Texas A & M University
N - M - R Newsletter
December, 1972

No. 171

L. J. DeHayes, F. Curb, W. Hags trum and J. L. Sudmeier
Programmable Frequency Divider

H. P. Kellerhals
Improved Technique for CW O 1 7 Experiments

P. Diehl
Postdoctoral Position Available

D. J. Frost
Analysis of Non-Conjugated Alkenic Fatty Acids; NMR Consumer Research

A. Allerhand
How to Get 13C Fourier Transform NMR Spectra Nine Times Faster Than on the Varian XL-100 and Similar Bruker and Jeol Equipment

R. Mankowski-Favelier, F. Motney and G. Mavel
Phosphorus Heterocycles

C. Spear and S. Stermierl
Allylic Coupling in the Region 8 = 90°

G. M. Buchanan
13C NMR of Benzophenones

J. den Hollander
CIDNP of Azomethane

G. E. Maciel
FT Spectra on Metal Nuclei

G. Widenlocher and E. Dayan
Temperature Dependence of Proton Resonance Shift of Water

W. Verhas and D. Ziessow
CM- and FT-NMR Spectroscopy Controlled by a PDP-11 Computer

A. E. Sievers and J. A. Cunningham
Single Crystal Structural Results for NMR Shift Reagents

H. Kessler and D. Rosenthal
Z,E-Isomerization of Aromatic Diazoketones

B. Neijzen, J. Blemond and C. Maclean
NMR Electric Field Effects in 2,4,6-trifluoronitrobenzene

(Cont'd. Inside on p. 4)

A monthly collection of informal private letters from Laboratories of NMR. Information contained herein is solely for the use of the reader. Quotation is not permitted, except by direct arrangement with the author of the letter, and the material quoted must be referred to as a "Private Communication". Reference to the TAMU NMR Newsletter by name in the open literature is strictly forbidden.

These restrictions apply equally to both the actual Newsletter participant-recipients and to all others who are allowed access to the Newsletter issues. Strict adherence to this policy is considered essential to the successful continuation of the Newsletter as an informal medium of exchange of NMR information.
EVERYTHING YOU NEED FOR YOUR INVESTIGATIONS EXCEPT THE SPECTROMETER

For more than 18 years, Wilmad precision NMR sample tubes have been the first choice of researchers using the modern investigative techniques of NMR and EPR high resolution spectroscopy.

During those pioneering and developing years, we added such items as:

- large volume sample tubes
- tube holders
- sample filters
- coaxial cells
- micro tubes
- "throwaway" tubes
- pipets
- thermometers
- microcells
- reference capillaries
- precision spinners
- vortex plugs

NOW... A MAJOR EXPANSION

Recognizing the enormous customer advantages in a one-stop, world-wide source for all your NMR and EPR accessories and supplies, we have completed a major expansion of the Wilmad NMR line to include such items as:

- chart paper, binders, & ink
- fountain points & accessories
- NMR reference standards
- specialized coaxial cells
- deuterated solvents, compounds, & reagents
- shift reagents and special solvents
- Carbon-13 enriched compounds, solvents and gases
- Nitrogen-15 enriched compounds
- Oxygen-18 enriched water, both normalized and with deuterium
- lock solvents for Fluorine, Boron, Phosphorous, and Hydrogen

This is a random listing. Be sure you have our latest catalogs.

NEW CATALOG SUPPLEMENT

Write today for our new Cat Supp 6805-2... 24 pages filled with items you need for your investigations. Write today to Wilmad Glass Company, Inc., Route 40 and Oak Road, Buena, N.J. 08310.
Table of Contents Cont’d.

<table>
<thead>
<tr>
<th>Author(s)</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>J. D. Roberts</td>
<td>Europium-Induced Abnormal 13C Shifts in Amines</td>
<td>40</td>
</tr>
<tr>
<td>J. Rueben</td>
<td>For Lovers of Linear (Shift Reagent) Plots</td>
<td>42</td>
</tr>
<tr>
<td>C. L. Khetrapal and A. C. Kunwar</td>
<td>PMR Spectra of Oriented Trimethylene Oxide and Trimethylene Sulphide</td>
<td>43</td>
</tr>
<tr>
<td>B. Blank, H. Fischer and A. Henne</td>
<td>CIDNP Determination of the PMR Spectrum of Vinyl Alcohol</td>
<td>44</td>
</tr>
<tr>
<td>O. Hartman and B. Gestblom</td>
<td>Line Shapes in Saturated AB Spectra</td>
<td>47</td>
</tr>
<tr>
<td>D. M. Wilson, R. W. Olsen and J. J. Chang</td>
<td>Dual Phase Detection Benefits in FT NMR</td>
<td>48</td>
</tr>
<tr>
<td>J. M. Briggs</td>
<td>Noise Decoupling of 19F from 13C in Fluoroaromatics</td>
<td>50</td>
</tr>
<tr>
<td>R. B. Johannesen</td>
<td>Tungsten-Fluorine Chemistry</td>
<td>53</td>
</tr>
</tbody>
</table>

Deadline Dates: No. 172: 1 January 1973
No. 173: 5 February 1973

All Newsletter correspondence, etc. should be addressed to:

Bernard L. Shapiro
Department of Chemistry
Texas A&M University
College Station, Texas 77843
SPONSORS:

Abbott Laboratories
Bruker Scientific, Inc.
Digilab, Inc.
JEOL, INC.
The Lilly Research Laboratories, Eli Lilly and Co.
The Monsanto Company
Unilever Research (U.K.)

CONTRIBUTORS:

The British Petroleum Co., Ltd. (England)
Eastman Kodak Company
International Business Machines Corporation
Dr. R. Kosfeld, Abt. Kernresonanz, Inst. f. Phys. Chemie, TH Aachen (Germany)
The Perkin-Elmer Company
The Procter & Gamble Co., Miami Valley Laboratories
Shell Development Company
Thompson-Packard, Inc.
Union Carbide Corporation

ADVERTISERS:

Bruker Scientific, Inc. - see p. 26
JEOL, INC. - see inside back cover
Nicolet Instrument Corp. - see p. 10
Thompson-Packard, Inc. - see p. 6
Varian Instrument Division - see outside back cover
Wilmad Glass Co., Inc. - see inside front cover
Programmable Frequency Divider

November 10, 1972

Dr. B. L. Shapiro
Department of Chemistry
Texas A & M University
College Station, Texas 77843

Dear Dr. Shapiro:

We have recently completed construction of a FT NMR spectrometer built around a Varian 14kG wide gap magnet. Our Magnion PG302 pulse programmer lacked versatility and stability with regard to pulse timing and triggering of our Fabri-Tek 1074. To overcome these problems we built an inexpensive (~$150, including power supply) Digital Programmable Frequency Divider.

As can be seen in the accompanying diagram the unit has four programmable (via switches) dividers. We use the outputs from these dividers to provide sweep width pulses (Dwell Time) for the Fabri-Tek and to trigger the first pulse of each sequence (Recycle). The auxiliary delay and tau delay counters are used in conjunction with plug in cards to generate delayed sweep trigger pulses and to trigger the second pulse in the PRFT sequence. The auxiliary delay card allows us to delay data accumulation for 1-15 dwell times after the final pulse, while the tau delay unit provides a variable interval between the first and second pulses. The card for this unit can be easily modified to produce the Carr-Purcell sequence. Additional counters and cards can be easily and inexpensively added to the unit to produce any desired pulse sequence.

The entire unit runs off the crystal controlled spectrometer operating frequency (7.54 MHz for C-13). This provides a very stable clock for timing and synchronizing the pulses. The sweep width unit is
particularly useful as it allows spectral widths to be set accurately in ppm (from 6 to 12, 500 ppm) regardless of the nucleus being run.

Sample ranges for the unit are shown below for some common C-13 sweep widths. Detailed schematics are available on request.

Sincerely yours,

Louis J. DeHayes
Phillip Curb
William Hagstrum
James L. Sudmeier

LJD/ngc
Enclosure
Dear Prof. Shapiro:

Recently we performed some experiments in order to obtain improved results for ^{17}O - CW resonance. Because of very rapid relaxation, one works with rather high irradiation power so that leakage becomes the most significant problem.

Leakage can be suppressed in three ways:

a) geometrical isolation with orthogonal coils (together with electrical compensation)
b) field modulation or
c) pulsed free induction (PFP) (sometimes called "time-sharing")

In a CW spectrometer c) or a combination of a) and b) are used. How ever for ^{17}O resonance, we obtained improved results combining b) and c). On one hand leakage in this way is suppressed by two different mechanisms and on the other hand c) allows working with a single coil and therefore power transmission to the spin system is optimum.

The attached spectrum shows a single scan experiment for ^{17}O in natural abundance.

Sincerely yours,

Dr. H. Kellerhals
12.2 MHz O17 Spectrum

Sample: Essigsäure Anhydrid

Concentration: 100% w

Temperature: room

15mm Probe

S/N = \frac{285.25}{210} = 35/1

Merkli, C. Delseth
Universität Lausanne
THOMPSON-PACKARD
...UNIVERSAL
ONE-STOP
HEADQUARTERS
FOR ALL NMR
ACCESSORIES
AND SUPPLIES

THOMPSON-PACKARD is the "original" ONE-STOP SOURCE for consumable items used in NMR research. Our purpose is to develop, coordinate, and offer to you a line of peripheral equipment — eliminating the time consuming and costly project of ordering from a series of suppliers. We assure your complete satisfaction with the price, performance and delivery of every item offered by THOMPSON-PACKARD.

For leadership, innovation and service, that are "Out of this World" look to THOMPSON-PACKARD — the first one-stop source for all your NMR supplies and accessories is still your best source.

THOMPSON-PACKARD INC.
RESEARCH INSTRUMENTS

48 Notch Road, Little Falls, New Jersey 07424 (201) 777-3315
Postdoctoral Position Available.

Dear Barry,

I will have funds available for a postdoctoral position for one year beginning April 1st 1973 (or later). The work will involve NMR-research exclusively (oriented molecules). We have access to an HX-90 with FT capabilities for 1H, 2D, 13C, 19F and 31P as well as to a Bruker Supercon-Spectrometer.

The salary amounts to Swiss Francs 27'000.- per year. There is no travel allowance. Any person interested should write to me as soon as possible.

Sincerely yours

Prof. Dr. P. Diehl
Dear Professor Shapiro,

Analysis of non-conjugated alkenic fatty acids: NMR consumer research?

Following on from our work on cis alkenic fatty acids (Anal. Chem. 43, (1971), 1316), with the help of Professor Gunstone (Univ. St. Andrews, Scotland) we have been able to extend our correlations to cover compounds containing cis and/or trans double bonds. We have now obtained the 220 MHz spectra (in CCl₄) of nearly 100 compounds falling into this category, and conclude that it should be possible to identify the vast majority of the several thousands of such fatty acids conceivable. For the most commonly occurring C₁₈ acids, the most taxing cases concern the positioning of a single cis or trans double bond in the chain, and we were fortunate in having available the whole series of positional isomers of cis and trans methyl octadecenoates. Apart from some difficulty in distinguishing between Δ₁₀ and Δ₁₁ isomers (which may be resolved by shift reagents), the 220 MHz spectra immediately pinpoint the position of unsaturation.

To our previous list of deshielding effects along an alkyl chain (in ppm in CCl₄) we can add:

<table>
<thead>
<tr>
<th>Group</th>
<th>α</th>
<th>β</th>
<th>γ</th>
<th>δ</th>
<th>ε</th>
</tr>
</thead>
<tbody>
<tr>
<td>H-H</td>
<td>0.732</td>
<td>0.065</td>
<td>0.021</td>
<td>0.014</td>
<td>0.005</td>
</tr>
<tr>
<td>-C=C</td>
<td>0.768</td>
<td>0.073</td>
<td>0.025</td>
<td>0.024</td>
<td>0.009</td>
</tr>
<tr>
<td>H</td>
<td>0.683</td>
<td>0.052</td>
<td>0.003</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>H</td>
<td>0.700</td>
<td>0.066</td>
<td>?</td>
<td>0.000</td>
<td>0.000</td>
</tr>
</tbody>
</table>
Apart from the well-documented difference between the α-effects of the cis and trans bonds, their notably different long-range effects are interesting—that of the cis extending over 4-5 carbon atoms, whilst that of the trans being virtually negligible after 2 carbon atoms. This may be qualitatively explained if we assume that both bonds exert a similar deshielding effect transmitted through the chain, but that the effect of the cis is further supplemented by the steric hindrance between its alkyl groups.

Present work is extending our results to acetylenic, epoxy, cyclopropyl and hydroxy acids, and I should be most interested to hear from anyone in a position to supply model compounds. We are also optimistic of the results to be obtained from C13 NMR in this line—the spectrum below (run for us by Varian some time back) of the olefinic carbons of a 2:3 mixture of cis and trans methyl Δ9 octadecenoates, shows not only the expected difference between cis and trans, but also a clear separation of the C9 and C10 atoms in the same molecule.

The past few months have involved seemingly endless discussions before reaching a decision on the choice of a new FT system. All great fun, perhaps, and certainly something of a diversion. Of course, every individual must make his own choice, but I wonder if there isn't some scope for more concerted action on the part of 'consumers'. It might be valuable to all concerned if, for example, an independent body, like the TAMUNMR Newsletter, carried out a survey to establish a few 'facts', sounding out what equipment is in use, reliability experienced, etc. etc.

Yours sincerely,
UNILEVER RESEARCH VLAARDINGEN

D.J. Frost
the Nicolet 1020A is a time averaging system for magnetic resonance spectrometers that gives you results like these:

The Nicolet 1020A is an easy-to-use time averaging system combining unique data processing capabilities with extremely useful display and readout routines.

Using a normalized signal averaging method, the 1020A presents a true average on its built-in 5" CRT display. The complete spectrum (or any expanded portion of it) is continuously displayed throughout the averaging process.

Thumbwheel switches select sweep times from 60 milliseconds to 1,999 seconds for a 2048-word sweep with 4-digit accuracy. The 1020A can provide sweep current to the spectrometer and can compensate for spectrometer field drift when using the Field Stabilization mode. The calibrated sweep widths are front panel selected and can be matched to any spectrometer.

The analog-to-digital converter (ADC) resolution is 12 bits (one part in 4096) for sweep times over 1 second and 9 bits (one part in 512) for sweep times less than 1 second.

Total memory capacity is 2048 words, 24 bits long. The upper 12 bits store the final average while the lower 12 may be used to store the integral. Averaged spectra may be stored in halves of memory and added to or subtracted from one another.

Digital integration is built-in and does not destroy the original spectrum thus allowing simultaneous display of spectrum and integral. Baseline correction can be accomplished during display of the integral to assure optimal results. Another unique display feature is the ability to expand the displayed spectrum in both the X and Y axes by factors of 2 up to a total expansion of 64 times. (Typical expansion examples are shown to the right). In addition to this analog display a simultaneous numerical display shows the amplitude and address values of any data point selected by a moveable electronic cursor.

Write or call collect for complete details or to arrange a demonstration in your laboratory.

NICOLET INSTRUMENT CORPORATION

5225 Verona Road, Madison, Wisconsin 53711
Phone 608/271-3333 TWX: 910-285-2711

In Europe: Nicolet Instrument GmbH, Goerdeler Strasse 48, D-6050 Offenbach am Main, West Germany, 0611/852028, Telex: 841/4185411
Professor Barry Shapiro
TAMI NMR
Department of Chemistry
Texas A and M University
College Station, Texas 77843

How to get 13C Fourier Transform NMR Spectra Nine Times Faster than on the Varian XL-100 and Similar Bruker and Jeol Equipment.

Dear Barry:

Together with my co-workers, Dr. R. F. Childers, Dr. E. Oldfield, Mr. R. Komoroski, Mr. R. A. Goodman, and Mr. X. Ysern, we concluded some time ago that the sensitivity of existing Fourier transform NMR equipment was not sufficient for many of our 13C studies. For example, although it was possible to obtain good-looking natural-abundance 13C spectra of proteins, single-carbon resonances were not being observed unambiguously.

We have recently constructed a probe for spinning sample tubes of 20 mm outside diameter. This has led to an increase in sensitivity of about a factor of 3 with respect to 12 mm and 13 mm tubes. The new probe was incorporated into our existing Fourier transform system. We use a Varian 12" electromagnet at 14.2 kG (15.18 MHz 13C, 60.37 MHz 1H). The homogeneity is surprisingly good. 0.3 Hz inhomogeneity broadening is routine.

We show below a proton-decoupled 13C spectrum of 0.04 M aqueous sucrose, obtained in 37 minutes of accumulation time. A comparable spectrum on the latest commercial instruments would require about TEN times as much signal averaging time. The resolution is comparable to that in spectra kindly supplied by Varian and Jeol.

We can now observe numerous single-carbon resonances of proteins of low molecular weight. The 20 mm probe has greatly extended the range of applications of 13C NMR in our laboratory.

Sincerely yours,

Adam Allerhand
Professor of Chemistry
During a recent investigation of the reaction of benzoyl chloride with various phospholes, our Organic Synthesis Lab. obtained 2-hydroxy 2-phenyl 1,2-dihydrophosphorine oxides (A) which rearrange into 2-phenyl 1-oxa 2-phosphacyclohepta-4,6-dienes (B) (with sodium hydride as a catalyst). Representatives of these two families have been studied using proton resonance in CDCl₃ (with proton- and ³¹P-decoupling when necessary). Typical data (including phosphorus chemical shifts) are reported in the following tables along with corresponding 1-aza 2-phosphacycloheptadienes (C) for comparison. Some brief comments are possible:

- PCOH couplings appear in A when hydroxyl-exchange is blocked by the geminal and vicinal phenyl groups; it is not so reproducible when a butyl group is attached to the phosphorus atom and does not appear at all with a vicinal methyl group.

- PCH and P C = C(CH₃) couplings in A have the same sign; this is

a) F. MATHEY, Tetrah., to appear (see also Tetrah., 28, 4171 (1972))

b) Such couplings have been reported by C.E. Griffin and S.K. Kundu (J. Org. Chem., 34, 1532 (1969)) and T. Bottin - Strzalko and J. Seyden-Penne (Tetrah. Lett., p. 1945 (1972)).
in contradistinction with results obtained on vinyl phosphine oxides c)

or, as well, on 2-phosphole derivatives d):

- long range couplings appear in B (and C) compounds, between phosphorus and \((\text{C}_5) \text{CH}_3\) (as checked by phosphorus decoupling); their magnitude is greater than between phosphorus and \((\text{C}_4) \text{CH}_3\).

- the non-equivalence of the \(\text{PCH}_2\) protons in B does not exist in C when \(X = 0\) (actually, the \(\text{CH}_2\) doublet is somewhat skewed showing only a slight non-equivalence). Except for that, feature B and C (\(X = 0\)) only differ by slight proton downfield shifts (and appreciable phosphorus downfield shift) from C to B as predictable from the change in electronegativity from 1-aza to 1-oxa. In the case of C when \(X = S\), one clearly detects a tautomeric mixture \((\text{ca. I: I})\) of the thiono- and thiolo-forms. After phosphorus decoupling, one can assign for the phosphorus-proton couplings within the non-equivalent \(\text{CH}_A\text{H}_B\) system, low field pattern:
 - \(P = \text{CH}_A\) 20.0 Hz \(\text{PCH}_B\) 9.0 Hz (same sign) \(D_5(\text{CH}_A\text{CH}_B)\) 0.31 ppm
 - high field pattern: \(P = \text{CH}_A\) 14.1 Hz \(\text{PCH}_B\) 6.7 Hz (same sign) \(D_5(\text{CH}_A\text{CH}_B)\) 0.15 ppm.

The investigation of this family is going on.

Very best regards,

R. MANKOWSKI-FAVELIER
F. MATHEY
G. MAVEL

P.S. - By the way, what's about the "AFM" survey of proton line frequency determination in which we participated in December 1970. Are conclusions published now? Thanks for further details.

d) F. MATHEY, R. MANKOWSKI-FAVELIER, Bull. Soc. Chim. France, 12, 4433, 1970 (in the latter case, no phosphole oxides—which dimerize—but only phosphole sulfides and related phosphoniums were investigated).
<table>
<thead>
<tr>
<th>Proton Coupling (H-P)</th>
<th>Phosphorus Chem. Shift</th>
</tr>
</thead>
<tbody>
<tr>
<td>(A) R·C₆H₅</td>
<td>R·nC₄H₉</td>
</tr>
<tr>
<td>$C_{(2)}$OH</td>
<td>2.41 (10.6)</td>
</tr>
<tr>
<td>$C_{(3)}$H</td>
<td>6.24 (14)a</td>
</tr>
<tr>
<td>$C_{(4)}$CH$_3$ (singulet)</td>
<td>2.17</td>
</tr>
<tr>
<td>$C_{(5)}$CH$_2$ (H-P and HC$_6$H couplings)</td>
<td>2.02 (2.7-1.2)</td>
</tr>
<tr>
<td>$C_{(6)}$H</td>
<td>6.13 (15.5)</td>
</tr>
<tr>
<td>Phosphorus chem. shift</td>
<td>90.5</td>
</tr>
</tbody>
</table>

a This corrects earlier assignments (F. Mathey, Tetrah., 28, 4171 (1972)).

b Both olefinic protons appear as a single doublet as checked by double resonance and can't be distinguished.

<table>
<thead>
<tr>
<th>Proton Coupling (H-P)</th>
<th>Phosphorus Chem. Shift</th>
</tr>
</thead>
<tbody>
<tr>
<td>(B) R·C₆H₅</td>
<td>R·nC₄H₉</td>
</tr>
<tr>
<td>$C_{(3)}$H$_2$ (non equivalent)</td>
<td>2.73 - 3.37</td>
</tr>
<tr>
<td>$C_{(4)}$CH$_3$ (H-P coupling)</td>
<td>1.57 (2.4)</td>
</tr>
<tr>
<td>$C_{(5)}$CH$_2$ (H-P coupling)</td>
<td>1.88 (5.1)</td>
</tr>
<tr>
<td>Phosphorus chem. shift</td>
<td>52</td>
</tr>
</tbody>
</table>
a) This compound is actually a mixture of

\[
\begin{align*}
\text{Phosphorus chem. shift} & : X = 0 \quad : X = \text{S} \\
C(1)\text{H}_2 & : 2.74 (18.6) \quad : 2.52 - 3.39 \\
C(4)\text{CH}_3 & : 1.36 (3.1) \quad : 1.21 (2.7) \\
C(5)\text{CH}_3 & : 1.82 (5.3) \quad : 1.73 (6.0) \\
\end{align*}
\]

and

\[
\begin{align*}
\end{align*}
\]
November 7th, 1972

Professor B.L. Shapiro,
Dept. of Chemistry
Texas A. and M. University,
College Station, Texas 77843, U.S.A.

Allylic Coupling in the Region $\phi = 90^\circ$

Dear Barry,

We have recently established 1 that the relative magnitudes of cisoid and transoid allylic coupling constants (see diagram for definitions) for the region embracing substantial negative values (say $\phi = 0-50$ and $130-180^\circ$) are in qualitative agreement with Barfield's INDO calculations 2 (Fig. 2) but not with the earlier 3 VB treatment (Fig. 1), in particular as regards the presence of a cross-over point.

For $\phi = 90^\circ$, the two treatments predict clearly different sets of values:

<table>
<thead>
<tr>
<th></th>
<th>VB</th>
<th>INDO</th>
</tr>
</thead>
<tbody>
<tr>
<td>J_{cisoid} (J_{AC})</td>
<td>+0.43</td>
<td>-1.15</td>
</tr>
<tr>
<td>J_{transoid} (J_{BC})</td>
<td>+0.80</td>
<td>-0.54</td>
</tr>
</tbody>
</table>

Published experimental data are scarce 3, 4 and, while they establish that both are 'small', meaningful comparative and quantitatively reliable data for $\phi = 90^\circ$ are confined to (I)6, and even here the signs are insensitive to experimental parameters. No sign determinations are available for any of the subsequently quoted data. We have therefore synthesised the relatively rigid compounds (II) - (IV) and demonstrated that Bothner-By's findings for (I) appear to be general, i.e. $|J_{\text{cisoid}}| > |J_{\text{transoid}}|$ for $\phi = 90^\circ$.

In a number of derivatives of [2.2.1]bicycloheptane 8 the reverse has been observed and our data for methylene camphor (V) are typical for this series, while equal allylic coupling constants have been reported 3 for camphene (VI) by Stothers. In these systems, ϕ is about $70-80^\circ$ ($= 100-110^\circ$), but the results may not be of general significance because of strain. However, data 9 for (VII) and (VIII), which appear to be somewhat distorted (by the criterion of allylic coupling to C-2 methylene group) from the $\phi = 90^\circ$ relation in (III), suggest that $|J_{\text{transoid}}|$ is indeed larger than $|J_{\text{cisoid}}|$ for unstrained systems as well, for values of ϕ which are ca 10-20° larger or smaller than 90°.
Fig. 1

Fig. 2

Fig. 3

$J_{AC} = J_{\text{allylic cisoid}}$

$J_{BC} = J_{\text{allylic transoid}}$
(I) \[J_{AC} = -0.63 \]
\[J_{BC} = -0.10 \]

(II, \(X=H \)) \[J_{AC} = 0.6 \pm 0.1 \]
\[J_{BC} \leq 0.3 \]

(III) \[J_{AC} = 0.53 \]
\[J_{BC} \leq 0.15 \]

(IV) \[J_{AC} \leq 0.45 \]
\[J_{BC} \leq 0.1 \]

(V) \[J_{AC} \leq 0.4 \]
\[J_{BC} = 0.8 \pm 0.1 \]

(VI) \[J_{AC} = J_{BC} = 0.55 \]

(VII) \[J_{BC} = 0.4 \]

(VIII) \[J_{AC} = "nil" \]
Accepting the generality of the above two sets of observations as a working hypothesis\(^1\) and bearing in mind (a) that both \(J_{\text{cisoid}}\) and \(J_{\text{transoid}}\) assume substantial negative values as \(\phi\) approaches 0° (or 180°) and (b) that a crossover point exists (at ca. -2 Hz)\(^1\) below which \(J_{\text{transoid}}\) is more negative\(^2\), these experimental data may be summarised as follows:

1. \(|J_{\text{cisoid}}^{90}| > |J_{\text{transoid}}^{90}|\)
2. \(|\phi_{\text{cisoid}}^{100}| < |\phi_{\text{transoid}}^{100}|\)
3. \(-J_{\text{cisoid}}^{120} > -J_{\text{transoid}}^{120}\) (see however footnote 12)
4. \(-J_{\text{cisoid}}^{180} < -J_{\text{transoid}}^{180}\)
5. \(|J_{\text{cisoid}}^{90}| > |J_{\text{transoid}}^{100}|\)
6. \(|J_{\text{transoid}}^{90}| < |J_{\text{transoid}}^{100}|\)

In turn, the obvious way to combine the above points in terms of a regular dependence of \(J_{\text{allylic}}\) on \(\phi\) is in terms of the curves shown in Fig. 3 - unlikely as it looks (see also footnotes 12 and 13). An obvious test lies in the sign of \(J_{\text{cisoid}}\) in (I) (which should be positive) and we are re-preparing (I) and will report the results later. Sign determinations on other compounds available to us have proved difficult, but we would also predict that both of the allylic coupling constants in camphene (VI) should be negative.

Note that the cisoid curve in Fig. 3 has a break - to our knowledge there are no directly pertinent experimental data for this region. Note also that for structural work the situation is quite clear: allylic coupling constants for the region near \(\phi = 90°\) are indeed 'small'.

With best regards,

Yours sincerely,

R. SPEAR
S. STERNHELL

2. Barfield, JACS, 93, 1066 (1971).
5. We have pointed out elsewhere [ref. 1 and Newsoroff and Sternhell, Tet. Lett., 617 (1968)] that only data for molecules containing a C=CH\(_2\) group are really reliable for the purpose of comparing cisoid and transoid allylic coupling constants.
11. Possibility that we are in a region of \(\phi \) values where allylic coupling is unusually susceptible to secondary effects, e.g. substituent effects must not be dismissed. Such a region is certainly apparent for transoid allylic coupling constants near \(\phi = 270^\circ \) [c.f. Bauer, Bell, Erophy, Bubb, Sheinin, Sternhell and Wright, Aust. J. Chem., 24, 2319 (1971)] and we were somewhat surprised that both of the allylic coupling constants in (II, \(X = \text{Br} \)), which was prepared for sign determinations, were substantially reduced when compared with those in (II, \(X = \text{H} \)). The relative magnitudes remain unchanged.
12. This relation has been considered\(^{13}\) inherent in well known data for e.g. propene [Bothner-By and Naar-Colin, JACS, 83, 321 (1961)] and flexible six-membered rings\(^1\). However (this is a key point) it is yet to be established for any rigid systems with an exocyclic methylene group and we are working on this as well. It is ironic that this relationship which is one of the earliest regularities proposed for allylic coupling should now be seriously questioned. Should this relationship be not confirmed, i.e. if \(J_{\text{cisoid}} \) is more positive than \(J_{\text{transoid}} \) for all values of \(\phi \) between 0 and 180° (except where they are nearly equal due to secondary effects) the strange curve depicted in Fig. 3 would be scrapped and replaced by what is qualitatively the reverse of the curve shown in Fig. 1 for this region (i.e. dashed line above solid line between \(\phi = 0 \) and 180°).
13. The propene case has been treated\(^14\) as corresponding to the average of \(\phi = 90, 210 \) and 330° and while this gives a fair consistency with calculated values (also for homoallylic cases in butenes), it gives no direct evidence for or against the correctness of point 3 in our list. The case of flexible six-membered rings\(^1\) can be treated as corresponding to two equally populated conformers for all compounds so far investigated\(^1\) but only some of the dihedral angles are in the range where point 3 is pertinent.
Professor Bernard L. Shapiro
Department of Chemistry
Texas A&M University
College Station, Texas 77845
U. S. A.

Dear Barry:

In collaboration with Dr. G. Montaudo we have initiated a 13C NMR study of a series of Ar-X-Ar compounds. For benzophenones the CMR shieldings are presented in the Table.

As the degree of ortho-substitution increases the C=O resonances are deshielded, reflecting steric interference to phenyl - C=O conjugation.

Using semi-empirical methods we have calculated the preferred conformations of these molecules, and accordingly the two phenyl torsional angles θ and ϕ. A plot of $\cos^2 \theta + \cos^2 \phi$ vs. the C=O shift for the methyl benzophenones gives a linear relationship as illustrated. Please credit this contribution to John ApSimon's account.

Best regards,

G. W. Buchanan
Assistant Professor

GWB:ap
Enc.
<table>
<thead>
<tr>
<th>Compound</th>
<th>I</th>
<th>II</th>
<th>III</th>
<th>IV</th>
<th>V</th>
<th>VI</th>
<th>VII</th>
<th>VIII</th>
<th>IX</th>
</tr>
</thead>
<tbody>
<tr>
<td>CH₃</td>
<td>--</td>
<td>2</td>
<td>2,4,6</td>
<td>2,4,5,2'</td>
<td>--</td>
<td>--</td>
<td>2</td>
<td>2,4,6</td>
<td>2,4,6</td>
</tr>
<tr>
<td>Subst.</td>
<td>OCH₃</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>4'</td>
<td>2',4'</td>
<td>2',4'</td>
<td>2',4'</td>
<td>4'</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>C=O</th>
<th>(C=O)ᵇ</th>
<th>C-1</th>
<th>C-2</th>
<th>C-3</th>
<th>C-4</th>
<th>C-5</th>
<th>C-6</th>
<th>C-1'</th>
<th>C-2'</th>
<th>C-3'</th>
<th>C-4'</th>
<th>C-5'</th>
<th>C-6'</th>
<th>2-CH₃</th>
<th>4-CH₃</th>
<th>2'-CH₃</th>
<th>2'-OCH₃</th>
<th>4'-OCH₃</th>
</tr>
</thead>
<tbody>
<tr>
<td>C=O</td>
<td>195.5</td>
<td>197.2</td>
<td>199.3</td>
<td>200.7</td>
<td>193.3</td>
<td>193.9</td>
<td>195.5</td>
<td>197.0</td>
<td>197.7</td>
<td></td>
</tr>
<tr>
<td>(C=O)ᵇ</td>
<td>196.3</td>
<td>200.1</td>
<td>206.9</td>
<td>194.9</td>
<td>194.8</td>
<td></td>
</tr>
<tr>
<td>C-1</td>
<td>137.0</td>
<td>137.9</td>
<td>137.6</td>
<td>138.6</td>
<td>136.9</td>
<td>135.9</td>
<td>139.8</td>
<td>139.3</td>
<td>136.5</td>
<td></td>
</tr>
<tr>
<td>C-2</td>
<td>129.2</td>
<td>135.8</td>
<td>133.3</td>
<td>133.1</td>
<td>128.1</td>
<td>126.5</td>
<td>135.3</td>
<td>132.9</td>
<td>132.3</td>
<td></td>
</tr>
<tr>
<td>C-3</td>
<td>127.6</td>
<td>130.2</td>
<td>127.8</td>
<td>127.3</td>
<td>126.7</td>
<td>125.2</td>
<td>128.6</td>
<td>127.5</td>
<td>126.7</td>
<td></td>
</tr>
<tr>
<td>C-4</td>
<td>131.6</td>
<td>130.3</td>
<td>136.2</td>
<td>137.0</td>
<td>130.3</td>
<td>129.0</td>
<td>129.4</td>
<td>135.8</td>
<td>135.8</td>
<td></td>
</tr>
<tr>
<td>C-5</td>
<td>127.6</td>
<td>124.5</td>
<td>127.8</td>
<td>127.3</td>
<td>126.7</td>
<td>125.2</td>
<td>123.9</td>
<td>127.5</td>
<td>126.7</td>
<td></td>
</tr>
<tr>
<td>C-6</td>
<td>129.2</td>
<td>129.5</td>
<td>133.3</td>
<td>133.1</td>
<td>128.1</td>
<td>126.5</td>
<td>127.4</td>
<td>132.9</td>
<td>132.3</td>
<td></td>
</tr>
<tr>
<td>C-1'</td>
<td>137.1</td>
<td>136.6</td>
<td>137.4</td>
<td>128.7</td>
<td>118.7</td>
<td>120.9</td>
<td>120.6</td>
<td>129.1</td>
<td></td>
</tr>
<tr>
<td>C-2'</td>
<td>129.2</td>
<td>128.4</td>
<td>135.9</td>
<td>130.9</td>
<td>158.4</td>
<td>159.6</td>
<td>161.1</td>
<td>130.1</td>
<td></td>
</tr>
<tr>
<td>C-3'</td>
<td>127.7</td>
<td>127.5</td>
<td>130.8</td>
<td>112.3</td>
<td>96.1</td>
<td>98.5</td>
<td>98.5</td>
<td>112.6</td>
<td></td>
</tr>
<tr>
<td>C-4'</td>
<td>132.8</td>
<td>132.5</td>
<td>130.9</td>
<td>161.5</td>
<td>162.2</td>
<td>163.0</td>
<td>164.3</td>
<td>163.0</td>
<td></td>
</tr>
<tr>
<td>C-5'</td>
<td>127.7</td>
<td>127.5</td>
<td>124.7</td>
<td>112.3</td>
<td>102.3</td>
<td>104.5</td>
<td>104.7</td>
<td>112.6</td>
<td></td>
</tr>
<tr>
<td>C-6'</td>
<td>129.2</td>
<td>128.4</td>
<td>130.5</td>
<td>130.9</td>
<td>129.3</td>
<td>132.2</td>
<td>133.9</td>
<td>130.1</td>
<td></td>
</tr>
<tr>
<td>2-CH₃</td>
<td>19.1</td>
<td>18.5</td>
<td>18.5</td>
<td>20.0</td>
<td>19.1</td>
<td>18.6</td>
<td></td>
</tr>
<tr>
<td>4-CH₃</td>
<td>20.4</td>
<td>20.7</td>
<td>20.9</td>
<td>20.4</td>
<td></td>
</tr>
<tr>
<td>2'-CH₃</td>
<td>20.1</td>
<td></td>
</tr>
<tr>
<td>2'-OCH₃</td>
<td>55.3</td>
<td>55.3</td>
<td>55.4</td>
<td></td>
</tr>
<tr>
<td>4'-OCH₃</td>
<td>55.1</td>
<td>55.3</td>
<td>55.3</td>
<td></td>
</tr>
</tbody>
</table>

ᵃ 0.5 ᵃ in CDCl₃. ᵇ Shifts for corresponding acetophenones.
Dear Professor Shapiro,

CIDNP of Azomethane.

The influence of the magnetic field strength on CIDNP is recognized already for a number of years $^1,^2$. Moreover it appears that these effects are rather well understood at the moment $^3,^4$.

A simple example we studied is the fotolysis of azomethane in carbon-tetrachloride. On irradiation of azomethane the following reaction occurs:

$$\text{CH}_3\text{N}=\text{N}-\text{CH}_3 \xrightarrow{h\nu} \text{CH}_3\text{N}=\text{N}-\text{CH}_3^* \rightarrow 2\text{CH}_3^* + \text{N}_2$$

$$2\text{CH}_3^* \rightarrow \text{CH}_2 - \text{CH}_3$$

$$\text{CH}_3^* + \text{Cl}_2 \rightarrow \text{CH}_3\text{Cl} + \text{Cl}_2^*$$

So one forms two methyl radicals which can recombine to form ethane, or react with the solvent to methylchloride.

When the reaction is carried out in a high magnetic field (i.e. in the probe of the NMR spectrometer) one predicts according the simple rules of Kaptein 5 that there will be no polarization in the recombination product ethane. (We have a symmetrical pair, i.e. $\Delta g = 0$).

Indeed it is impossible to find any polarization in the formed ethane. (Thus the situation is different from the thermal decomposition of acetylperoxide, where one observes emission in ethene 6).

However, when the reaction is carried out in the field of an auxiliary magnet and one transfers the sample very quickly (i.e. within the nuclear relaxation time) to the probe of a NMR spectrometer one does find a polarization of ethane, dependent on the magnetic field strength of the auxiliary magnet.
We observed an emission, which is maximal at about 40 Gauss, and which disappears at higher magnetic field (we saw no polarization when the magnetic field was higher than 250 Gauss). This behaviour is reproduced by the calculations 4 when we assume that the reaction proceeds from the singlet state. It is necessary to include all nuclear spins in the calculations.

So where in this case one gets no information from the high field CIDNP experiment it is possible to extract the usual information from the low field experiment.

Yours Sincerely,

[Signature]

Jan den Hollander.

2. M. Lehnig, H. Fischer
4. R. Kaptein, J.A. den Hollander
5. R. Kaptein
6. R. Kaptein, J. Brokken-Zijp, F.J.J. de Kanter
WE EXTEND THE SEASONS GREETINGS TO ALL READERS WITH
BEST WISHES FOR PEACE AND JOY FOR THE COMING YEAR.

BRUKER
November 8, 1972

Professor B. L. Shapiro
Department of Chemistry
Texas A & M University
College Station, Texas 77843

In re: FT Spectra on Metal Nuclei

Dear Barry:

I decided to reply to your blue notice on "Blue Wednesday" following the election. In addition to listening to political dialogue these past few months, we (primarily Marie Borzo and Jerry Dallas) have also spent considerable time performing FT experiments on metal nuclei, especially with heavy metals. As one might expect, FT experiments on nuclei such as 113Cd, 199Hg, and 207Pb can be carried out by virtually the same techniques as those used in 13C FT work. Relaxation times are roughly of the same order of magnitude, and NOE's do not dominate the spectra (as they often do with 29Si). The main operational difference is that one must be far more careful in the heavy metal work to make sure that he is observing the frequency window of his choice, and not a fold-over or reflection (with respect to the pulse frequency).

As expected from earlier work on heavy metals, huge chemical shift ranges are observed. The spectra are also very sensitive to details of complexation, as reflected in very large solvent and temperature effects. This sensitivity is now being explored to elucidate such details.

The configuration that we have been employing is a Bruker HFX-90 spectrometer and Digilab FTS/NMR-3 data system and 400-2 pulser with 410 plug-in unit for the 15-20 MHz frequency range. The pulse frequency (f_1) is obtained from a frequency synthesizer. A second synthesizer provides a signal at $f_1 + 2.05$ MHz, which is used to provide the mixing frequency for generating the 2.05 MHz I.F. utilized in the Bruker receiver circuitry; mixing these two synthesizer outputs provides the 2.05 MHz reference for the I.F. section. Of course, by judicious application of frequency mixers, one can avoid using more than one synthesizer. This kind of technique is quite versatile, and has been used in our laboratory for the NMR detection of a dozen metal nuclides.

Sincerely,

[Signature]

Gary E. Maciel
Professor

GEM:sj
Title: "Temperature dependence of proton resonance shift of water".

Dear Professor Shapiro,

We would tell you, here, about some experiments done on liquid water. Our cell (described already in Mello NMR Newsletter 1963 No58) allows us to work under pressure, so we have studied proton resonance shift of water from 30°C to 150°C in liquid state (above 100°C, the liquid is under pressure). We know the interesting work of Dr Hindman on this subject (up to 100°C); our data are only complementary and one must note a slight disagreement (see figure hereby). We hope our results might yield information concerning the complex interpretation of water.

Sincerely yours,

G. WIDENLOCHER and E. DAYAN

Please credit this contribution to Professor Freymann subscription.
Chemical shift of water as a function of temperature (susceptibility corrected shift lines in both cases) our results were obtained relative to CH_4 gas, corrected here to $\delta_\text{H}_2\text{O}$ at $0^\circ\text{C} = 0$ for comparison.
Dr. B. L. Shapiro
Department of Chemistry
Texas A & M University
College Station
Texas, 77843
U.S.A.

Title: CW- and FT-NMR Spectroscopy controlled by a PDP-11 Computer

Dear Dr. Shapiro:

Since June we have been engaged in developing the software and hardware for controlling a BRUKER HFX-90 by a PDP-11/20 (16K) computer, supplemented with a fixed-head disc (256K) and a DEC Disc Operating System Program (DOS). Alphanumeric dialog and graphic display is accomplished by means of a Tektronix display terminal, Model 4010. Both the DOS Monitor and the Tektronix terminal proved to be convenient and fast in programming the PDP-11. The DOS Monitor is designed to load and execute one user program, e.g. for data acquisition or data calculations. However, efficient computer utilization in the laboratory environment quite often requires simultaneous core residence of two or more independent program modules which may interact. Real-time-task or Time-sharing System programs, supplied by computer manufacturers, do meet this need but are disadvantageous in our case since these programs occupy a considerable part, or almost all, of our available core. The program length can be cut down by taking into account the specific requirements of the anticipated experiments and dismissing the more general features. For this reason, we have written an EXECUTIVE-PROGRAM 'EXEC' which resides in upper core (0.6K). EXEC is basically an Assembler program providing faster and more efficient file handling than the DOS Monitor. EXEC is loaded from disc by a short loader program which in turn is run under the supervision of the DOS-11 Monitor, which resides in a 3K region low core. EXEC interacts with DOS-11
with respect to disc surface information, conversion routines (ASCII-BINARY) and in particular the disc driver. For example, while running a data collection routine, EXEC swaps on command a 4010 Plot routine from disc to core to check the accumulated data, or a service routine to check spectrometer conditions, or a data treatment routine which does preliminary tests.

The operator interacts with EXSC in a dialog mode. All program modules are written in position-independent code.

Interfacing the spectrometer and the PDP-11 is eased by the DEC Modul DR 11, a 16 bit Input and Output Register (TTL). The BRUKER recorder of the HFX 90 proved to be extremely amenable with respect to controlling it by the PDP-11, both for spectrum scanning and plotting.

Interested readers can be provided with more details. Please credit this contribution to the subscription of Dr. a. Lippert

Sincerely yours

W. Herres

D. Ziesow
Professor Bernard L. Shapiro
Department of Chemistry
Texas A & M University
College Station, Texas 77843

Dear Professor Shapiro:

Single Crystal Structural Results for NMR Shift Reagents

In order to provide accurate structural parameters for complexes of the type $\text{Eu}(L)_3D^x$, where $x = 1$ or 2, D is an organic nucleophile, and L is the ligand for a thd, we have undertaken single crystal structure determinations of several of these compounds. The following adducts have been isolated in crystalline form and are being studied by x-ray diffraction techniques:

- $\text{Eu}(\text{thd})_3(\text{DMF})_2$
- $\text{Eu}(\text{thd})_3(\text{DMSO})$
- $\text{Eu}(\text{thd})_3(\text{DEF})_2$

wherein DEF is the abbreviation for N,N-diethylformamide, and DMF and DMSO carry their usual meaning.

A complete three-dimensional structure determination of the octa-coordinate complex $\text{Eu}(\text{thd})_3(\text{DMF})_2$ has just been successfully completed and we wish to quickly pass on these results and several thoughts and criticisms which we have concerning some of the methods used for the evaluation of LIS data.

In contrast to the coordination geometry displayed by the bis-adducts of 4-picoline and pyridine with $\text{Eu}(\text{thd})_2$, the two DMF molecules, each coordinated through an oxygen atom, are cis on the same square face of a distorted square-antiprism. The bonding pattern of the bidentate thd's is such that none of these ligands span an edge joining the two square faces of the coordination polyhedron. This motif is reminiscent of the molecular stereochemistry exhibited by both $\text{La}(\text{acac})_3(\text{H}_2\text{O})_2$ and $\text{Y}(\text{acac})_3(\text{H}_2\text{O})_2\cdot\text{H}_2\text{O}$ and $\text{Y}(\text{acac})_3(\text{H}_2\text{O})_2\cdot\text{H}_2\text{O}$ in the crystalline state. Four monomeric $\text{Eu}(\text{thd})_3(\text{DMF})_2$ molecules utilize a triclinic unit cell of symmetry $P1$; thus in the structure determination process we had to locate and refine the positions of one hundred independent carbon and heavier atoms comprising two complete, independent molecules. At the present stage of refinement, we are now attempting to locate the positions of the hydrogen atoms.
Pertinent bond lengths and angles, averaged where appropriate, are:

<table>
<thead>
<tr>
<th>Bond Type</th>
<th>Distance, Å</th>
</tr>
</thead>
<tbody>
<tr>
<td>Eu-O$_{\text{DMF}}$</td>
<td>2.47 (average of 4 values)</td>
</tr>
<tr>
<td>Eu-O$_{\text{thd}}$</td>
<td>2.35 (average of 12 values)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Angle Type</th>
<th>Angle, deg.</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Eu_O_C$_{\text{DMF}}$)</td>
<td>134</td>
</tr>
</tbody>
</table>

All other bond lengths and angles are similar to those found in other complexes of this type.

A quick perusal of the available x-ray structural data clearly shows the Ln-O$_{\text{β-dik}}$ bond lengths lie within the expected ranges. In particular for Eu$^{3+}$ this range is approximately 2.30 - 2.40 Å with 2.35 Å as the average value. The Ln-X$_{\text{adduct}}$ bond lengths observed are naturally dependent not only upon the radius of the lanthanide ion but also upon the nature of the coordinating atom, X. Even in the extremely unstable bis pyridine adduct, previously mentioned, this bond length does not exceed 2.66 Å; the range of reported Eu-donor lengths (40 bonds) for Eu(β-diketonate)$_3$ complexes is 2.3 - 2.7 Å. In light of these data we feel that any treatment of LIS data should be based on the assumption that the Eu-X bond length has a value in this approximate range. It does not seem justified to ignore structural information about bond lengths in crystals and vary the adduct bond length over unreasonable large values just to obtain better computer fits of the NMR spectral data.

We would also like to point out that of the five completed x-ray structures of shift reagents and related complexes, three are of bis monodentate adducts. It, therefore, seems quite probable that even at moderate values of the ratios $[D]/[\text{shift reagent}]$, more than one species is present in solution. Consequently it will be necessary to work at low values of $[D]/[\text{shift reagent}]$ to minimize formation of the bis adduct.

Sincerely,

Robert E. Sievers

ROBERT E. SIEVERS

James A. Cunningham

JAMES A. CUNNINGHAM
Professor Bernard L. Shapiro
Department of Chemistry
Texas A & M University
College Station, TX 77843
USA

Dear Dr. Shapiro:

Z,E-Isomerization of Aromatic Diazoketones

The conformation of aromatic diazoketones has been studied in ortho-substituted ones.

\[
\begin{align*}
\text{Z} & \quad \text{E} \\
\begin{array}{c}
\text{R' C= N}_2 \\
\text{R} \\
\end{array} & \quad \begin{array}{c}
\text{R' C= N}_2 \\
\text{R} \\
\end{array}
\end{align*}
\]

In spite of earlier measurements of \(^1\) we were able to detect both isomers in \(2, 3\) and \(5\). This was explained by twisting the aryl-ring-plane respect to the diazo-carbonyl-plane \(^2\). Kinetic data has been determined by complete line shape studies (table). The assignment to the Z or E-conformation was made with Eu(fod)\(_3\)-measurements in which the group \(R'\) in the E-conformation is more deshielded. The free enthalpy of activation \(\Delta G^\ddagger\) increases slightly with increasing size of \(R\) (\(2 \rightarrow 3\)) and \(R'\) (\(3 \rightarrow 5\)).

\[
\begin{array}{ccc}
R' & R & \\
1 & H & H \\
2 & H & \text{CH}_3 \\
3 & H & \text{i-C}_3\text{H}_7 \\
4 & \text{CH}_3 & H \\
5 & \text{CH}_3 & \text{i-C}_3\text{H}_7 \\
\end{array}
\]

Yours sincerely

H. Kessler and D. Rosenthal
Table. Signals of R' in Aromatic Diazoketones a.

<table>
<thead>
<tr>
<th>No</th>
<th>R' [ppm]</th>
<th>Intensity [in %]</th>
<th>T_c [$^\circ$K]</th>
<th>$\Delta G^{\ddagger}_{298}$ [kcal/mol]</th>
<th>E_a [kcal/mol]</th>
<th>$\lg A$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>5.84</td>
<td>>98</td>
<td><2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>5.45</td>
<td>5.36</td>
<td>76</td>
<td>298</td>
<td>15.0</td>
<td>15.7</td>
</tr>
<tr>
<td>3</td>
<td>5.50</td>
<td>5.37</td>
<td>78</td>
<td>201</td>
<td>15.5</td>
<td>16.9</td>
</tr>
<tr>
<td>4</td>
<td>2.12</td>
<td><2</td>
<td>>98</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>1.33</td>
<td>1.84</td>
<td>23</td>
<td>335</td>
<td>16.8 b</td>
<td>13.3 b</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>16.7 c</td>
<td>17.2 c</td>
</tr>
</tbody>
</table>

a Shift and intensity measurements at 263$^\circ$K in CDCl$_3$.

b Solvent: C$_6$H$_5$Br; c Preliminary measurements in CDCl$_3$ below T_c.

References

2) The same phenomenon was observed in acetanilides.

Dear Dr. Shapiro,

NMR electric field effects in 2,4,6-trifluoronitrobenzene

NMR electric field experiments have been carried out on the molecule 2,4,6-trifluoronitrobenzene. At sufficiently high voltages, direct spin-spin dipolar and quadrupolar electric field effects appear, as reported before for several related molecules (1). With these effects a value can be obtained for the alignment, \(<3 \cos^2 \theta - 1 >_E \), of the molecules. We wish to report here the first experimental results.

In fig. 1 the experimental \(^{19} \text{F-NMR} \) spectra are given without (a) and with (b) an applied electric field (70 kV/cm). The low field absorptions originate from the fluorine spins in para-position (4), while the high field multiplet represents the fluorine spins in orthopositions (2,6). Likewise, the isotropic (a) and anisotropic (b) \(^1 \text{H-NMR} \) spectra are given in fig. 2. The spectral parameters \(\sigma, J \) and D are collected in table 1. The values for \(\sigma \) and \(J \) have been obtained from the interpretation of isotropic \(^1 \text{H-} \) and \(^{19} \text{F-NMR} \) spectra. The D-couplings in table 1 correspond with an average orientation of \(<3 \cos^2 \theta - 1 >_E = 3.0 \times 10^{-2} \). The experimental spectra are in good agreement with the theoretical ones, computed with a modified LAOCOON III program.

Professor B.L. Shapiro
Department of Chemistry
Texas A & M University
COLLEGE STATION, Texas 77843
U.S.A.
Spectral parameters used in the simulation of the 2,4,6-trifluorono-
tritrobenzene spectra.
Values are given in Hz. D-couplings correspond with an orientation
$<3 \cos^2 \alpha > = 3.0 \times 10^{-4}$.

<table>
<thead>
<tr>
<th>Chemical shift</th>
<th>J-couplings</th>
<th>D-couplings</th>
</tr>
</thead>
<tbody>
<tr>
<td>W(2) = W(6) = 964</td>
<td>J(2,3) = J(5,6) = 10.01</td>
<td>D(2,3) = D(5,6) = -1.56</td>
</tr>
<tr>
<td>W(4) = 0</td>
<td>J(2,4) = J(4,6) = 9.34</td>
<td>D(2,4) = D(4,6) = -0.16</td>
</tr>
<tr>
<td>J(2,5) = J(3,6) = -2.04</td>
<td>D(2,5) = D(3,6) = 0.02</td>
<td></td>
</tr>
<tr>
<td>J(3,4) = J(4,5) = 8.53</td>
<td>D(3,4) = D(4,5) = -0.01</td>
<td></td>
</tr>
<tr>
<td>J(2,6) = -2.66</td>
<td>D(2,6) = 0.14</td>
<td></td>
</tr>
<tr>
<td>J(3,5) = 2.20</td>
<td>D(3,5) = 0.22</td>
<td></td>
</tr>
</tbody>
</table>

Comparison of the isotropic and anisotropic spectra shows that,
especially in the orthofluorine- and proton spectra, the separation between
the peaks becomes smaller under the influence of an applied electric field,
while there is no visible change in the spectrum of the fluorine spins in
paraposition.

From the orthofluorinespectra as well as from the proton spectra a
value was extracted for the ratio of the alignment and the square of the
electric field strength in the liquid. The average value for both
experiments is: $<3 \cos^2 \alpha > / E^2 = 0.55 \times 10^{-8}$ (e.s.u.).

From this value and from quadrupolar electric field effects in the
14N-NMR spectra the quadrupolar coupling constant of 14N in this molecule
can be computed. Our calculation yields: $(e^2 qQ)/h = 0.76$ MHz. For comparison
we give the value of the quadrupolar coupling constant of 14N in nitro-
benzene (deduced from [2]): $(e^2 qQ)/h = 0.95$ MHz.

We have also tried to estimate the anisotropy in the chemical shifts
of the fluorine nuclei. Assuming axial symmetry of the CF bonds in the
molecule a value can be calculated for \(\sigma_w - \sigma_d \), in the manner described by Buckingham and Pople \(^3\). In the quantity \(\sigma_w - \sigma_d \) \(\sigma_w \) is defined as the chemical shift in the direction of the CF bond. From our data only a very approximate value can be derived for the anisotropy in the chemical shift of the parafluorine nucleus:

\[
(\sigma_w - \sigma_d)_{\text{parafluorine}} \approx -50 \pm 100 \text{ p.p.m.}
\]

Sincerely yours,

B. Neijzen, J. Biemond, C. MacLean

\(^1\) NMR-Basic Principles and Progress, Vol. 7, C.W. Hilbers and C. MacLean, Springer-Verlag, Berlin, 1972

Ibid., 47, 348, (1967)

Fig. 1. 19F-NMR spectra of 2,4,6-trifluorobenzene at room temperature without (a) and with (b) an applied electric field (70 kV/cm).

![Diagram of 2,4,6-trifluorobenzene molecule]

Fig. 2. 1H-NMR spectrum of 2,4,6-trifluorobenzene at room temperature without (a) and with (b) an applied electric field (70 kV/cm).
Professor B. L. Shapiro
Department of Chemistry
Texas A and M University
College Station, Texas 77843

Dear Barry,

Some of your readers may be interested in the kind of structural variations found by Claude Marzin, Robert Cooper, Geoffrey Hawkes, and Klaus Herrwig, which are associated with the 'wrong-way' 13C shifts induced in amines by europium chelates, and which were independently discovered by Cushley, Anderson, and Lipsky (Chem. Commun., 636 (1972)) and mentioned in my ENC talk at Asilomar last April.

The spectra were taken of CDC$_1$$_3$ solutions at 15.01 MHz using the PFT 'Brukarian' spectrometer developed from our time-honored Varian DFS spectrometer and a Bruker probe, 2H stabilization, pulse amplifier and receiver. These supposedly incompatible components were interfaced with a Varian pulse box and 620i computer with great skill by Bruce Hawkins, now at Lausanne, with helpful suggestions from Chris Tanzer and Rudy Nunnlist of Bruker. The shifts, which were strictly linear with concentration and determined for several concentrations, are normalized to 1 M concentrations of amine and chelate. The proton shifts in all of these substances were essentially normal and uncomplicated.

- CH$_3$CH$_2$CH$_2$CH$_2$NH$_2$
 -5.3 -5.3 +25.4 -94.5
 -4.0 -6.6 +2.7 -107.9
 -0.6 -1.7 -2.1 -8.8

- CH$_3$CH$_2$CH$_2$NH$_2$
 -12.1 +45.1 -89.9 -45.8

- CH$_3$CH$_2$NH$_2$
 -5.9 -5.9 +24.9 -101.1

- N(CH$_3$)$_2$
 -8.9 +23.6 -81.9 -12.7

- Eu(FOD)$_3$
 -0.6 -1.7 -2.1 -8.8

- Eu(DPM)$_3$
 -5.9 -5.9 +24.9 -101.1

- NHCH$_3$
 -4.0 -6.6 +2.7 -107.9

- N(CH$_3$)$_2$
 -8.9 +23.6 -81.9 -12.7

- NH$_3$
 -12.1 +45.1 -89.9 -45.8

- Eu(DPM)$_3$
 -5.9 -5.9 +24.9 -101.1

- NH$_3$
 -12.1 +45.1 -89.9 -45.8

- Eu(FOD)$_3$
 -0.6 -1.7 -2.1 -8.8

- NHCH$_3$
 -4.0 -6.6 +2.7 -107.9

- N(CH$_3$)$_2$
 -8.9 +23.6 -81.9 -12.7

- NH$_3$
 -12.1 +45.1 -89.9 -45.8

- Eu(DPM)$_3$
 -5.9 -5.9 +24.9 -101.1

- NH$_3$
 -12.1 +45.1 -89.9 -45.8

- Eu(FOD)$_3$
 -0.6 -1.7 -2.1 -8.8

- NHCH$_3$
 -4.0 -6.6 +2.7 -107.9

- N(CH$_3$)$_2$
 -8.9 +23.6 -81.9 -12.7

- NH$_3$
 -12.1 +45.1 -89.9 -45.8

- Eu(DPM)$_3$
 -5.9 -5.9 +24.9 -101.1

- NH$_3$
 -12.1 +45.1 -89.9 -45.8
These data show clearly that the degree of the abnormal β shift is quaternary > tertiary > secondary > primary carbons. We interpret this in terms of hyperconjugation of which the key structure for the abnormal shift is III.

The greater the degree of substitution of the β carbon, the more important III is. The analogous structure for hydrogen hyperconjugation IV is apparently much less important because the degree of contribution of contact shifts to the hydrogen resonance positions is small, if not zero.

With all good wishes,

Very truly yours,

Jack
Dear Barry:

Much as one would like, plots of the shifts induced by shift reagents versus the reagent-to-substrate ratio are not always linear. However, by suitable mathematical manipulations they can be made linear as has been convincingly demonstrated by ApSimon, Beierbeck and Fruchier, Can. J. Chem., 50, 2725 (1972). Unfortunately, the physicochemical meaning of these manipulations may be somewhat obscure. The method proposed, opere citato, reduces to the following procedure, which is recommended to all the lovers of linear plots. Take a set of n random numbers I_i, $i = 1, 2, \ldots, n$, and generate a new set $J_i = I_i / C$, where C is a constant. Plot I_i versus J_i. A perfect linear plot of slope C and zero intercept will result. If a non-zero intercept of value δ is required, add δ to your I_i's.

Sorry about that.

Sincerely yours,

Jacques Reuben

Title: For lovers of linear (shift reagent) plots.

JR:dr
Title: PNR Spectra of Oriented Trimethylene Oxide and Trimethylene Sulphide

November 14, 1972

Professor B.L. Shapiro,
Texas A & M University,
College of Science,
College Station,
Texas (77843),
U.S.A.

Dear Professor Shapiro,

We have studied the Proton Magnetic Resonance spectra of trimethylene oxide and trimethylene sulphide oriented in the nematic phase of liquid crystals. The chemical shifts, the direct and the indirect spin-spin couplings are determined. The interpretation of the direct couplings in terms of the molecular structure shows that the ring skeleton of these molecules is not rigidly planar due to ring puckering vibrations. Mean amplitudes for the vibrations are estimated assuming fixed values for the bond distances and for the HCH bond angles. The results obtained are in good agreement with the earlier microwave studies.

This work has been done in collaboration with Dr. A. Saupe of the Liquid Crystal Institute, Kent State University, Kent, Ohio.

Yours sincerely,

C.L. Kethrapal

(A.C. Kunwar)
Dear Dr. Shapiro:

Under equilibrium conditions at $\approx 25^\circ C$, the concentration of acetaldehyde (1) is believed to exceed that of its enol, vinyl alcohol (2), by a factor of at least 10^7. This explains why the PMR-spectrum of (2) has not been reported, so far.

![Structural formula](image)

During photoreactions of (3) or acetoin (3) at $\approx 25^\circ C$ in benzene, cyclohexane and other solvents, we have recently observed PMR-CIDNP effects (100 Mc/sec) of an intermediate which is characterized by an olefinic ABC-system ($\delta_A = 6.27$, $\delta_B = 3.91$, $\delta_C = 4.13$ ppm, $J_{AB} = 6.5$, $J_{AC} = 14.0$, $J_{BC} = 1.8$ sec$^{-1}$, TMS, benzene). We assign these transitions to the A,B,C-protons of (2), and support the assignment as follows:

1. The spectral parameters are consistent with an -OR substituted vinyl group only.

2. The transitions cannot be observed if traces of acids which catalyze the equilibration are added to the solutions. They are also not observed after the reaction, and therefore are not due to a stable vinyl ether.
3. The signs of the CIDNP-effects (H_A: E+A/E, H_B, H_C: A+A/E) are consistent with those predicted from CIDNP theory, the known ESR-parameters4,5 of CH_3CO and CH_3CHOH, and the reaction mechanism

\begin{align*}
2 \text{CH}_3\text{CHO} & \xrightarrow{\text{hv}} \text{CH}_3\overset{\text{T,F}}{\text{COCH}}_3 \\
(1) & \xrightarrow{\text{hv}} \text{CH}_3\text{CHOH CO CH}_3 \quad (3)
\end{align*}

\begin{align*}
\text{CH}_2\text{CHOH} + \text{CH}_3\text{CHO} & \quad \text{CH}_3\overset{\text{COCH}}{\text{CHOH}} + \text{COCH}_3 \\
(2) & \quad (1) \\
& \quad \downarrow \\
& \quad (1)
\end{align*}

other reactions

This mechanism is supported by ESR observation4 of $\text{CH}_3\overset{\text{COCH}}{\text{CHOH}}$, the photochemistry6 of (3), and the signs of the CIDNP effects of (1) and (3).

The HO-proton of (2) is not detected and not predicted to be polarized. From the linewidth of the transitions of (2) (~1.3 sec$^{-1}$), we guess a lifetime of about 1 sec or longer.

The figure shows the observed CIDNP-pattern of (2) (a) and a CIDNP-pattern simulated7 on the basis of the diffusion model, the known radical parameters and the choice $J_{AB}>0$, $J_{AC}>0$, $J_{BE}<0$ (b).

7. We thank Dr. J.A. den Hollander, Leiden, for a copy of his CIDNP program.

We apologize for being late in sending our contribution.

Sincerely yours,

\[\text{Sincerely yours,} \]

B. Blank

H. Fischer

A. Henne
CIDNP of H₂C=CHOH
Line shapes in saturated AB spectra

We have been studying AB spin systems and recorded slow-passage single resonance spectra at high rf amplitudes when saturation and overlap of spectral lines is appreciable. The line-shapes of the strongly saturated spectrum gives information about the relaxation mechanisms. A study of random field interactions on the line-shapes has been presented (J. Magn. Resonance 8, 230, 1972).

Recently we have studied the line-shapes in an AB system where the dipole-dipole interaction is of the same order of magnitude as the random field interactions. It has been possible to obtain values for the relaxation parameters from comparisons with computer-calculated spectra. Especially the behaviour of the double quantum peak is strongly dependent of the dipole-dipole interaction, (cf. Harris & Worvill, Chem.Phys. Lett. 14, 598, 1972).

An unfortunate non-linearity in our instrumentation has however made the comparison with the computer calculated spectra troublesome, and delayed the investigation considerably. We hope to be able to return to this point later on.

Sincerely yours,

Ola Hartman

Bo Gestblom
Professor B. L. Shapiro
Department of Chemistry
Texas A & M University
College Station, Texas 77843

Dear Professor Shapiro:

21 November 1972

Dual Phase Detection Benefits in F.T. NMR

A principal instrumental goal in this laboratory is reduction of sample quantity requirements for characterization of naturally occurring compounds by 1H and 13C NMR. We are aware of at least two laboratories (1,2) which are already employing the method of dual lock-in detection, i.e. accumulation of separate free-induction decays from phase detectors working in quadrature with respect to each other. This gives essentially twice the number of scans in the same accumulation time, and one expects a S/N enhancement improvement of $\sqrt{2}$.

Another benefit derives from the ability to pulse in the middle of a spectrum in the dual-phase mode. The angle between the "effective field" around which precession occurs during an RF pulse and that of the irradiating H_1 field, is given by $\delta = \arctan (4 \Delta \tau_{90})$ where Δ is the frequency difference (in Hz) between the RF carrier frequency of the pulse and the resonance frequency of the nucleus, and τ_{90} is an instrumental characteristic, the pulse width required to flip a nucleus near resonance by 90°. Although Jones and Sternlicht (3) have devised methods to optimize the pulse flip angle and pulse repetition rate for a nucleus of given T_1, individual 13C T_1's in complex molecules have been shown to typically differ by an order of magnitude (4). Under these circumstances, with the additional requirement of enough sampling time to give the desired spectral resolution in the Fourier transformed result, the only solution for obtaining approximately accurate line intensities is to keep δ as small as possible. Dual phase detection helps accomplish this by halving δ.

We have replaced the final 40.96 KHz phase-detection stage of our Varian XL-100 spectrometer with dual phase detectors, wherein the reference signals are provided by a phase-locked 163.84 KHz oscillator, thus assuring reliable quadrature separation of the two channels by a few parts in 105. Matched 4-pole Butterworth filters and alternate sampling of their outputs by the A/D converter complete the hardware modifications. Software modifications were trivial, inasmuch as we found the previously used linear phase correction to be adequate. The figure shows a comparison of dual-phase detected (a) and single phase detected (b) 13C pulsed Fourier-transform proton-decoupled spectra of 20 mg of the alkaloid Vincamajine in dimethyl sulfoxide-D_6 at 75°C. 40° 200-watt RF pulses were applied at the positions indicated at 1.5 sec intervals for 17 hours in each spectrum. The fact that dioxane was added in excessive quantity as an internal reference serves to illustrate that "imaging" is not a problem, since its "image" at the diagonal arrow in (a) is attenuated by more than 40 db and would have been unobservable if a more prudent amount had been added.
Finally, it should be emphasized that no additional computer memory is required to achieve the same resolution as in single-phase detection, since the sampling rate for each channel is halved. It appears to us that any presently working F.T. system should require only minor hardware or software changes to implement this technique, even those which destroy the data while Fourier transforming it.

References

Dear Dr. Shapiro,

It's hard to realise that we've had 9 months relaxation since our last subscription reminder; may we be excused...accumulation times are much longer for mono-substituted perfluorobenzenes than for their protonated counterparts.

19F wideband decoupling with our Bruker BSV-2 has proved somewhat difficult since the range of 19F chemical shifts, even in C_6F_5X compounds, is rather large (30 ppm) for this unit. However, by using wideband techniques at 2 different frequencies, we have managed to observe the aromatic 13C nuclei in C_6F_5X where X has been F, Cl, Br, I, OH, OCH$_3$, NH$_2$, CH$_3$, CH$_2$Br, CH:CH$_2$, CHO, CO$_2$H, SH, NO$_2$, C$_6$H$_5$, and CN. Fortunately, the power output is sufficient to remove 13C-19F couplings at ranges greater than one bond, and in cases such as C_6F_5H, when the m and p 19F signals are irradiated, the m and p 13C signals show no coupling to the o 19F nucleus (see fig.), and vice versa. This greatly assists the 13C assignment.

Qualitative comparisons of 13C decoupled from 19F with 13C attached to 1H in the same molecule suggests that there is little or no Overhauser enhancement in 13C-19F experiments; the observation is given further weight by direct comparison of decoupled and un-decoupled spectra of tri-fluoro acetic acid, and by comparison of the 13CF$_3$ and 13CO$_2$H signals which show no differential NOE to within the rather wide limits of measurement. There may be significant contributions of spin rotation or even chemical shift anisotropy relaxation...
mechanisms to T_1 in these systems.

Chemical shifts of the ring ^{13}C nuclei have been compared with those in $C_6\text{H}_5 \text{X}$ and $C_6\text{H}_4 \text{FX}$. Cl and CH give good linear correlations whilst C3 remains virtually constant (± 0.5 ppm), and CH (w.r.t. $^{13}\text{C}_6\text{F}_6$) correlates linearly with δ_{PH} in $C_6\text{F}_5 \text{X}$ (w.r.t. $C_6^{19}\text{F}_6$). To add further fuel to the linear free energy relationship fire, δ_{CH} correlates well with Taft’s σ_I and σ_R using the formula:

$$\delta_{\text{CH}} = 10.41\sigma_R + 4.01\sigma_I + 3.07 \text{ ppm}$$

obtained by throwing a least mean squares fit of 12 chemical shifts to 3 variables. (Chemical shifts are on the δ scale in ppm to low-field of $^{13}\text{C}_6\text{F}_6$.)

Please credit this contribution to the account of Dr. E.W. Randall, from whom, greetings.

Yours sincerely

J.M. Briggs

Suggested title. Noise decoupling of ^{19}F from ^{13}C in fluoroaromatics.
a) $f_2 = 541 \text{ Hz}$

b) $f_2 = 2251 \text{ Hz}$

Fig 3 13C spectra of $\text{C}_6\text{F}_5\text{H}$ at 22.63 MHz noise decoupled from 19F
November 29, 1972

Professor B. L. Shapiro
Department of Chemistry
Texas A and M University
College Station, Texas 77843

Tungsten - Fluorine Chemistry

Dear Barry:

We have run into some unexpected nmr results in our examination of the new compound (CH₃)₂NWF₅ prepared here by Fred Brincman.

\[
\begin{array}{c}
\text{Me} & \text{N} & \text{Me} \\
\text{F} & \text{W} & \text{F} \\
\text{F} & \text{F} & \text{F}
\end{array}
\]

In proton nmr, the methyl signal is at exceedingly low field: 7.0 ppm downfield from TMS. At room temperature in C₂F₆, the signal is a reasonably good sextet with J_HF ≈ 1.9 Hz. However, at -65 °C in CHFCl₂ as solvent, the signal becomes a doublet of quintets; J_HF(ax) = 2.7 Hz and J_HF(eq) = 1.5 Hz.

So far no real problem. The fluorine spectrum is more difficult to understand. At room temperature in CHFCl₂, all fluorines on tungsten, including WF₆ present in excess as well as the axial and equatorial fluorine signals from the -WF₅ group, are at least 50 Hz broad (FWHM approximately). The WF₆, although broad, is within 15 Hz or less of its position in a separate tube containing only WF₆ in CHFCl₂. The axial F signal is so broad and weak it is almost impossible to find by direct observation at room temperature, although an approximate chemical shift can be obtained by decoupling fluorine from the observed methyl proton signal. That the entire content of the tube is paramagnetic is disproved by the observation that the solvent signal, CHFCl₂, consists of its normal sharp doublet.
As the temperature is lowered, the $-\text{WF}_5(\text{eq})$ signal becomes sharp (it is a doublet with $J_{FF} \approx 53$ Hz, with $J_{HF} \approx 3$ Hz superimposed) and ^{183}W satellites are observed. The temperature must be dropped another 20° or so before the WF_6 signal becomes sharp. The $-\text{WF}_5(\text{axial})$ signal even at -55° is still very broad, with the 3 center lines of the expected quintet visible with widths of roughly 20-30 Hz. Attempts to decouple ^{14}N in an effort to sharpen the axial fluorine signal have been to date unsuccessful. All of the fluorines on tungsten exhibited little or no chemical shift between room temperature and -55°.

A number of questions put themselves:

1. Why is the methyl signal at such low field?
2. How do we observe structure due to HF coupling in the proton spectrum while the fluorine signals are very broad?
3. If the fluorines on tungsten are being broadened by an exchange process, why do we fail to observe the signals moving closer together as they become broader?

4. Is the axial fluorine signal really strongly broadened by the ^{14}W quadrupole? If this is the case it will be shown by improved experimental arrangement. In this connection it is interesting to note that the axial fluorine signal in WF_5Cl is unusually broad, and the suggested explanation is that the axial fluorine is strongly coupled to the trans chlorine and broadened by the chlorine quadrupole (1).

Suggestions from readers, either of possible explanations or for further experiments, will be welcomed.

One final observation, puzzling to me at least, has been made on several $M\text{WF}_5$ compounds, where $M = \text{RO-}$ or $\text{R}_2\text{N-}$. In each case, the fluorine signals from axial and equatorial fluorines were separated by several hundred to several thousand Hertz. Yet when the protons in the R group were observed, the signal was always collapsed to a single line by irradiating fluorine in either axial or equatorial position, rather than giving the expected doublet or quintet. The fluorine irradiating power was assuredly not strong enough,
nor the frequency noisy enough, to irradiate the entire fluorine chemical shift range. This phenomenon may be connected with the large coupling constant (55 - 65 Hz) between axial and equatorial fluorines in these compounds.

Yours very truly,

Rolf

Rolf B. Johannesen
Inorganic Chemistry Section

<table>
<thead>
<tr>
<th>Author</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Allerhand, A.</td>
<td>11</td>
</tr>
<tr>
<td>Biemond, J.</td>
<td>36</td>
</tr>
<tr>
<td>Blank, B.</td>
<td>44</td>
</tr>
<tr>
<td>Briggs, J. M.</td>
<td>50</td>
</tr>
<tr>
<td>Buchanan, G. W.</td>
<td>21</td>
</tr>
<tr>
<td>Chang, J. J.</td>
<td>48</td>
</tr>
<tr>
<td>Cunningham, J. A.</td>
<td>32</td>
</tr>
<tr>
<td>Curb, P.</td>
<td>1</td>
</tr>
<tr>
<td>Dayan, E.</td>
<td>28</td>
</tr>
<tr>
<td>DeHayes, L. J.</td>
<td>1</td>
</tr>
<tr>
<td>Diehl, P.</td>
<td>7</td>
</tr>
<tr>
<td>Fischer, H.</td>
<td>44</td>
</tr>
<tr>
<td>Frost, D. J.</td>
<td>8</td>
</tr>
<tr>
<td>Gestblom, B.</td>
<td>47</td>
</tr>
<tr>
<td>Hagstrum, W.</td>
<td>1</td>
</tr>
<tr>
<td>Hartman, O.</td>
<td>47</td>
</tr>
<tr>
<td>Henne, A.</td>
<td>44</td>
</tr>
<tr>
<td>Herres, W.</td>
<td>30</td>
</tr>
<tr>
<td>den Hollander, J.</td>
<td>24</td>
</tr>
<tr>
<td>Johannesen, R. B.</td>
<td>53</td>
</tr>
<tr>
<td>Kellerhals, H. P.</td>
<td>4</td>
</tr>
<tr>
<td>Kessler, H.</td>
<td>34</td>
</tr>
<tr>
<td>Khetrapal, C. L.</td>
<td>43</td>
</tr>
<tr>
<td>Kumwar, A. C.</td>
<td>43</td>
</tr>
<tr>
<td>Maciel, G. E.</td>
<td>27</td>
</tr>
<tr>
<td>MacLean, C.</td>
<td>36</td>
</tr>
<tr>
<td>Mankowski-Favelier, R.</td>
<td>12</td>
</tr>
<tr>
<td>Mathey, F.</td>
<td>12</td>
</tr>
<tr>
<td>Mavel, G.</td>
<td>12</td>
</tr>
<tr>
<td>Neijzen, B.</td>
<td>36</td>
</tr>
<tr>
<td>Olsen, R. W.</td>
<td>48</td>
</tr>
<tr>
<td>Reuben, J.</td>
<td>42</td>
</tr>
<tr>
<td>Roberts, J. D.</td>
<td>40</td>
</tr>
<tr>
<td>Rosenthal, D.</td>
<td>34</td>
</tr>
<tr>
<td>Sievers, R. E.</td>
<td>32</td>
</tr>
<tr>
<td>Spear, R.</td>
<td>16</td>
</tr>
<tr>
<td>Sternhell, S.</td>
<td>16</td>
</tr>
<tr>
<td>Sudmeier, J. L.</td>
<td>1</td>
</tr>
<tr>
<td>Widienlocher, G.</td>
<td>28</td>
</tr>
<tr>
<td>Wilson, D. M.</td>
<td>48</td>
</tr>
<tr>
<td>Ziessow, D.</td>
<td>30</td>
</tr>
</tbody>
</table>
Give your pulse a heart.

For the kind of pulse required in tomorrow's NMR research, we have the perfect heart today. It's our PFT-100 Fourier Transform system. A system designed with incredible power, unusual versatility.

The PFT-100 is capable of a 15 µsec. pulse sufficient to produce a 90° ¹³C magnetization vector tipping. Complete controls permit fine adjustments to regulate Pulse Width, Interval and Repetition. The system design allows you to select single or multiple pulse programs such as FT, DEFT, SEFT and more. Plug-in hard board program modules make it all possible.

The magnet and CW/FT probe is also at the state of the art. It features a dual cross coil detection system with Deuterium (H₂) internal lock. It has a heteronucleus external lock, as well. You choose a fixed or replaceable insert probe which permits 5, 8 and 10mm/OD variable temperature sample tubes.

There's more. Push button controls and the solid state design of the PS-100 CW/NMR. There is also complete compatibility with most existing FT data reduction systems. They combine to make it a total research NMR system.

At the heart of NMR research.

JEOL provides worldwide service and knowledge that are unsurpassed in the NMR field. With our VH-60, C-60HL, MH-100 and the PFT-100, we offer a broader range of equipment and locations than any other firm.

Information and demonstrations are available through our offices in Tokyo, London, Paris and Sydney. As well as the newest laboratory in the United States devoted to NMR research at JEOL, 235 Birchwood Avenue, Cranford, N.J. 07016.

When You Need an NMR System, See Varian First.

Varian, world leader in magnetic resonance spectroscopy, offers a complete selection of NMR spectrometer systems; from low cost systems designed to solve the typical problems of industrial and academic laboratories to the ultimate in research NMR systems.

Our basic systems are briefly described here. Ask us what’s new for any one, since we’re continually expanding the flexibility and research capability of NMR instrumentation.

HR-220 and HR-300

These offer the highest performance in commercially available high resolution NMR spectrometers. The HR-220 (220 MHz) and HR-300 (300 MHz) spectrometers are engineered for use in those applications requiring the highest magnetic field strengths such as liquid crystal, biological, biopolymer, and biochemical studies. Accessories are available for observation of 1H, 13C, 19F, 31P, 11B, and 2H in both the continuous wave and Fourier transform modes.

XL-100

A pulsed-Fourier transform or frequency swept high resolution 23.5-kG spectrometer. It features observing capability from 7 to 100 MHz, and decoupling range from 2.9 to 58 and 94 to 100 MHz for continuous wave, noise decoupling or INDOHR experiments.

Locking flexibility for homo- or heteronuclear internal lock on 1H, 19F, and 31P, and external lock on 1H and 2H are provided. Fourier transform operation, T_1 measurements, homonuclear decoupling and solvent elimination techniques are also routine XL-100 operations. The XL-100 can be tailored to meet single purpose or multi-departmental NMR needs.

NV-14

A moderately priced 14-kG, 13C research spectrometer offering the highest performance per dollar of any NMR system now available. Accessories include Fourier transform for 13C, and other nuclei such as 1H, 19F, and 31P. It is a solid state, frequency swept spectrometer ideal for either high performance routine tasks, or for those research requirements demanding state-of-the-art capabilities along with versatile lock, spin decoupling, and variable temperature capability using 8mm sample tubes.

New System T-60A

The T-60A is the newest Varian NMR system, a new system with a heritage, a solid tradition of fine workmanship and reliability inherited from its predecessor, the renowned System T-60. T-60A sensitivity is in excess of 30:1, and resolution is better than 0.3 Hz. Modular accessories include internal lock, variable temperature, wide sweep, and spin decoupling.

EM-360

A 60-MHz instrument which embodies Varian Anaspect’s expertise in producing low cost spectrometers and Varian technical leadership in resonance spectroscopy. The result is an instrument which is far ahead of the field in combining economy and performance, flexibility and simplicity. The newest Varian NMR system, it’s the low cost leader in the 60-MHz field, yet it delivers high priced performance. Guaranteed sensitivity of 18:1 signal-to-noise and 0.8-Hz resolution are performance features which suit this instrument to a wide variety of routine and research applications.

EM-300

A rugged, low priced 30-MHz spectrometer giving excellent results with minimum effort. The EM-300 can easily handle routine proton applications. The instrument’s ability to offset, expand or integrate have made it the preferred system in hundreds of teaching laboratories. Other owners have found the EM-300 to be just as useful in simple, routine control applications.

Write: 611 Hansen Way, Palo Alto, California 94303

varian instruments

Brand names: ANASPECT™ • CARY® • MAT • VARIAN® VARIAN AEROGRAFAP® • VARIAN TECSTRON