<table>
<thead>
<tr>
<th>No. 190</th>
<th>July, 1974</th>
</tr>
</thead>
<tbody>
<tr>
<td>Obituary</td>
<td>T. R. Lusebrink</td>
</tr>
<tr>
<td>R. H. Cox</td>
<td>Some Measurements of J_{C-Pb}</td>
</tr>
<tr>
<td>C. L. Khetrapal and A. C. Kunwar</td>
<td>Once Again 'Oriented' Methyl Alcohol!</td>
</tr>
<tr>
<td>J. H. Goldstein and R. C. Long, Jr.</td>
<td>¹³C-¹³C Couplings in 5,5-Disubstituted Barbituric Acids, Etc.</td>
</tr>
<tr>
<td>C. D. Sazavsky</td>
<td>Inexpensive Monitor for Weak Lock Signals on Internal Reference Spectrometers</td>
</tr>
<tr>
<td>T. Schaefer</td>
<td>The TVIT Pulse Sequence</td>
</tr>
<tr>
<td>G. D. Vickers</td>
<td>Help Wanted with Postal Error</td>
</tr>
<tr>
<td>M. Barrfield</td>
<td>Substituent Dependence of Vicinal ¹³C-¹³C Coupling Constants</td>
</tr>
<tr>
<td>G. R. Eaton</td>
<td>Postdoctoral Position Available</td>
</tr>
<tr>
<td>W. A. Thomas</td>
<td>Further Perils of Proline - SIMEK Programme</td>
</tr>
<tr>
<td>A. Steigel</td>
<td>Classical and Quantum Mechanical Calculations for AB + BA</td>
</tr>
<tr>
<td>O. Lutz</td>
<td>NMR of Less Common Nuclei with Weak Signals</td>
</tr>
<tr>
<td>M. D. Johnston, Jr.</td>
<td>Purification of LSR's</td>
</tr>
<tr>
<td>R. K. Harris and B. J. Kimber</td>
<td>Microstructure of Silicone Polymers</td>
</tr>
<tr>
<td>M. J. A. de Blie</td>
<td>Computer Control of Decoupler Offset in the XL100 Spectrometer; SIMEQ II/16 for MK I and MK II Interfaces</td>
</tr>
<tr>
<td>P. A. Hart and J. Blackbourn</td>
<td>Fourier Homonuclear Decoupling</td>
</tr>
<tr>
<td>R. G. Khalilfah</td>
<td>Programming WEFT Computations</td>
</tr>
<tr>
<td>W. B. Moniz, C. F. Poranski, Jr. and S. A. Sojka</td>
<td>Laser-Induced CIDNP</td>
</tr>
<tr>
<td>H. W. Vos, Y. W. Bakker, N. R. Velthorst and C. MacLeod</td>
<td>Proton-Exchange between Carbanions and Their Parent Compounds</td>
</tr>
<tr>
<td>A. A. Chalmers, K. G. R. Pachler and P. L. Wessels</td>
<td>Selective Population Inversion Technique (SPI)</td>
</tr>
<tr>
<td>R. J. Cushley</td>
<td>Postdoctoral - Biophysical Chemistry</td>
</tr>
<tr>
<td>V. Gibb and L. D. Hall</td>
<td>Sodium - 23 NMR</td>
</tr>
<tr>
<td>S. Marks</td>
<td>Effects of Rotation on NMR Linewidths in Nematic Solvents</td>
</tr>
<tr>
<td>G. Fraenkel</td>
<td>Book on NMR Line-Shape Analysis</td>
</tr>
<tr>
<td>G. Fraenkel</td>
<td>Organothium Compounds - Postdoctoral Appointment</td>
</tr>
<tr>
<td>P. M. Henrichs and S. Gross</td>
<td>Selective CI²-Proton Decoupling on a Varian CFT-20 Spectrometer</td>
</tr>
</tbody>
</table>

A monthly collection of informal private letters from Laboratories of NMR. Information contained herein is solely for the use of the reader. Quotation is not permitted, except by direct arrangement with the author of the letter, and the material quoted must be referred to as a "Private Communication". Reference to the TAMU NMR Newsletter by name in the open literature is strictly forbidden.

These restrictions apply equally to both the actual Newsletter participant-recipients and to all others who are allowed access to the Newsletter issues. Strict adherence to this policy is considered essential to the successful continuation of the Newsletter as an informal medium of exchange of NMR information.
HERE ARE 6 GOOD REASONS WHY IT PAYS TO STANDARDIZE ON WILMAD!

- WORLD’S LARGEST SINGLE SOURCE. We are the world’s largest single source for glassware, accessories, and supplies for spectroscopic research.

- MOST COMPLETE LINE. Our line of glassware, accessories, and consumable supplies for spectroscopy now includes everything you need for your investigations...except the spectrometer.

- NO SACRIFICE IN QUALITY. Our operations are based on a policy of never sacrificing quality in order to meet a competitive price. No investigator wants to jeopardize accuracy, uniformity, stability, and repeatability just to save a few pennies.

- MOST SAMPLE TUBES. We have produced more sample tubes for spectroscopy than any other supplier in the world.

- STANDARD OF EXCELLENCE. Wilmad accuracy and precision in sample tubes have become the reigning standard of excellence in the industry. (Even the equipment manufacturers use Wilmad NMR sample tubes.)

- A DESERVED REPUTATION. With almost 20 years of pioneering in glassware, accessories and supplies for spectroscopic research, we have earned a reputation for reliability which supersedes monetary value.

WRITE TODAY FOR FREE CATALOGS

If you don’t have our two Catalogs covering the WILMAD line of Glassware, Accessories, and Supplies for spectroscopic research (NMR, EPR, IR and MS), write or call today. Wilmad Glass Company, Inc., U.S. Route 40 and Oak Road, Buena, N.J. 08310, U.S.A. Phone: (609) 697-3000.

WILMAD

PIONEERS IN ACCESSORIES AND SUPPLIES FOR SPECTROSCOPY
TAMU NMR NEWSLETTER - ADVERTISERS

Bruker Scientific, Inc. - see p. 13
JEOL, U.S.A., Inc. - see outside back cover
Nicolet Instrument Corporation - see p. 23
Nuclear Magnetic Resonance, Inc. - see p. 27
Varian Instrument Division - see inside back cover
Wilmad Glass Co., Inc. - see inside front cover

TAMU NMR NEWSLETTER - SPONSORS

Abbott Laboratories
Bruker Scientific, Inc.
JEOL, Incorporated
Dr. R. Kosfeld, Abt. Kernresonanz, Inst. f. Phys. Chemie, TH Aachen (Germany)
The Lilly Research Laboratories, Eli Lilly and Company
The Monsanto Company
Unilever Research (U.K.)
Union Carbide Corporation
Varian, Analytical Instrument Division

TAMU NMR NEWSLETTER - CONTRIBUTORS

The British Petroleum Company, Ltd. (England)
Eastman Kodak Company
E. I. DuPont de Nemours & Co.
International Business Machines Corporation
Nicolet Instrument Corporation
The Parkin-Elmer Company
The Procter & Gamble Company, Miami Valley Laboratories
Shell Development Company

Deadline Dates: No. 188: 5 August 1974
No. 189: 2 September 1974

All Newsletter Correspondence, Etc. Should Be Addressed To:
Dr. Bernard L. Shapiro
Department of Chemistry
TAMU, A&M University
College Station, TX 77843 U.S.A.

AUTHOR INDEX - TAMU NMR NEWSLETTER NO. 190

Bakker, Y. W. 38
Barfield, M. 14
de Bloo, M. J. A. 28
Blackburn, J. 31
Chalmers, A. A. 37
Cox, R. H. 2
Cushing, R. J. 39
Eaton, G. R. 10
Fraenkel, G. 46
Fraenkel, G. 46
Gertig, J. T. 3
Gibb, V. 41
Goldstein, J. H. . . . 7
Gross, S. 47
Hall, L. D. 41
Harris, R. K. 25
Hart, P. A. 31
Henrichs, P. M. . . . 47
Johnston, M. D. . . . 24
Khalilfah, R. G. . . . 33
Khetrapal, C. L. . . . 6
Kimber, B. J. 25
Kunner, A. C. 6
Long, A. C. 7
Lutz, G. 22
Maclean, G. 35
Marks, S. 43
Matsen, G. B. 3
Montz, W. B. 34
Pachler, K. G. H. . . 37
Porenski, C. F. 34
Sazavsky, C. D. . . . 10
Schafer, T. 21
Sojka, S. A. 34
Stefigel, A. 19
Stock, A. D. 3
Thomas, W. A. 17
Velthorst, N. H. . . . 35
Vickers, G. D. 12
Vos, H. W. 35
Wessels, P. L. 37
Professor B. L. Shapiro
Department of Chemistry
Texas A & M University
College Station, Texas 77843

June 5, 1974

Dear Barry:

It is with regret and sorrow we report to the readers of the TAMU NMR Newsletter the untimely death of our colleague Ted Lusebrink, who has contributed significantly to the field of NMR. His combination of NMR and computer knowledge led to the important programs DECOMP and ASSIGN. We remember frequently seeing him going from the spectrometer to the terminal, always looking for more direct ways to solve problems in spectral analysis.

His relatives, well knowing his wishes, have established a T. R. Lusebrink Scholarship Fund. All of his friends who wish to contribute, can do so by sending a contribution to the fund at the:

California Canadian Bank
3902 Middlefield Road
Palo Alto, California 94306

It is truly sad to lose a good friend and colleague.

Sincerely yours,

Jerome D. Swalen

Costantino S. Yannoni

Terry T. Horikawa

Joachim Bargon

John I. Crowley
June 6, 1974

Dear Barry:

Some measurements of $J_{\text{C-Pb}}$

After some initial setup problems, our JEOL PFT 100 system has been in operation for about 8 months. So far, we have obtained spectra on ^{13}C and ^{31}P.

We have examined the ^{13}C spectra of a variety of organolead compounds for information concerning the bonding in these compounds and their solution structures. Chemical shift values found for these compounds are normal for organometallic compounds. However, we find that $J_{\text{C-Pb}}$ varies by a factor of fifteen in the compounds examined to date. The carbon-lead couplings fall in the following ranges: (a) J_1, 155-2132 Hz; (b) J_2, 0-200 Hz; (c) J_3, 60-350 Hz; and J_4, 0-33 Hz. The data for compounds of the type $R_4\text{Pb}$ appears to support a correlation between $J_{\text{C-Pb}}$ and the carbon s-character in the bond. When carbon is sp3 hybridized, $J_{\text{C-Pb}}$ is in the range 190-250 Hz whereas when the carbon is sp2 hybridized, $J_{\text{C-Pb}}$ is in the range 454-481 Hz. Although these couplings appear to be dominated by the Fermi term, it is clear that additional terms should be included.

Substituent induced increases in $J_{\text{C-Pb}}$ can be as large as a factor of three. For example, comparing tetravinyllead with trivinyllead acetate, we find that $J_{\text{C-Pb}}$ increases from 454 to 1271 Hz. Similar increases are observed with other compounds. We are suggesting that these large increases in $J_{\text{C-Pb}}$ are a result of a change in the coordination of lead from four to five. Evidence has also been obtained for hexacoordinated lead. It appears that $J_{\text{C-Pb}}$ may offer a convenient probe into the solution structure of organolead compounds. Preprints of this work are available for those interested.

Sincerely yours,

Richard H. Cox
Associate Professor
Elimination of Systematic Noise and the Estimation of Baseline in Signal-Averaged Relaxation Time Determination

Long-term signal averaging is usually necessary for the determination of spin-lattice and transverse relaxation times of nuclei present in samples at low concentrations. In our experience two serious problems arise in experiments of this type. First, low-level, non-random, periodic variations in the output of the spectrometer may tend to accumulate coherently leading to an oscillating baseline in the signal-averaged spectrometer responses. Second, the output voltages that are digitized to provide the representation of the spectrometer responses during the experiment may be offset significantly from zero, so that even when nuclear signal is absent, the digital representation of accumulated responses will numerically increase. Although it is virtually impossible to establish a numerically zero baseline for data collected from an experiment involving a large number of scans by instrumental adjustments, accurate estimation of the baseline position is essential if the data is to be further manipulated by a computer to give the relaxation times (1,2). We have implemented extensions of traditional pulse sequences for the determination of these relaxation times which simultaneously overcome both of these problems.

The philosophy behind our approach is general and has been previously applied to high-resolution FT nmr. In essence a normal signal is generated, digitized and added to the contents of the appropriate locations in the computer memory. This is followed by a second nuclear signal generated in such a way that it is the same as the first signal but opposite in sign. It is subtracted from the corresponding computer memory locations. Periodic noise that is synchronized or can be made synchronous with the appearance of these signals will be subtracted out by this procedure. Moreover, the base line of the data after such a collection cycle will be identically zero.

To implement this regime for the determination of T_1 we have used the pulse sequence

$$(180°-90°-5T_1-90°-5T_1-180°-90°-5T_1-270°-5T_1-270°-5T_1)_n$$

The response after the first 90° pulse gives a measure of M_x, the sample magnetization
after time t while the second 90° pulse affords M_x, the equilibrium magnetization. The two 270° pulses give, respectively, the negatives of these quantities which then are subtractively collected. The net result is the accumulation of a series of positive numbers which represent M_t and M_m with a baseline identically zero.

Similarly, the sequence

$$90° \tau - (180° \tau -)_n - 5T_1 - 270° \tau - (180° \tau -)_n - 5T_1$$

an extension of the usual Carr-Purcell-Meiboom-Gill sequence, has been used in the same manner to determine T_2. An example of the results using this pulse sequence is shown in the picture (trace B). Trace A, obtained with the usual CPMG sequence, shows evidence of 120 Hz fluctuations on the baseline. The extent of such effects depend upon the degree of alignment between the repetition time of the experiment and the line frequency and can be made an order of magnitude worse for the experiment shown in Trace A by carefully synchronizing the start of each scan with the line as was done for experiment B. This source of baseline perturbations could potentially be minimized by starting each sequence randomly but an undefined number of scans would be required to average out such effects. Assuming that instrumental drifts are small over the time required to complete the total cycle, the mode of data collection described here will be effective for any number of scans.

References

Sincerely yours,

J. T. Gerig

G. B. Matson

A. D. Stock
Carr-Purcell-Meiboom-Gill experiments with 3×10^{-3} M m-trifluoromethylbenzenesulfonic acid doped with Cu$^{2+}$. The fluorine frequency was 51 MHz. Trace A: 1024 collections with all scans added. Trace B: Same sample and pulse settings as for A except that 512 scans were added and 512 scans subtracted alternately. The start of each scan for trace B was synchronized with the line frequency. Collection for trace A was not synchronized with the line although some partial synchronization is evident. Each time mark represents a 180° pulse spaced at 10 msec.
Professor Bernard L. Shapiro
Department of Chemistry
Texas A & M University
College of Science
College Station, Texas (77843)
USA

Title: Once again 'Oriented' methyl alcohol!

Dear Professor Shapiro,

Thank you very much for the 'blue' reminder.

We have studied the PMR spectrum of methyl alcohol oriented in the nematic phase of EBBA with and without the presence of lanthanide shift reagents. The experiments lead to the following conclusions:

1. The OH exchange in EBBA is considerably slow such that the spectra correspond to AB_3 patterns.

2. The sign of the indirect HH coupling constant (J_{AB}) thus determined is opposite to that of the direct dipolar coupling (D_{BB}) within the methyl protons.

3. Widths of the spectral lines without the lanthanide shift reagents were found to be nearly half compared to those with them.

4. Molecular orientation was found to decrease substantially by complexation with the shift reagents. However, when the shift reagent used was either Pr(fod)$_3$ or Eu(fod)$_3$ (where fod = 1,1,1,2,2,3,3-heptafluoro-7,7-dimethyl-4,6-octanedione), the D-values found were about the same.

5. The magnitude of J_{AB} seems to reduce by complexation with the shift reagent.

Details of this work will appear in the August issue of the Journal of Magnetic Resonance.

Yours sincerely,

C.L. Khetrapal
(A.O. Kunwar)

(C.L.Khetrapal)
(A.C. Kunwar)
Professor B. L. Shapiro
Department of Chemistry
Texas A & M University
College Station, Texas 77843

Dear Barry:

In an effort to provide a basis for the spectroscopic characterization of 5,5-disubstituted barbituric acids and related hypnotic agents for use in binding studies and possible applications to structure-activity relationships we have carried out preliminary CMR investigations of (2,4,6, 5-13C) enriched 5-ethyl-5-phenyl(I) and 5-ethyl-5-(2'-pentyl)(II) barbituric acids as well as (2,4,5-13C) 5,5-diphenyl hydantoin(III). We would like to report some new values of one, two, and three-bond C13-C13 couplings (Tables 1 and 2). The effect of ionization of the amide proton on the value of JCC(4,5) and JCNN(2,4) of (I) is 8.0 and 7.6%, respectively.

As far as we can determine, none of these values have been previously reported.

Sincerely,

J. H. Goldstein
Robert C. Long, Jr.
Table 1. Directly Bonded $^{13}\text{C} - ^{13}\text{C}$ Couplingsa

<table>
<thead>
<tr>
<th>Compound Description</th>
<th>MeOH</th>
<th>Buffer (pH = 10.6)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5-ethyl-5-phenyl Barbituric Acid (2,4(6),^{13}C)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$J_{CC} (4,5) = J_{CC} (6,5)$</td>
<td>47.82 ± 0.07</td>
<td>44.26 ± 0.10</td>
</tr>
<tr>
<td>$J_{CC} (5,1\text{Et})$</td>
<td>40.46 ± 0.10</td>
<td></td>
</tr>
<tr>
<td>$J_{CC} (5,1\text{Et})$</td>
<td>35.02 ± 0.10</td>
<td></td>
</tr>
<tr>
<td>5-ethyl-5-(2'pentyl) Barbituric Acid (2,4(6),^{13}C)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$J_{CC} (4,5)$</td>
<td>48.21 ± 0.14</td>
<td></td>
</tr>
<tr>
<td>$J_{CC} (6,5)$</td>
<td>48.21 ± 0.14</td>
<td></td>
</tr>
<tr>
<td>5-5-diphenyl Hydantoin (2,4,5-^{13}C)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$J_{CC} (4,5)$</td>
<td>46.64 ± 0.05</td>
<td></td>
</tr>
</tbody>
</table>

a The notation 4(6) implies 4 or 6 is enriched. Enrichment is 90.0, 45.25 and 90.5% at positions C$_2$, C$_4$, or C$_6$, and C$_5$ in I and II and 90.5 at C$_2$, C$_4$, and C$_5$ of III.
Table 2. Two-Bond 13C - 13C Couplingsa

<table>
<thead>
<tr>
<th>Compound</th>
<th>Couplings</th>
<th>MeOH</th>
<th>Buffer, pH = 10.6</th>
</tr>
</thead>
<tbody>
<tr>
<td>5-ethyl-5-phenyl Barbituric Acid (2,4(6),5-13C)</td>
<td>$J_{CNC} (2,4) = J_{CNC} (2,6)$</td>
<td>3.13 ± 0.06</td>
<td>2.91 ± 0.10</td>
</tr>
<tr>
<td></td>
<td>$J_{CCC} (4,1Q) = J_{CCC} (6,1Q)$</td>
<td>2.22 ± 0.20</td>
<td></td>
</tr>
<tr>
<td></td>
<td>$J_{CCC} (5,2Q)$</td>
<td>2.91 ± 0.10</td>
<td></td>
</tr>
<tr>
<td></td>
<td>$J_{CCC} (5,2Et)$</td>
<td><1.0</td>
<td></td>
</tr>
<tr>
<td>5-ethyl-5-(2'-pentyl) Barbituric Acid (2,4(6),5-13C) (II)</td>
<td>$J_{CNC} (2,4) = J_{CNC} (2,6)$</td>
<td>3.16 ± 0.08</td>
<td></td>
</tr>
<tr>
<td>5,5-diphenyl hydantoin (2,4,5-13C) (III)</td>
<td>$J_{CNC} (2,5)$</td>
<td>1.43 ± 0.03</td>
<td></td>
</tr>
<tr>
<td></td>
<td>$J_{CNC} (2,4)$</td>
<td>8.01 ± 0.05</td>
<td></td>
</tr>
</tbody>
</table>

Three-Bond 13C - 13C Couplings

<table>
<thead>
<tr>
<th>Compound</th>
<th>Couplings</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>5-ethyl-5-phenyl Barbituric Acid (2,4(6),5-13C) (I)</td>
<td>$J_{CNCC} (2,5)$</td>
<td>1.10 ± 0.05</td>
</tr>
<tr>
<td></td>
<td>$J_{CCC} (5,3'(3')Q)$</td>
<td><1.0</td>
</tr>
<tr>
<td>5-ethyl-5-(2'-pentyl) Barbituric Acid (2,4(6)-5-13C) (II)</td>
<td>$J_{CNCC} (2,5)$</td>
<td>1.07 ± 0.05</td>
</tr>
</tbody>
</table>

a The values in the table reflect only the magnitudes of the couplings; the signs have not been determined.
June 14, 1974

Professor Bernard L. Shapiro
Texas A&M University
College of Science
College Station, Texas 77843

Dear Prof. Shapiro:

About two years ago we converted one of our HA-100 spectrometers to observe phosphorus-31 in the centerband sweep mode, as described in TAMU NMR Newsletter #162. We have been very satisfied with this scanning technique; although, observation of the lock signal was somewhat of a problem. Since the signal from a 1 mm ID (1-1/2 mm OD) P₄O₆ lock reference capillary is too weak to be observed in the usual manner on the instrument oscilloscope, various lock monitoring methods were tested. A recent modification has proven most satisfactory. The only instrument modification requires a sixth position of the function switch on the integrator/decoupler V-3521A. The filtered signal obtained at pin P of connector J-1316 of the internal reference stabilizer V-4354A is connected through the function switch to the microamp meter (accumulated integral meter) on the V3521A integrator. This large meter provides an excellent lock signal monitor, sensitive to the smallest changes in field homogeneity. At present we are in the process of modifying the integrator/decoupler on our fixed RF proton HA-100 spectrometer so that we can monitor the lock on the meter in addition to the oscilloscope lock display.

Yours truly,

THE PROCTER & GAMBLE COMPANY
Research & Development Department

C. D. Saravsky

Suggested Title: "Inexpensive monitor for weak lock signals on internal reference spectrometers"
June 17, 1974

Professor B. L. Shapiro
Department of Chemistry
Texas A & M University
College of Science
College Station
Texas 77843

Dear Barry,

THE TVIT PULSE SEQUENCE

The new device of Professor Pines (TAMU 188) has led me to develop a new pulse sequence which traces the paths of individual electrons in a molecule. The nature of the pulse sequence can be understood if one considers that three variables are needed to specify position and that one must include the time in a path description: Three variables including time.

A slight acquaintance with quantum mechanics shows that we have here a method worthy of this preliminary communication. My detailed analysis implies that we can now follow the path of one electron as it moves between orbitals, so that much of the mystery surrounding molecular events will now be clarified. This discovery will impart fresh meaning to the remarks made in 1955 by Professor Gordy concerning "the highly precise and diverse information" available from r. f. techniques.

The shape of the observed responses indicates that the path is defined by a third-order partial differential equation. One interesting consequence of the boundary conditions is that nuclei do not, in fact, exist, but are simply singularities in unacceptable solutions to this useful equation.

The practical consequences of this result for certain instrument makers (or tenure committees) may be considerable. However, I have taken steps to patent my sequence (spinning of the magnet is an integral part of it) and am open to negotiations.

Yours sincerely,

T. Schäfer
Professor

1 Which are now well defined, a subsequence called SPDF being available.
2 Discussions Faraday Society, No. 19, 1955, p. 14
3 One minor difficulty involves the infinite amount of time needed to obtain the transform but a little work should reduce this by a factor of two or more.
4 Suggested name, the Schläfer equation.
5 Various other sequences, such as DAFT and SOFT, will become available and are certifiable.
June 18, 1974

Dr. Bernard L. Shapiro
Department of Chemistry
Texas A&M university
College Station, Texas 77843

Dear Barry:

We have received, by postal error, a package of partially mutilated spectra from the postmaster, Detroit, Michigan. The only reference to the sender or the intended recipient is the name of the spectrometer operator, S. BUSMAN.

In that the volume of spectra represent a considerable effort, we wish to return them.

If you can identify S. BUSMAN, please put us in touch with him or vice versa.

Thanks for your help.

Sincerely,

G. D. Vickers
President

cc Postmaster
Detroit, Michigan 48233

We regret that the address of D. N. Lincoln and V. Wray was left off their contribution in the June issue (#189-31). Their address is:

Gesellschaft f. Molekularbiologische Forschung
D-3301 Braunschweig
Stoeckheim, West Germany
The first High Resolution NMR Spectrometer on the market for Research and High Spectroscopy

WH 90

Let's get acquainted!
SUBSTITUENT DEPENDENCE OF VICINAL 13C–13C COUPLING CONSTANTS

The problems of conformational and substituent effects on vicinal C13–C13 coupling constants are unique and interesting (1,2). The vicinal C13–C13 coupling constant in a sample of 1-fluorobutane [kindly supplied by Dr. J. L. Marshall and Denis Miller of North Texas State University], which was enriched with C-13 in the 1-position, was found to be 4.1 Hz. The measurements were made on a Bruker Scientific FT spectrometer, operating at a frequency of 22.64 MHz.

Theoretical results for the conformational dependence of the vicinal C13–C13 coupling in fluorobutane were based on the finite perturbation formulation for coupling constants in the INDO approximation of semi-empirical MO theory. The calculated results in the figure exhibit substantial dependence on the dihedral angle ϕ, which is measured about the C2–C3 bond in the figure, but also on the dihedral angle ϕ', which is measured about the C1–C2 bond in the figure. The much larger vicinal coupling in the arrangement for which $\phi = 0^\circ$ and $\phi' = 180^\circ$ is almost certainly attributable to the interaction of the rear lobe of C-F carbon orbital with the orbitals of the C4 carbon and the attached hydrogen atoms.

An average of the nine lower energy conformations, weighted with respect to the Boltzmann factors, yields a calculated value of 3.8 Hz for the vicinal C–C coupling constant. Clearly, there are no other experimental points for comparison with the calculated results in the figure. However, in the cases of acyclic and cyclic acids (1) and alcohols (2) the INDO-FPT results predict the general trends, including cis coupling constants which are larger than trans (2).

Sincerely yours,

Mike Barfield

The diagram shows the relationship between the dihedral angle, ϕ, and the coupling constant $3J$, in Hz, for a fluorine atom (F) and a methyl group (CH_3). The graph plots $3J$ against ϕ for three different dihedral angles: 180°, 60°, and 300°.

The dihedral angle ϕ is measured from 0° to 180°, and the coupling constant $3J$ is shown on a logarithmic scale from 100 Hz to 800 Hz. The graph indicates how the coupling constant changes with the dihedral angle, which is important in NMR spectroscopy for understanding the orientation of molecules.
June 18, 1974

Professor Bernard L. Shapiro
Department of Chemistry
Texas A and M University
College Station, Texas 77843

Dear Barry:

Title: Postdoctoral Position Available

Two postdoctoral positions are available in my laboratory. The project involves synthesis, spectroscopy, and calculations related to the NMR and EPR of interacting spin systems. Since there are two positions available the candidates expertise may be in synthesis, in the theory of magnetic resonance, or in a combination of these.

Please bring these positions, which are available immediately, to the attention of all interested persons. Candidates should send a curriculum vitae and arrange for three letters of recommendation to be sent to me by August 1, 1974.

The University of Denver is an Affirmative Action/Equal Opportunity Employer and encourages applications from women and members of minority groups.

Sincerely,

Gareth R. Eaton
Assistant Professor

GRE:pk
Dear Barry,

In response to your pink reminder, may I offer some odd facts concerning cis/trans isomerism in proline-containing peptides, plus a plea for help with the SIMEK spectrum calculating/plotting programme.

For some time we have been examining the ratios of cis to trans isomers in proline derivatives. In our early studies using 1H and ^{13}C spectroscopy, we showed that for Gly-Pro, Ala-Pro and Val-Pro, the cis/trans ratio remained the same (≈50% trans) at neutral pH. Voelter and Oster have shown that the ratio is affected by the presence of N-protecting groups. In the ^{13}C spectra, the isomerism is best observed.

<table>
<thead>
<tr>
<th>Peptide</th>
<th>% Trans Isomer (D_2O)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gly-Pro</td>
<td>59</td>
</tr>
<tr>
<td>Ala-Pro</td>
<td>57</td>
</tr>
<tr>
<td>Val-Pro</td>
<td>61</td>
</tr>
<tr>
<td>Phe-Pro</td>
<td>26</td>
</tr>
<tr>
<td>Met-Pro</td>
<td>50</td>
</tr>
<tr>
<td>Gly-Pro-Ala</td>
<td>22</td>
</tr>
<tr>
<td>Ala-Pro-Ala</td>
<td><10</td>
</tr>
</tbody>
</table>
for the β/γ carbons, which generally appear as a characteristic quartet of lines, with the inner pair (trans isomer) generally predominating (I). In Phe-Pro, however the reverse pattern is observed, and since the shift differences $\beta_{cis} - \gamma_{cis}$ or $\beta_{trans} - \gamma_{trans}$ are consistent with other dipeptides we conclude that the ratio has reversed. This is confirmed in the 1H spectrum, where a more reliable cis/trans ratio is found. In methionyl proline (Met-Pro) however a 50-50 mixture appears to be present. When proline is no longer the C-terminal amino acid the percentage of cis isomer decreases, but there is still $\sim 20\%$ "cis proline" in Gly-Pro-Ala in D_2O solution.

I was pleased to receive recently, from Jim Feeney and Gordon Roberts at the M.R.C. Unit, Mill Hill a copy of SIMEQ II-163, a spin simulation programme written by Dr C W F Kort in (Amsterdam University) and Dr M J A de Bie (Utrecht University), but dismayed to find that the plotting routines in the programme did not work with the Varian 620-L MK II interface. If anyone has found a way around this problem I would be delighted to hear from them as the programme is a very useful addition to the 620L/XL100 library.

Best wishes

Yours sincerely

Dr W A Thomas

References

Dr. Alois Steigel

20 June, 1974

Professor B.L. Shapiro
Department of Chemistry
Texas A&M University
College Station, Texas 77843
U.S.A.

Dear Dr. Shapiro:

Classical and Quantum Mechanical Calculations for AB*BA

During my research visit at the NRC I had the opportunity to perform line shape simulations of dynamic NMR spectra (cp. Sydney Brownstein, TAMUNMR 184-33). In my first contribution to your unique Newsletter I wish to draw the attention again to the AB*BA case.

An effort to rationalize the effects of exchange on spin systems with simple models has been made recently by Whitesides and coworkers (1). For the most simple second order system, AB*BA, Johnson (2) could derive that the exchange modified Bloch equations are adequate to describe the line shapes. I want to illustrate the relation of the quantum mechanical and classical calculations for this case by using the method of Binsch to calculate spectral and shape vectors (see DNMR 3). The nice feature of Binsch's method is that the imaginary part of the spectral and the real part of the shape vector for a special transition correspond to its intensity and frequency respectively; the additional information inherent to these vectors - broadness and deviation from Lorentz shape - will not be used here.

Both the quantum mechanical and the classical calculations have been performed for a representative example ($v_A=20$ Hz, $v_B=40$ Hz, $J=10$ Hz, $T_2=1$) with the same type of matrix equations (1 and 2) using the subroutines ALLMAT, NVRT and CONVEC of DNMR3 to solve them. The values for the line positions, exchange probabilities and populations of the classical equation 2 have been obtained by calculating the spectral and shape vectors for the static AB spectrum (eqn. 1, $k=0$). They are identical with the values Johnson reported to be adequate for an exact simulation of the line shape ($-2i/2+C$ and $1+sin 20$).
The line positions and intensities calculated from equations 1 and 2 as a function of the exchange rate k are in perfect agreement (left and right side of the figure). For the fast exchange region one sees small "negative intensities"; but the corresponding broadness of these "lines" does not allow for an abnormal line shape. The fact that the outer transitions have been calculated to be negative is thought to be due to the numerical procedure of solving the eigenvalue problem. The results for a first order type calculation are depicted in the middle of the figure. The matrix equation used for these calculations is identical with equation 1 except that the imaginary off-diagonal elements $(\pi J \cdot i)$ have been omitted. Neglecting second order effects evidently does not lead to a collapse of the splitting; the crossover of the two inner lines occurs at $k \approx 63$.

Similar calculations for more complicated spin systems have been performed (paper in preparation). Just now I am summarizing the recently established methods for studying the mechanisms of exchange processes by line shape analysis in a progress article for the Angew Chemie.

Yours sincerely,

Alois Steigel.

Dear Professor Shapiro,

We are very interested to participate in the TAMM University Newsletters. Our NMR Fourier-Transform facility is based on an externally stabilized 7Li NMR magnet (18.07 kOe) and a Bruker B-Kr 322 pulse spectrometer with a frequency range of 4 MHz to 62 MHz. In this region the Larmor frequency of about 80% of the nuclei with non-zero spin is situated. Therefore we are investigating the nuclei signals of nuclei other than protons, recently especially less common nuclei with very weak signals. In the last time investigations of the following nuclei have been done: 10B, 25Mg, 43Ca, 67Zn, 85Rb, 111Cd, 115Sn, 117Sn, 119Sn, 207Pb.

The aims of our investigations are:
1) Dependence of the NMR frequency of these nuclei in aqueous solution on the concentration and sort of soluted salt.
2) Temperature dependence in aqueous solution.
3) Solvent isotope effect of these nuclei (an unusual effect has been found in the case of 67Zn (1), (Z. Naturforsch. 29a, 660 (1974))
4) Shielding constants of these nuclei and atomic reference scale (2), (Z. Physik 266, 233 (1974)) for chemical shifts in the liquid, solid and metallic state.
5) Ratios of Larmor frequencies for the determination of hyperfine structure anomalies and primary isotopic effect.
6) Investigations upon the application of the NMR technique on biological problems using these less common nuclei.

Yours sincerely

(0. Lutz)
the Nicolet 1020A is a time averaging system for magnetic resonance spectrometers that gives you results like these:

The Nicolet 1020A is an easy-to-use time averaging system combining unique data processing capabilities with extremely useful display and readout routines. Using a normalized signal averaging method, the 1020A presents a true average on its built-in 5" CRT display. The complete spectrum (or any expanded portion of it) is continuously displayed throughout the averaging process.

Thumbwheel switches select sweep times from 60 milliseconds to 1,999 seconds for a 2048-word sweep, with 4-digit accuracy. The 1020A can provide sweep current to the spectrometer and can compensate for spectrometer field drift when using the Field Stabilization mode. The calibrated sweep widths are front panel selected and can be matched to any spectrometer.

The analog-to-digital converter (ADC) resolution is 12 bits (one part in 4096) for sweep times over 1 second and 9 bits (one part in 512) for sweep times less than 1 second.

Total memory capacity is 2048 words, 24 bits long. The upper 12 bits store the final average while the lower 12 may be used to store the integral. Averaged spectra may be stored in halves of memory and added to or subtracted from one another.

Digital integration is built-in and does not destroy the original spectrum thus allowing simultaneous display of spectrum and integral. Baseline correction can be accomplished during display of the integral to assure optimal results.

Another unique display feature is the ability to expand the displayed spectrum in both the X and Y axes by factors of 2 up to a total expansion of 64 times. (Typical expansion examples are shown to the right). In addition to this analog display a simultaneous numerical display shows the amplitude and address values of any data point selected by a movable electronic cursor.

Write or call collect for complete details or to arrange a demonstration in your laboratory.
June 28, 1974

Prof. B. L. Shapiro
Department of Chemistry
Texas A&M University
College Station, Texas 77843

Dear Barry:

One of the more annoying problems confronting workers doing precision work with lanthanide shift reagents (LSR) is the occasional presence of non-trivial amounts of impurities. Usually, the main impurities encountered are the lanthanide oxide (Ln₂O₃) and excess ligand (in the cases discussed here, the FOD ligand). This list is restricted to reagents stored over P₂O₅; it is extended considerably otherwise. The oxide is easily removed—it is simply the residue left behind after vacuum sublimation. However, excess ligand has the annoying property of subliming right along with the LSR and depositing itself on the cold finger.

The excess ligand is probably the source of extra peaks in spectra erroneously attributed by some workers to LSR-dimer formation. If the LSR be pure, one should see only one resonance, namely that of the 2-butyl group. The presence of extra peaks is almost certainly owing to unwanted ligand.

How to get rid of the excess ligand? I have found one easily-done method which works quite well. When doing the sublimation, use a "hot-finger." That is, use hot water in the sublimer's ex-cold-finger. If one sends through water at ~60°C, the ligand goes on into the cold trap of the vacuum system. This procedure was tested on a bad lot of Yb(FOD)₃ and worked quite well. LSR sublimed without the hot-finger gave LSR with two peaks in its spectrum; use of the hot-finger completely removed the impurity resonance. Use of this method is easy and convenient and avoids the necessity for recrystallization.

One final word. Yb(FOD)₃ is much more difficult to purify than the Eu and Pr analogs. This is most likely owing to its much lower melting and sublimation temperatures.

Sincerely yours,

Milton D. Johnston, Jr.
Assistant Professor of Chemistry

PURIFICATION OF LSR's
MUTROSTRUCTURE OF SILICONE POLYMERS

Dear Barry,

Our 29Si NMR work is now yielding some very interesting results, in particular for silicone polymers, and we would like to keep our subscription to TAMUNMR alive by mentioning some of the results briefly. The methylsiloxyl unit (referred to as D') has proved to be particularly useful, since we can detect tacticity effects - neighbouring units cause a splitting of ca. 1 Hz from this origin. We can also differentiate signals from the end three D units in polymers of the type MD'M, where M is the trimethylsiloxyl end-stopper group and n is ca. 50. Such results should appear in Chem. Comm. shortly. We have now looked at mixed polymers containing D' and D units, where D refers to a dimethylsiloxyl group, and find a wealth of fine structure for the D' unit (see the figure). We can, in fact, explain all the features of the observed pattern if we recognise structure at the heptad level, as well as tacticity and end-group effects. The heptad splittings are ca. 1 Hz and differentiate such structures as DDHDDDD from DDDHDDD. The figure shows how these considerations lead to understanding of the spectra. Obviously it is helpful to vary the D:D' ratio in order to assign the peaks. It should be pointed out that our samples generally have a wide range of polymer chain-length (the average is known from the method of preparation). Oligomers with chain length <10 have been removed by vacuum stripping. The amount of information about microstructure obtainable from the 29Si spectra far exceeds that which is known from all other techniques. Needless to say we are using FT techniques, with proton noise decoupling. The NOE for 29Si-[H] for the cases illustrated is such that the signal is negative.

We hope this contribution satisfies all your criteria!

Yours sincerely,

Robin Harris Barry Kimber

R.K. Harris, B.J. Kimber
TRIAD STRUCTURE
PENTAD STRUCTURE
HEPTAD STRUCTURE
TACTICITY STRUCTURE

D: D' = 1

D: D' = 5:11

D: D' = 11:5

29Si-1H NMR SPECTRA FOR THE D' GROUP OF MIXED SILICONES

The average number of Si atoms in the polymers is 18.

Calculated spectra are shown above the observed spectra.

19.9 MHz
Deuterated Solvents
Reference Compounds
Chart Papers Etc:
Shift Reagents

NUCLEAR MAGNETIC RESONANCE LTD.
MAGNETIC HOUSE/SCRUBBS LANE/BLEMLOW RIDGE/
HIGH WYCOMBE/BUCKS/HP14 4AF
Dear Professor Shapiro,

Recently B. Birdsall, N.J.M. Birdsall and J. Feeney described an elegant off resonance CW decoupling technique suited for the assignment of both 1H and 13C chemical shifts in relatively complex molecules (Chem. Commun., (1972) 316). To use this technique partially decoupled 13C NMR spectra have to be obtained at decoupler frequencies that cover the range of proton frequencies of interest at intervals of 10-20 Hz (CW Hetero HI Mode at about 20% of maximum power). For dilute samples this assignment technique is very time consuming and in addition it requires operator attention for the changing of the decoupler frequency.

In order to make use of this technique without operator attention over the weekend we asked H.J. Flick of Varian Benelux BV to bring the decoupler offset under computer control. It turned out that this computer control was already foreseen by the designers of the XL100. The preset logic of the decoupler offset synthesizer (and also of the spectrum offset synthesizer) can be set by 4 x 4 BCD coded lines originating in the offset switches or by a 16 bit word originating in the computer. The mode is selected at the transfer gates. For the decoupler the computer input is wired from J1003 to the console backplane connector J021 and for the spectrum offset from J1417 to J025.

We used the 16 bit inverting register of the ACU tray (MK I interface), that is normally used to bring the filter under computer control, as our source for the computer control word by disconnecting it from the filter logic and wiring it from plug J5 to a mating connector for J021 (or J025). The computer inhibit was taken from J4 - J.
The complete wiring for the decoupler offset is as follows:

<table>
<thead>
<tr>
<th>Switch</th>
<th>J1003</th>
<th>J021</th>
<th>P021</th>
<th>J5</th>
<th>Bit</th>
</tr>
</thead>
<tbody>
<tr>
<td>X10</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>r</td>
<td>00</td>
</tr>
<tr>
<td></td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>s</td>
<td>01</td>
</tr>
<tr>
<td></td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>t</td>
<td>02</td>
</tr>
<tr>
<td></td>
<td>P</td>
<td>P</td>
<td>P</td>
<td>u</td>
<td>03</td>
</tr>
<tr>
<td></td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>v</td>
<td>04</td>
</tr>
<tr>
<td></td>
<td>M</td>
<td>M</td>
<td>M</td>
<td>w</td>
<td>05</td>
</tr>
<tr>
<td>X100</td>
<td>L</td>
<td>L</td>
<td>L</td>
<td>x</td>
<td>06</td>
</tr>
<tr>
<td></td>
<td>K</td>
<td>K</td>
<td>K</td>
<td>y</td>
<td>07</td>
</tr>
<tr>
<td></td>
<td>J</td>
<td>J</td>
<td>J</td>
<td>z</td>
<td>08</td>
</tr>
<tr>
<td>X1000</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>AA</td>
<td>09</td>
</tr>
<tr>
<td></td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>BB</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>E</td>
<td>E</td>
<td>E</td>
<td>CC</td>
<td>11</td>
</tr>
<tr>
<td></td>
<td>D</td>
<td>D</td>
<td>D</td>
<td>DD</td>
<td>12</td>
</tr>
<tr>
<td>X10000</td>
<td>C</td>
<td>C</td>
<td>C</td>
<td>EE</td>
<td>13</td>
</tr>
<tr>
<td></td>
<td>B</td>
<td>B</td>
<td>B</td>
<td>FF</td>
<td>14</td>
</tr>
<tr>
<td></td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>HH</td>
<td>15</td>
</tr>
</tbody>
</table>

INHIBIT: U, U, U, J4, EXC 0632

XL100: Cable MK I interface

For the spectrometer offset a similar wiring is possible (see interconnect wiring list 87-126-702 and the book 87-126-400). We did not bring the X1 vernier control under computer control as we did need it. For a MK II interface the situation is more complex. Here an extra digital I/O board has to be added to the computer.

The instruction sequence to set the offset is as follows:

- LDB, OFFS
- TZA
- DIVI, 10
- TBA
- CALL, XBTD
- COMPL, 021
- QAR, 030
- EXC, 0330
- EXC, 0632

offset in B register
integer binary to binary coded decimal
output to device 30
output to register
enable computer control
This program piece can be patched into the normal program. The representation of the spectra is done similarly as in the T-1 program.
A complete 16 or 24K FT program for MK I interfaces including this possibility and several other new features will be available shortly.

b. A new version of the spin simulation program SIMEQ II/16 (TAMUNMR 150, p20 and TAMUNMR 169, p20) is now available for MK I or MK II XL100 interfaces and SS100 systems.
Those who did already ask for this program and did hitherto not receive this improved version, please contact me and I will send the object tapes.

Yours sincerely,

M.J.A. de Bie
June 6, 1974

Professor Bernard L. Shapiro
Department of Chemistry
Texas A and M University
College Station, Texas

Title: Fourier Homonuclear Decoupling

Dear Barry:

The July 1973 Newsletter carried a contribution by Jim Cooper and Craig Bradley describing time-shared homonuclear decoupling involving roughly a 30% duty cycle for f_2 unsynchronized with the observing pulse or computer data acquisition. The advantage of their procedure is that the time sharing frequency can be varied independently from the sampling frequency. We wanted better synchronization of data acquisition with the f_2 pulse and those readers using a Nicolet 1080 computer in combination with the Nicolet 293 pulse programmer may wish to know how to accomplish this.

The computer address advance pulse is used to trigger the timing cycle for f_2 and receiver blanking. This pulse can be picked up from pin 17 on the sweep controller outlet of the 1080. The pulse can then be fed to a 293 timer input. The diagrams show the timer arrangement and the corresponding time-sharing sequence.

The parameters shown on the timer diagram give maximum decoupling of the methylene quartet from the methyl triplet of ethylbenzene using 10 db attenuation of the decoupling frequency of our Bruker HX90E spectrometer. The same arrangement works very well for other double resonance experiments and we will shortly report results comparing cw and FT nOe measurements.

Sincerely yours,

Phillip A. Hart

James Blackbourn
Computer enable

--

Computer trigger

--

address advance pulse from pin M

--

receiver gates

--

Computer on

--

address advance pulses

Data digitization

f2 pulse

Receiver blanking

Timer P2

GO

0 200 400 600 800 1200 1400 1600 1800

TIME (µs)

P1 = 2 µs
D1 = 4.25 sec for 8K
D3 = 100 µs

P2 = 460 µs
P3 = 100 µs
D2 = 350 µs

f1 pulse

500 µs dwell
Programming WEFT Computations

The WEFT method\(^1\) for eliminating unwanted solvent resonances is exceedingly useful in proton FT NMR studies of necessarily dilute biological samples. Benz, Feeny and Roberts\(^2\) derived the following null condition in the steady state of the pulse sequence \((\pi-\tau-\pi/2-T)_N\):

\[
e^{-(T_1 \ln 2 + T)/T_1} + e^{-(T_1 \ln 2 - T)/T_1} = 1
\]

where \(T_1\) refers to the unwanted resonance, e.g. HOD. Each choice of \(T\) leads to a unique value of \(t\) for each sample, so that a more useful rearranged form of the above equation is:

\[
t = T_1 \ln(2 - e^{-T/T_1})
\]

In attempting to incorporate this handy calculation into the FT NMR software for routine use, one needs subroutines for calculating negative exponentials and natural logarithms that may not exist in a minicomputer FT software. Wishing to avoid pre-empting large amounts of program core for such a simple matter, I have derived an easily programmable approximation to the above equation for generating \(t\) values as follows:

\[
t = T T_1 / (T + T_1)
\]

The basis for this is that the function \(\ln(2 - e^{-x})\) can be approximated by \(x/(1 + x)\) with an accuracy of 2\% at \(x = 1\) and greatly improving for smaller values of \(x\). (The accurate range is less extended for negative \(x\).) In the above context, \(x = T/T_1\), and most applications would be in
the range $T < T_1$. Since maximum "WEFT'ing" requires adjusting delay times to ± 1 or 2 msec by trial and error, i.e. to far better accuracy than T_1 can be measured, the approximation is more than adequate to quickly generate trial values of t.

Please credit this contribution to our Department's account initiated by Bruce Martin.

Sincerely yours,

Raja G. Khalifah
Assistant Professor of Chemistry

Professor B. L. Shapiro
Department of Chemistry
Texas A & M University
College Station, Texas 77843

Dear Barry:

Using the Chromatix tunable UV-visible laser system which the Chemistry Division recently acquired, we have observed proton CIDNP from a solution of di-tert-butyl ketone in CCl_4. The signal levels were comparable to those we obtained with arc source excitation (600 W Hg-Xe).

Average laser power at the sample was approximately 0.7 milliwatt, and CIDNP was observed over the tuning range of 285-305 nm. We have not as yet experimented with more difficult molecules than di-tert-butyl ketone, so the generality of laser-induced CIDNP at these power levels is not established.

Sincerely,

W. B. Moniz
C. F. Poranski, Jr.
S. A. Sojka

Organic Chemistry Branch
Chemistry Division
Code 6120
Dear Professor Shapiro,

The proton exchange between methylene-group containing aromatic hydrocarbons and their conjugate bases is an almost unexplored topic in carbanion chemistry. Brauman et al. observed this process for fluorene/fluorenyl anion with proton magnetic double resonance. We have studied the exchange between indene (InH$_2$) and indenyl anion (InH$^-$) in various solvents, using NMR line-broadening, in the same way as has been done for carbonium ions.

![Diagram of InH$_2$ and InH$^-$](image)

In 1,2-dimethoxyethane and diglyme line-broadening occurred noticeably above 180° and 150°C, respectively. In the more polar solvent hexamethylphosphorotriamide (HMPT), however, the exchange can be observed by NMR already at room temperature.

The line shapes of the 1,3-proton doublet in the spectrum of the carbanion InH$^-$ in HMPT have been measured as a function of temperature. The line widths of the components of this doublet were...
determined by computer simulation. After correction for the line width without exchange (measured from a TMS side-band placed near the doublet), the second-order rate constant was calculated from the following formula:

\[k = \frac{1}{\tau_{\text{InH}^-}} = \frac{\pi \Delta v_{\text{InH}^-}}{[\text{InH}_2^-]} \]

in which \(\tau_{\text{InH}^-} \) is the mean lifetime of \(\text{InH}^- \) and \(\Delta v_{\text{InH}^-} \) is the line broadening. As an example, \(k = 35 \, \text{M}^{-1} \, \text{sec}^{-1} \) at 52°C. From the temperature dependence of \(k \) the following quantities have been calculated: frequency factor \(f = 1.1 \times 10^7 \, \text{M}^{-1} \, \text{sec}^{-1} \), activation enthalpy \(\Delta H^* = 8.5 \pm 1.5 \, \text{kcal/mole} \) and activation entropy \(\Delta S^* = -27 \pm 4 \, \text{cal/mole K} \).

The low values of \(f \) and \(\Delta S^* \) classify this exchange as a "slow reaction". A discussion of the rate and its dependence on the polarity of the solvent will be presented separately.

Rapid exchange sharpening is observed at higher temperatures for all protons, except 1 and 3 (even at 180°C). This is caused by the large difference in chemical shift between a proton in the \(\text{CH}_2 \)-group and the other ones (see table).

<table>
<thead>
<tr>
<th>proton:</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4,7</th>
<th>5,8</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\text{InH}_2^-/\text{HMPT})</td>
<td>3.38</td>
<td>6.57</td>
<td>6.93</td>
<td>7.1-7.5</td>
<td></td>
</tr>
<tr>
<td>(\text{InH}^-/\text{HMPT})</td>
<td>5.73</td>
<td>6.37</td>
<td>5.73</td>
<td>7.05</td>
<td>6.07</td>
</tr>
</tbody>
</table>

Sincerely,

H.W. Vos
Y.W. Bakker
N.H. Velthorst
C. MacLean
Dear Professor Shapiro,

SELECTIVE POPULATION INVERSION TECHNIQUE (SPI)

The GASP technique described by Runink \(^1\) is similar to the method developed in this laboratory \(^2\) which we call SPI and which, of course, we believe to be somewhat superior. In the use of SPI for \(^{13}\text{C}-\text{H}\) studies a \(\pi\) pulse is applied, \((\gamma\text{H}, T_p = \pi\) using XL decoupler and gate\), to a single \(^{1\text{H}}\) line in the carbon-13 satellite spectrum and then the usual non-selective \(\pi/2\) pulse is applied to sample the \(^{13}\text{C}\) spectrum. The \(\pi\) pulse inverts the populations of the upper and lower energy levels of the selected transition and this shows up in the \(^{13}\text{C}\) spectrum as positive and negative contributions to the connected transitions in the same way as for INDO\(\text{R}\) or GASP. The advantage of SPI is that (a) like GASP it is applicable to FT operation and (b) the population inversion leads to the maximum possible contributions \(+ (\gamma\text{H}/\gamma\text{C}) J_0\); whereas the other methods must give less. We have successfully used \(^{13}\text{C}-\{^{1}\text{H}\}\) SPI to give signs and magnitudes of the long-range \(^{13}\text{C}-\text{H}\) couplings in AMX systems due to 2,3-dibromothiophene \(^3\), and a 1,2,2-trisubstituted ethane \(^4\). Fired with enthusiasm we have tackled the 5-spin systems of 2-pyrone and obtained all sixteen long-range couplings with their signs. (Table). The figure shows the single resonance spectrum of \(^{13}\text{C}_2\) and above it the SPI spectrum from irradiation at the lowest field line of the \(^{13}\text{C}_2\)-isotopomer \(\text{H}_4\) multiplet. Thus the experiment gives the magnitude of \(J(C_2, H_4)\) and sign information on the other couplings to \(C_2\). Further experiments give the other couplings.
SPI

NOE

TABLE

<table>
<thead>
<tr>
<th>JH, C</th>
<th>Hz</th>
</tr>
</thead>
<tbody>
<tr>
<td>3, 2</td>
<td>4.7</td>
</tr>
<tr>
<td>3, 4</td>
<td>< 0.4</td>
</tr>
<tr>
<td>3, 5</td>
<td>7.9</td>
</tr>
<tr>
<td>3, 6</td>
<td>−0.8</td>
</tr>
<tr>
<td>4, 2</td>
<td>11.2</td>
</tr>
<tr>
<td>4, 3</td>
<td>0.9</td>
</tr>
<tr>
<td>4, 5</td>
<td>1.5</td>
</tr>
<tr>
<td>4, 6</td>
<td>7.6</td>
</tr>
<tr>
<td>5, 2</td>
<td>−0.4</td>
</tr>
<tr>
<td>5, 3</td>
<td>6.8</td>
</tr>
<tr>
<td>5, 4</td>
<td>1.3</td>
</tr>
<tr>
<td>5, 6</td>
<td>7.6</td>
</tr>
<tr>
<td>6, 2</td>
<td>6.7</td>
</tr>
<tr>
<td>6, 3</td>
<td>−1.4</td>
</tr>
<tr>
<td>6, 4</td>
<td>7.8</td>
</tr>
<tr>
<td>6, 5</td>
<td>7.6</td>
</tr>
</tbody>
</table>

a. NT = 1700 @ P = 9.0 PD = 15.0
b. NT = 64 @ P = 1.05 PD = 0

1. J. Rumsink TAMUNN 185-18.

Yours sincerely,

A.A. Chalmers
K.G.R. Pachler
P.L. Wessels
June 20, 1974

Dr. B.L. Shapiro
Chemistry Department
Texas A & M University
College Station, Texas 77843

Post-Doctoral - Biophysical Chemistry

Dear Barry:

I have immediate openings for one or two post-doctoral fellows of exceptional quality. There will also be a number of openings for high calibre students at the graduate level.

My research interests are in the area of biological applications of nuclear magnetic resonance, with particular emphasis on carbon-13 spectroscopy. Included in these areas are the following topics:

- Visualization of Enzyme-Substrate Transition States by Carbon-13
- Carbon-13 Conformational Studies of Membranes and their Constituents
- Vitamin E and Cell Function
- Elucidation of Biosynthetic Pathways by Carbon-13 Fourier Transform Techniques
Backgrounds in enzyme chemistry, 13C FT techniques and physical biochemistry or a predilection for these areas of research would be the requisites.

Our equipment comprises the latest Transform Technology Fourier Transform Accessory to the Varian XL-100-15. The FT package includes a 20K, 20 bit computer, a 600K disk and multiple pulse capability. There is also a good selection of other instrumentation in the Department. There is also free access to the National High Field NMR spectrometer located in Ontario.

Funds available to me provide a salary at the NRC rate of $8700 per year (up to three years). Removal expenses to the value of return air fare are also provided. Candidates are asked to submit a curriculum vitae and have two or three letters of reference sent to me as soon as possible.

Simon Fraser University sits atop Burnaby mountain in Vancouver, on Canada's west coast. With a population of ~1 million, Vancouver has excellent cultural, recreational and entertainment facilities. The weather is moderate (one can play golf on Christmas day).

Sincerely,

Robert J. Cushley
Associate Professor

RJC/md
Professor B. L. Shapiro,
Department of Chemistry,
Texas A. & M. University,
College Station,
Texas 77843,
U.S.A.

SODIUM - 23 N.M.R.

Dear Barry,

We are continuing to extend the number of nuclei which we can detect using our modified XL-100 spectrometer (Newsletter (185) 40 (1974)).

Attached is a copy of the sodium-23 resonance of sodium chloride... a saturated solution in D₂O in a 5 mm O.D. n.m.r. tube. There is nothing particularly significant about this measurement except that it cost us less than $200 over and above our previous investment.

With all best regards.

Victoria Gibb L. D. Hall

LDH:dm

Enclosure
NaCl saturated solution
1 transient
S/N = 21.7

NaCl saturated solution
100 transients
S/N = 221
Title: Effects of Rotation on NMR Linewidths in Nematic Solvents.

Dear Professor Shapiro,

We were intrigued by the study of Emsley et al (TAMU 176, p18, Chem.Phys.Letters, 345, 19, (1973)) on the behavior of linewidths of samples dissolved in nematic solvents. In particular, the rapid broadening of the linewidths as the spinning speed ω approaches a critical value ω_c intrigued us. Accordingly, we performed the experiment using 1,2,3,4-tetrachlorobenzene dissolved in ethoxybenzylidene butylaniline and observed the same overall behavior.

Emsley et al have shown that the line broadening is due to the spread in the angle between the director and the external magnetic field and thus have predicted a linear dependence of the linewidths on spinning speed. However, this does not explain the dramatic broadening of the lines as ω approaches ω_c. We have shown that if in addition the uncertainty in the spinning speed is taken into account then the observed line broadening can be calculated. The figure shows both our data and Emsley's data where the y axis is a normalized linewidth and the x axis is a normalized spinning speed. The solid line is a calculated "best fit" where the parameter used in the fitting is the uncertainty in the spinning speed. A value of 0.08 Hz fits both sets of data and this agrees well with the estimated experimental uncertainty of 0.1 Hz in the spinning speed. Too much significance should not be attached to this since the linewidths are only an indication of the spread of the director.

Credit for this work also goes to Dr's Shaul Gore and Ruth Potashnik.

Sincerely,

Stephen Marks
FIGURE TITLE

Variation of $(W-W_0)/A_0$ vs ω/ω_c. The bars (I) are data reported here, the crosses (x) are data taken from reference 3. Solid line (a) is the theoretical fit to the bars. Line (b) is the theoretical fit to the crosses.
June 21, 1974

Dr. B. L. Shapiro
Department of Chemistry
Texas A and M University
College Station, Texas

Re: Book on Nmr Line-Shape Analysis

Dear Barry:

Jerry Kaplan and I are writing a book on nmr line-shape analysis of chemically exchanging systems which will describe the density matrix formalism for spectra obtained under different sets of conditions. Although we do not intend to review all line-shape research we do plan to describe selected examples of interesting systems where kinetic data have been extricated from nmr line-shapes. In particular, we seek examples of systems undergoing intermolecular exchange, for instance,

\[AB + CD \rightarrow AC + BD \]

including quadrupolar nuclei. Readers willing to divulge interesting examples of analyzed exchanging systems should write to me at Ohio State.

Sincerely yours,

Gideon Fraenkel
Professor of Chemistry

GF:es
Dr. B. L. Shapiro
Department of Chemistry
Texas A and M University
College Station 77843

June 21, 1974

Re: Organolithium compounds - Postdoctoral appointment

Dear Barry:

2-Methylbutyllithium (RLi) is a hexamer at 25° in pentane. At -25° the CH2Li proton resonance of d-RLi, 100 MHz, looks like a badly smudged and overlapping AB part of an ABX spectrum indicating slow inversion at the C-Li carbon. At 300 MHz the spectrum is unambiguous and we have utilized the CH2Li line-shapes to calculate rates of inversion. When the experiment is repeated with dl-RLi the low temperature spectrum shows two different ABX systems. That means we have resolved diastereomers of the RLi aggregate. Above -30° the shifts between the diastereomers average. Thus we are seeing two kinds of exchange behavior, inversion and intermolecular exchange between aggregates. We are analyzing these line-shapes and it seems now that interaggregate exchange is 4000 times as fast as inversion.

In other work we have lately been looking at 13C shifts in π-conjugated anions. Some recent results are diagrammed below, without comment.

I have funds for one post-doctoral to work in the organometallic field 50:50 synthesis and nmr on a variety of problems concerning structure and dynamic behavior of carbanionic substances. For this we have the latest in Bruker (A.G.) HX-90 equipment, cw, ft, disk, etc. Interested persons should write to me.

Sincerely yours,
Gideon Fraenkel, Professor of Chemistry

<table>
<thead>
<tr>
<th>13C shifts from TMS</th>
<th>106.2</th>
<th>128.6</th>
</tr>
</thead>
<tbody>
<tr>
<td>CH3(CH2)2Li</td>
<td>104.0</td>
<td>127.2</td>
</tr>
<tr>
<td>CH3(CH2)2CH2Li</td>
<td>103</td>
<td>137</td>
</tr>
</tbody>
</table>

T1 sec
2.8

190-46
June 25, 1974

Professor Bernard L. Shapiro
Department of Chemistry
Texas A and M University
College of Science
College Station, Texas 77843

Dear Dr. Shapiro:

Title: Selective C13 -Proton Decoupling on a Varian CFT-20 Spectrometer

We have developed a simple, inexpensive accessory for doing precise selective decoupling experiments on our CFT-20. Such experiments require a continuously variable -- yet highly stable -- proton decoupling oscillator. Varian recommends using a frequency synthesizer; this is certainly the most straightforward, though expensive, approach.

Our alternative method is to disconnect the 100 KHz translating signal at pins T and 16 on the spin decoupler card and to substitute the output of a 100 KHz ± 10 Hz variable crystal oscillator (see diagram next page). If the above connections are unsoldered on the extender board, no modifications to the card itself are necessary.

The actual decoupler frequency is then:

\[f_{\text{dec}} = 5(100,000 - f_{\text{osc}}) + (100)DO + 79,537,500 \]

\[f_{\text{dec}} = \text{decoupling frequency output in Hz} \]

\[f_{\text{osc}} = \text{frequency of the variable crystal oscillator} \]

\[DO = \text{decoupler offset} \]

Because of the factor of 5 it is only necessary that the range of the variable crystal oscillator be 20 Hz in order that a 100 Hz range be obtained. The crystal-oscillator frequency should be measured to ± 0.1 Hz, with the 1 MHz master clock output of the CFT 20 at J532 as a time base for the counter.
We observed a stability in the decoupling frequency of better than ± 1 Hz over a period of eight hours.

Very truly yours,

P. M. Henrichs
Chemistry Division
Research Laboratories

S. Gross
Chemistry Division
Research Laboratories

Notes
1. All resistors 1/4 watt, 5% tolerance.
2. Pot may be remotely located.
3. Select for 22-24 Hz tuning range.
4. Select to center tuning range at 100,000 KHz.
5. Trim for best symmetry of output waveform.
Now the XL-100A NMR Spectrometer lets you think small.

Thanks to another Varian first, a 1-mm Insert Accessory for the XL-100A Pulsed-Fourier Transform NMR Spectrometer, scientists such as biocbersists and pharmaceutical chemists who have to work with limited sample quantities can obtain rapid proton NMR analysis of microgram samples.

Using the insert, it's possible to run spectra of 50 µg or less of sample. Spectra run thusly are obtained in less than 17 minutes, yet are superior to 8-hour runs in a 5-mm tube. Sensitivity for a fixed amount of sample can improve from 4- to 6-fold when the 1-mm Insert Accessory is used.

The two spectra of Δ⁹-tetrahydrocannabinol (THC) shown here demonstrate the dramatic results possible using the 1-mm Insert. Spectrum A, of a concentrated sample in a 5-mm tube, serves as a comparison for the other spectra. Spectrum B (20 µg of sample in a 1-mm tube) and Spectrum C (20 µg of sample in a 5-mm tube) were run under identical conditions. Note the well-defined peaks in the spectrum run using the 1-mm Insert.

This innovative approach is successful since reducing the sizes of both the sample tube and the receiver coil ensures maximum coupling of the available nuclear magnetic moments with the coil. It permits the use of commercially available capillary tubes costing less than one cent each.

To interchange the 1-mm Insert with standard XL-100A inserts, merely take one out, put in the other, retune and balance. The sample is dissolved in 5 µl of an NMR solvent containing TMS for a reference. It is then transferred into a 1-mm sample tube by using a drawn out glass pipette or a hypodermic syringe. This eliminates the bubble problem which sometimes arise with the use of microcells in larger tubes. The resulting column length is about 10 mm, assuring freedom from line shape distortion. Since spinning produces no vortex, spinning speed is not a critical factor.

The sample volume in the 1-mm Insert is so much less than the 400 µl required for 5-mm tubes that use of deuterated species becomes more economical.

The 1-mm capillary has its own spinner turbine attached. Unlike other existing techniques designed to accommodate small quantities of samples, there are no plugs to adjust and no sample positioning is necessary. Proper positioning is automatic thereby assuring reproducible homogeneity.

Write for a copy of Varian's Application Report NMR-2, which describes the XL-100A Insert Accessory in more detail.
Your light touch to FT NMR Spectroscopy

The new JEOL FX60, a low-cost, routine FT NMR instrument, adds a new dimension in simplicity of operation by replacing the standard keyboard with the Light Pen Control System (LPCS). The FX60 provides routine high performance and reliable data for both 1H and 13C studies. Sample tubes up to 10mm OD are standard. For complete information write to...

JEOL
Analytical Instruments, Inc.
235 Birchwood Ave., Cranford, NJ 07016
201-272-5620