R. Poupko's account.

Sincerely yours,

Hadassa Degani

Hadassa Degani

Fig. 1. Temperature dependence of the transverse relaxation rates of ^1H and ^{17}O of water in a vesicle suspension containing 50 mM and 50 mM KCl_2 in the inner medium.

Fig. 2. Temperature dependence of the water diffusion rates across DPPC vesicles.
Professor B. L. Shapiro
Department of Chemistry
Texas A & M University
College Station, Texas 77843

(1) Studies of Enzyme-Polymer Conjugates
(2) Positions Available

Dear Barry:

(1) Synthetic polymers can easily be attached to proteins to provide materials which have new chemical and physical properties. We have linked homopolymers of N-acryloyl-β-alanine to the enzyme α-chymotrypsin and are exploring the effects of the conjugated polymers on the structure and function of the enzyme's active site. p-Fluorocinnamic acid binds tightly to the enzyme in a manner that makes it a good competitive inhibitor of the enzyme and the binding is not appreciably modified when the polyanion is attached to the protein. Dynamics of molecular motion of the complexed fluorocinnamate have been studied by fluorine nuclear relaxation rate measurements at 51.0 and 94.1 MHz. Using an ellipsoid of revolution as a model for the small molecule, the data allow us to extract a diffusion coefficient for rotational diffusion parallel to the long (major) axis of the ellipsoid and a coefficient for motion perpendicular to the major axis. Some results are given in Table I. The diffusion coefficients for p-fluorocinnamate complexed to native enzyme are those expected if the small molecule has no freedom of motion beyond the tumbling of the protein. The interesting result is that molecular motion is only slowed slightly in the protein-polymer conjugate even though the molecular weight of the attached polymer is as large as six million. Localized sidechain motions in polymers are generally rapid and there must be enough flexibility in the conjugates that the tethered enzyme molecule scarcely knows that it is linked to a large polymer.
Table I. Diffusion Coefficients for p-Fluorocinnamate System

<table>
<thead>
<tr>
<th>System</th>
<th>D_{11}, s$^{-1}$</th>
<th>D_{21}, s$^{-1}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Free molecule2</td>
<td>2.1×10^{10}</td>
<td>4.6×10^{9}</td>
</tr>
<tr>
<td>Chymotrypsin complex3</td>
<td>1.1×10^{7}</td>
<td>1.1×10^{7}</td>
</tr>
<tr>
<td>Chymotrypsin-polymer complex</td>
<td>0.5×10^{7}</td>
<td>0.3×10^{7}</td>
</tr>
</tbody>
</table>

(2) We have several postdoctoral positions that we would like to fill before the end of 1979. Candidates with interests in nmr spectroscopy, synthetic chemistry, protein isolation and characterization or polymer chemistry (any or all of these!) are invited to apply; contact me for further information.

Sincerely yours,

D. T. Loehr

References
Dear Professor Shapiro,

In earlier work we have proposed that the $^{13}\text{C}^{13}\text{C}$ spin coupling constants in naphthalenes\(^1\) and phenanthrenes\(^2\) are mainly transmitted by π electrons. However, the large spin coupling constant to C-4 in these compounds could also result from an addition of the spin coupling transmitted through the σ skeleton by two similar pathways. To get further insight into the mechanism of spin coupling in aromatic compounds we have synthesized azulenes \(^2\) (R=H,CH$_3$) with ^{13}C at C-4. These compounds provide a critical test for the π mechanism since they exhibit four independent and unequivocal vicinal coupling constants. In the figure a plot of these coupling constants vs the π charge differences between the 4-azulenylmethylradical and the 4-azulenylmethylanion \(^3\) from a PPP calculation is given. These results clearly suggest the dominance of the π mechanism for $^{13}\text{C}^{13}\text{C}$ spin coupling in aromatic compounds.

3) S. Berger and K.P. Zeller, to be submitted, preprints available

Sincerely yours,

(Signature)
\[\Delta q \]

\[J \text{ (Hz)} \]

\[\bullet = ^3j \]

\[\square = ^2j \]
Dear Barry,

In my last letter I described an application of the laser photo-CIDNP method to the protein ribonuclease. We have since looked at a variety of proteins. The method seems to work fine; the enhancements are large and specific and yield a lot of information on the surface structure of proteins. Furthermore, it aids in making NMR assignments of specific amino acid residues.

It may be of interest that we have now found that the same trick can be used to study nucleotides as well. The Figure shows the photo-CIDNP difference spectrum of adenosine-5'-monophosphate (AMP) in the presence of flavin as a sensitizer. Enhanced absorptions are observed for the H(8) and H(2) protons of the adenine ring. A similar effect is observed for the H(8) proton of guanine in GMP. The CIDNP effects arise from reversible electron-transfer from the nucleic acid bases to triplet flavin, photo-excited by laser irradiation in the probe of the Bruker HX-360. As in the case of the amino acids the photo-reaction is highly reversible and hopefully can be used to generate CIDNP in naturally occurring polynucleotides. We are currently extending the experiments to larger nucleotides and trying to determine the effect of base pairing and base stacking on the CIDNP intensities.

Postdoctoral position

A postdoctoral position is available in my laboratory for a one year period renewable for another year. The work involves NMR studies on biological macromolecules, in particular further development and applications of the laser photo-CIDNP method. Candidates should have a strong background in biophysics or biochemistry and an interest in applying optical techniques in NMR.

The annual salary is in the range $19500 - 28000 depending on experience. Potential candidates should send me a resume and arrange to have forwarded three letters of recommendation.

Best wishes,
yours sincerely,

Robert Kaptein

Please credit this contribution to the account of W.D. Weringa.

Figure (a) 360 MHz photo-CIDNP difference spectrum (light minus dark) of 5 mM AMP (R=ribose-5-phosphate) and 0.4 mM flavin in D₂O, pH 6.2, 22°C, 10 scans.

(b) dark spectrum lines indicated by F belong to the flavin. The light spectrum was obtained by irradiating the sample by 0.6 sec light pulses from an argon laser prior to data acquisition.
BRUKER announces a new landmark in low-cost high-resolution superconducting NMR spectrometers with

1H frequency of 250 MHz
August 6, 1979

Professor Bernard L. Shapiro
Department of Chemistry
Texas A&M University
College Station, TX

Dear Barry,

The Philip Morris Research Center is seeking applications from highly qualified NMR spectroscopists to fill a position in the NMR Laboratory. The applicant should have a Ph.D. in Chemistry; postdoctoral experience is preferred, but not essential for consideration.

The NMR Laboratory is presently equipped with a multinuclear Varian XL-100 and a Bruker WP-80. We are involved in a wide variety of fundamental research problems; to mention a few: conformation of naturally occurring alkaloids, 13C and 2H T$_1$ investigations of molecular motion, kinetics and mechanism of reactions.

Interested applicants should contact me directly.

Sincerely,

T. P. Pitner, Ph.D.
Research Scientist

TTP/bpp
July 25, 1979

Professor B. L. Shapiro
Department of Chemistry
Texas A & M University
College Station, TX 77843

Dear Barry:

2H and 31P NMR of Membrane Systems

We have recently been investigating protein-lipid interactions in a variety of model and intact biological membranes, using 2H and 31P NMR spectroscopy. We have found surprisingly small differences between the 2H NMR spectra of (protein-containing) intact cell membranes and (protein-free) total lipid extracts of the micro-organism Acholeplasma laidlawii B (PG 9), grown on specifically 2H-labelled tetradecan-1-oic acids in the presence of the fatty acid synthesis inhibitor avidin, as shown in the accompanying Figure.

This result may be a reflection of the presence of lipid-rich regions in the membrane and the relatively high lipid content of the membrane. We also found that these cells grew rapidly even with ~95% of their lipids in the crystalline gel-state!

Our 31P NMR studies (at 60.7 MHz) have concentrated on investigating the "role" of the phospholipid's polar headgroup in protein-lipid "interactions." We find that in most instances protein-phospholipid interactions are characterized by considerably enhanced 31P T1 and T2 relaxation rates, presumably a result of an immobilization of the phosphate group due to polar group protein-lipid interactions. There are only minor changes in the 31P Δσ values. Typical results are shown in the accompanying Figure.
These results are the first to demonstrate by NMR the likely importance of protein-lipid polar group interactions leading to lipid immobilization.

Sincerely yours,

S. M. Kang

S. Faian

H. S. Gutowsky

Bob Kinsey

Eric Oldfield

msh
August 3, 1979

Professor B. J. Shapiro
Dept. of Chemistry
Texas A & M University
College Station, TX 77843

Carbon-13 NMR Spectral Parameters of
L-α-Kainic Acid

Dear Barry:

In connection with some of our work on the synthesis of radio-labelled
L-α-kainic acid and its derivatives, we needed to study their 13C NMR spectral
characteristics. Given below are the 13C chemical shifts and the C-H coupling
constants that could be extracted for L-α-kainic acid; assignments have been
made unambiguously utilizing the general theories of 13C chemical shifts and
the C-H coupling patterns in spectra where proton decoupling is gated to retain
NOE and C-H couplings:

[Spectra were run in D2O with 1,4-dioxane as internal standard; chemical shifts
converted to TMS scale using δ dioxane = δ TMS + 67.40; J values are in Hz].

Sincerely,

Crist Filer Dave Ahern Richard Seguin P.R.Srinivasan Larry Thomas

549 Albany Street, Boston, Massachusetts 02118 Telephone 617-482-9595 Telex 94-0996
August 10, 1979
Ref: A/R 2528

Professor B. L. Shapiro
Department of Chemistry
Texas A&M University
College Station, TX 77843

"13C SPECTRUM OF QUINOXALINE MONOXIDE"

Dear Barry:

As part of a program to establish a spectroscopic method for distinguishing 2-substituted quinoxaline oxides from the 3-isomer, the 13C nmr spectrum of quinoxaline monoxide was measured and the values are indicated in Table 1. The substantial difference in the chemical shifts of C-2 and C-3 indicated that these resonances could be used for this purpose. In several alkyl, aryl and acyl derivatives in which isomers were available, the resonance for C-2 was always less than 140 ppm whereas the shift for C-3 was greater than 145 ppm. In addition, $^{1}J_{CH}$ for C-2 was approximately 192 Hz in all cases whilst for C-3 the $^{1}J_{CH}$ was closer to 187 Hz.

Sincerely,

Michael L. Maddox

TABLE 1

13C NMR DATA FOR QUINOXALINE OXIDEa

<table>
<thead>
<tr>
<th></th>
<th>C-2</th>
<th>C-3</th>
<th>C-5</th>
<th>C-6</th>
<th>C-7</th>
<th>C-8</th>
<th>C-9</th>
<th>C-10</th>
</tr>
</thead>
<tbody>
<tr>
<td>δ (ppm)</td>
<td>129.71</td>
<td>147.20</td>
<td>129.91</td>
<td>131.96</td>
<td>130.40</td>
<td>118.40</td>
<td>136.83</td>
<td>145.41</td>
</tr>
<tr>
<td>$^{1}J_{CH}$ (Hz)</td>
<td>191.9</td>
<td>186.8</td>
<td>\sim166</td>
<td>164.4</td>
<td>165.8</td>
<td>170.2</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

a Measured at 22.62 MHz in dimethylsulfoxide-d6, 305°K, digital resolution 0.73 Hz/pt.
Professor Bernard L. Shapiro
Department of Chemistry
Texas A&M University
College Station, TX 77843

TITLE: "Extending the useful life of the worn and torn Teletype: an electronic keyboard and interface for NTCFT on Nicolet 1080-NIC-80 computers"

Dear Professor Shapiro:

The Teletype ASR- or KSR-33 terminal is a common terminal for use with a mini-computer running a pulse-FT nmr spectrometer, but it has a number of disadvantages. It is slow, noisy, and under heavy usage, likely to wear out and malfunction.

The "control S" mode of Nicolet's NTCFT software can be used to bypass the speed and noise problems whenever hard copy is not necessary (most of the time, in our experience). The teletype must be left running, which means that much of it is still wearing out, even though only the keyboard is in use.

For about $100 a solid-state keyboard can be purchased and interfaced to a Nicolet 1080 or NIC-80 computer; the TTY can then be left off, giving it a complete rest except during the (usually) short intervals when some sort of permanent record is desired. We have used two different keyboards: from Electronics Warehouse, Inc., 15820 Hawthorne Blvd., Lawndale, CA 90260 ($77 kit, $93 assembled, metal enclosure $27.50), and George Risk Industries, GRI Plaza, Kimbal, Nebraska 69145, (GRI 753, $72 assembled, plastic enclosure $15, available from NCE/Compumart and other computer suppliers). Both provide full ASCII encoding, with upper-case only selectable (necessary for use as a TTY substitute).

A schematic of a keyboard interface to the Nicolet computer, using a UART (AY-5-1013A, TR 1602, COM 2502, etc.) for the necessary parallel to serial conversion, is shown below. We brought the necessary connections out the unused accessory power connector in back of the NIC-80 computer; either the unused "I/O device 2" or 80-pin "R2" connectors can be used on the 1080. The computer signals FDATA- and ENABTTY- are easily accessible on the wire-wrap bed at the rearmost 80-pin connector of board 11, on pins 42 and 60 respectively. (Board 11 is the outer-most, short board.) The CLOCK signal is clearly labelled on board 11 and can be taken off at an unused pin of either the 80-pin wire-wrap connector, or of the 17-pin connector at the rear of the board. Ground, +5 and -15 volts are easily accessible at a number of places inside the computer.

To use the keyboard, either the Teletype must be disconnected (inconvenient), or the Nicolet interface card inside the Teletype must be modified slightly by cutting
the vertical foil trace between the blue/white wire at the top of the card and the diode directly beneath it. A 510 ohm 2 watt resistor is then soldered across the cut. (This card is easily accessible when the plastic cover is lifted off the Teletype.)

Please credit this contribution to Dr. Ed Dennis' account.

John Wright
Operations Director
CCSD NMR Research Resource

Stephen Aubert
UCSD NMR Research Resource
Dear Barry,

NON-BONDED INTERACTIONS FROM DYNAMIC NMR RESULTS

The relationship between the magnitudes of repulsive non-bonded interactions (steric hindrance) and the size of interacting groups is known to be complex\(^1\) as it depends not only on size and energy-penalty but also on the geometry of the system.

The properties required from a system which would be useful in such investigations can be specified in terms of certain design requirements and we have synthesised about 40 compounds in series (1) for this purpose. It should be obvious that under conditions of slow exchange the prochiral geminal methyl groups should give rise to separate signals in \(^1\)H or \(^1\)C NMR spectra and hence it should be possible to obtain the activation parameters for the inversion process. In practice there are problems connected with small and inherently temperature-dependent values of \(\Delta G\) , but painstaking work gave accurate values for \(\Delta G\) for all compounds in the series, which proved to be isoentropic.

Indeed, as expected from original reasoning, the energy penalty for groups of well-defined size gives a smooth monotonic curve when plotted against the van der Waal's radii\(^2\) of X. This permits the evaluation of effective van der Waals radii of less symmetrical groups and, via arguments too long to detail here, leads to the surprising conclusion that the system behaves like an elastic material (stress is proportional to strain).

This work was carried out by Dr L.D. Field and Mr G. Bott and will be submitted for publication shortly.

Yours sincerely,

S. Sternhell

\(^2\)Bondi, J.Phys.Chem., 68, 441, (1964) and
REFERENCE GROUP
(Brings ΔG^\ddagger into desirable range)

MOLECULAR FRAGMENT
(and TRANSMITTING GROUP)

\[\Delta G^\ddagger_{340} \text{ (kJ mol}^{-1} \text{)} \]

- Van der Waals Radius of X (Å)

- SiMe$_3$
- Cl
- Br
- SM$	ext{e}$
- Cl
- F
- OMe
Dear Barry:

The organic materials found in sedimentary deposits, such as shales, are believed to be of biological origin. Evidence for such a belief is the identification of 'biological markers' which are organic compounds that have retained enough of their chemical and structural characterization so as to be identified with compounds produced by familiar biosynthetic organisms. Cummins and Robinson have isolated a small amount of a pentacyclic triterpene from Green River oil shale bitumen which was identified by Hills and Whitehead using mass spectroscopy as gammacerane \((C_{30}H_{52})\). The gammacerane structure is shown in Fig. 1. Since the material is not readily available and the \(^{13}\)C information on saturated polycyclics is limited, I believe the following information may be useful to some readers.

Fifteen \(^{13}\)C resonances are observed which indicates that it has the \(C_{2v}\) symmetry proposed. The \(^{13}\)C chemical shift resonances are listed in Table I. The \(^{13}\)C shifts for podocarpane (Fig. 2) are also listed for comparison. At present the shifts have been assigned based only on comparison with the shifts recorded for podocarpane and a pentacyclic triterpenoid. Ring carbons 1 through 6 of gammacerane can easily be related to the analogous carbon atoms of podocarpane since little perturbation of these chemical shifts is expected when additional rings are added or when a \(\text{CH}_3\) group is substituted at carbon position 8 in the podocarpane molecule. The \(\text{CH}_3\)'s were assigned 15.95, 33.39 and 21.61 ppm since these were the closest resonances to the methyl shifts observed in podocarpane. The \(\text{CH}_2\) carbon (13) at position 8 was assigned the value of 16.59 ppm. Carbon resonances for positions 7 through 10 were tentatively assigned the values listed in Table 1 by analogy to similar carbons in a pentacyclic triterpenoid. The only remaining carbon (position 11) was given the chemical shift value of 29.71 ppm. Off-resonance and partially relaxed Fourier transform techniques will be attempted in the near future to confirm the assignments.

Sincerely,

Daniel A. Netzel
Table 1

<table>
<thead>
<tr>
<th>Carbon number</th>
<th>Gammacerane (1)</th>
<th>Podocarpane (2)</th>
<th>Difference</th>
</tr>
</thead>
<tbody>
<tr>
<td>1,19</td>
<td>40.36</td>
<td>39.1</td>
<td>+1.26</td>
</tr>
<tr>
<td>2,20</td>
<td>18.74</td>
<td>19.0</td>
<td>-0.26</td>
</tr>
<tr>
<td>3,21</td>
<td>42.19</td>
<td>42.4</td>
<td>-0.21</td>
</tr>
<tr>
<td>4,22</td>
<td>33.28</td>
<td>33.3</td>
<td>-0.02</td>
</tr>
<tr>
<td>5,17</td>
<td>56.24</td>
<td>55.5</td>
<td>+0.74</td>
</tr>
<tr>
<td>6,16</td>
<td>21.18</td>
<td>21.8</td>
<td>-0.61</td>
</tr>
<tr>
<td>7,15</td>
<td>33.08</td>
<td>35.9</td>
<td>-1.82</td>
</tr>
<tr>
<td>8,14</td>
<td>41.97</td>
<td>36.8</td>
<td>+5.17</td>
</tr>
<tr>
<td>9,13</td>
<td>50.35</td>
<td>56.3</td>
<td>-5.95</td>
</tr>
<tr>
<td>10,18</td>
<td>37.38</td>
<td>36.9</td>
<td>+0.48</td>
</tr>
<tr>
<td>11,12</td>
<td>29.71</td>
<td>25.1</td>
<td>+4.61</td>
</tr>
<tr>
<td>12,23</td>
<td>33.39</td>
<td>33.6</td>
<td>-0.21</td>
</tr>
<tr>
<td>14,24</td>
<td>21.61</td>
<td>22.0</td>
<td>-0.39</td>
</tr>
<tr>
<td>15,25</td>
<td>15.95</td>
<td>14.3</td>
<td>+1.65</td>
</tr>
<tr>
<td>16,27</td>
<td>16.59</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

REFERENCES

August 21, 1979

Professor B. L. Shapiro
Department of Chemistry
Texas A & M University
College Station, Texas 77843

Dear Professor Shapiro:

Our spectroscopy laboratory has been interested for some time in structural studies of polyimides, primarily because of their excellent thermal stability and mechanical properties. With the recent development of a solid-state 13C NMR spectrometer, we have applied cross polarization and magic angle spinning to several polyimides as well as relevant model compounds, all of which are insoluble in organic solvents. Results for N,N'-diphenylether pyromellitimide (left) and poly(diphenyl ether pyromellitimide) are shown below. Our goal is to use chemical shifts to obtain information concerning conjugation along the polymer chains. Preliminary results suggest increased conjugation as the diphenyl ether tends toward coplanarity with the pyromellitimide subunit.

These spectra were recorded at a carbon frequency of 37.7 MHz on the Nicolet NT-150 solid-state spectrometer, modified for higher spinning speeds and higher decoupling power. Samples were spun in an Andrews type rotor machined from Kel-F, at a speed of 2.5 kHz. Dipolar decoupling of the proton spins was accomplished with a field of magnitude 20G, as determined by the 90° pulse width ($t_{90}/2 = (t_{2π} - t_{1})/2$). We have found that this amount of decoupling power is necessary for well-resolved spectra of the model compounds, which are essentially 100% crystalline. The spectra of the N,N'-diphenyl ether pyromellitimide reveals 12 resolved carbon resonances, indicating rotation of the phenyl rings about the ether oxygen. Linewidths are approximately 70Hz. The polymer spectrum shows considerable broadening of the peaks, caused by differences in conformation and packing along the polymer chain.

We have a position available for a post doctoral fellow, possibly developing into a research staff position, to add to the work being done in solid state NMR. The primary instrument would be our Nicolet 150 wide bore with cross polarization and MAS. Interested parties should write to me or phone (216) 368-4176.

Sincerely yours,

Jack L. Koenig
Professor of Macromolecular Science
and Physical Chemistry

JLK:bl

School of Engineering
Department of Macromolecular Science
Dear Barry,

A study of proton relaxation in lanthanide shift reagent complexes of the type, Ln(dpm),L2, has shown that even the nonexchanging dpm (dipivaloylmethane) protons exhibit strong field-dependent linewidths, as shown in the figure. The field-dependence of linewidth is linear in H_0^2, and is present even in T_1's, but to a lesser extent.

A similar field-dependence had been previously observed in high-spin ferrous hemoproteins, and interpreted as arising from the modulation, by the tumbling of the complex (τ_r), of the thermal equilibrium magnetization of the electron spin, and is known as the Curie-spin relaxation mechanism.

The effect was expected to be important for molecules with large magnetic moments and a small value for the ratio τ_r/τ_T (τ_T = electron spin relaxation time). Thus the long τ_T for a macromolecule can yield the appropriate condition.

In the present shift reagent complexes, τ_r is likely small in the non-viscous CDCl3, but τ_T is known to be extremely short. The importance of the Curie spin mechanism increases with magnetic moment μ(eff) (see figure) as expected. Knowing the metal-t-butyl proton distance, the slopes of the lines in the figure can be used to determine τ_r, yielding 1.4×10^{-10} sec., which is very close to that predicted by the Stokes-Einstein relation.

The use of lanthanide ions to induce line broadening in enzymes and proteins suggests the possibility that in these macromolecules where τ_T is longer, the Curie spin mechanism may be even more important. If the binding site is known, the field-dependent contribution of the linewidth will lead directly to an estimate of τ_T.

Sincerely,

Gerd N. La Mar
Professor of Chemistry

GNL:gb
Four postdoctoral positions, two in January 1980, and two in the Summer, 1980, will be available in my group. Work in one area involves NMR studies of peroxidases, cytochrome b₅, flavocytochromes, and the monomeric insect hemoglobins, particularly emphasizing protein dynamics, while the other area involves studies of metal-ion-induced dipolar relaxation as a structural probe in model systems, proteins, and peptide hormones. Available are both our new multinuclear wide-bore NT-200 and NT-360, to be upgraded to a NT-500 by the middle of 1980. The salary will be in the range $9,500 - $11,000, depending on experience. Interested persons should forward their C.V. and arrange to have sent to me two letters of reference.
Professor Bernard L. Shapiro
Department of Chemistry
Texas A & M University
College Station, Texas 77843

Dear Barry:

13C-13C Coupling Constants in Benz[a]pyrene Derivatives

With the continuing emphasis on 13C-13C coupling constants,1 I thought you might be interested in the data that we have obtained for 7-hydroxynaphthalene-1-C13 (I) and 7,8-dihydrobenzopyrene-7,8-trans-diol-7-C13 (II).

The magnitude of the coupling constants observed for I are similar to those observed for 1-hydroxynaphthalene-1-C13.2 We did not, however, observe (5000 Hz sweep, 32K FID) longer range coupling into the other rings as has been observed for pyrene3 and phenanthrene derivatives.

The coupling constants observed for II are somewhat similar to those observed for benzyl derivatives. Examination of II with carbon-13 at the 10 position leads to the following couplings: \(J_{10-C13} = 66.3 \text{ Hz} \) and \(J_{10-C13} = 0.5 \text{ Hz} \).

Please credit this contribution to Dr. McKinney's account.

Sincerely yours,

Richard H. Cox

Dear Barry;

Enclosed is a notice of a position in Dr. Berliner's group.

Yours sincerely,

Gideon Fraenkel
Professor of Chemistry

The proposed work involves magnetic resonance (NMR, ESR), fluorescence and chemical modification studies of two different enzyme systems as an approach to mapping their topography and characterizing their function(s) in more detail. Some enzyme isolation is also required.

1. Lactose synthetase: the enzyme galactosyl transferase has profoundly altered specificity when complexed in the mammary gland cellular environment with the "lysozyme like" protein, α-lactalbumin. Our studies are attempting to define the structural changes induced in each subunit of this novel catalytic-regulatory two protein complex.

2. Human α-thrombin: this key blood clotting enzyme in the coagulation cascade has several unique functions, many of which are yet to be defined in structural detail. While thrombin is very much a "trypsin-like" serine protease, its restricted specificity and yet unsolved crystal structure present a unique challenge to structural studies in solution.

Starting date: September 15, 1979 or later. Salary: $10,000/year (minimum) or up depending upon qualifications.

Interested applicants should forward a c.v. including copies of publications and two or three references to:

Dr. Lawrence J. Berliner
Department of Chemistry
The Ohio State University
120 McPherson Chemical Laboratory
140 West 18th Avenue
Columbus, Ohio 43210
U.S.A.

Telephone: 614-422-0134
August 11, 1979

Professor Barry L. Shapiro
Department of Chemistry
Texas A & M University
College Station, TX 77843

Dear Barry:

We have recently set up a Nicolet NT-200 spectrometer at the Chemistry Department at Howard University. The instrument is equipped with 20 mm 13C, 12 mm 31P and 5 mm 1H probes. We purchased the large 13C probe because of an interest in natural abundance 13C work on proteins and on some rather insoluble pyrimidines and pterins. We were curious as to whether we could use the 20 mm 13C probe with the 12 mm and 5 mm tubes without undue loss of sensitivity and/or resolution.

To test this we placed 200 μl of dioxane in 7.0 ml of 2H$_2$O, tuned the cavity and shimmed on the 2H$_2$O lock. With a single 90° pulse we obtained a signal to noise of 38:1, calculated by the sub-routine provided with the NTCTF program. The same amount of dioxane in the same height of 2H$_2$O in the 12 mm tube (2.8 ml) gave a signal to noise of 44:1 and we obtained a somewhat narrower line. The same height of 2H$_2$O (0.5 ml) with 200 μl of dioxane in the 5 mm tube also gave a signal to noise of 44:1.

The cavity was tuned and shimmed for each sample. For the 12 mm tube the lock signal was more than adequate for the shimming. For the 5 mm tube it was a bit noisy. It appears the for materials of relatively high solubility or low availability we can use the smaller tubes with no trouble. This will also save considerable expense on solvents when deuterated solvents are used.

Sincerely yours,

Yohannes Teklu
Carlyle B. Storm
A WIDE-BORE, FT-NMR SYSTEM FROM NICOLET

FEATURES INCLUDE:
- 3.5T superconducting magnet with 10 cm room-temperature bore.
- Straight-through access to sample area.
- Quick-disconnect probes for rapid changeover.
- 5, 12 and 20 mm sample tubes as standard, 30 mm optional.
- Quadrature phase detection as standard.
- Computer-controlled audio filter from 100 Hz to 51,100 Hz in 100 Hz steps.
- Nicolet 1180 data system with simultaneous acquisition, processing and plotting.
- Digital plotter with plot lengths selectable from 1 cm to 900 cm.

OPTIONS INCLUDE:
- NT-150 MF: broad-band multi-nuclei observe for 4 to 60 MHz.
- NT-150 CP: optimized system for Waugh-Pines cross-polarization studies.

For more information or to discuss your applications, please telephone or write.

NICOLET TECHNOLOGY CORPORATION
145 East Dana Street
Mountain View, California 94041
Phone: 415/969-2076
For the past 1 1/2 years the FX 90Q has provided a close look at Dynamic Range (PPM conc.) at approximately 1/2 the cost of SCM units.

You Also Get:
- Omni-Probe System
- Dual Carbon/Proton Capability
- Digital Quadrature Detection
- Interchangeable Modular System Design
- Programmable Pulse Generator
- Comprehensive Foreground/Background
- Light Pen Control System
- And many more important features

8,700,000:1 S/N
INTEGER DOUBLE PRECISION

By the way, the same data system is also used with the FX60QS (Magic Angle Solids System) and the FX200 (Dual C/H Probe).