Cudby, M.E.A.; Bunn, A.  
The Use of Spectrum Accumulation in the Study of Polymers  

Wenzel, B.E.; Banas, E.M.  
V-4341 Variable Temperature System Malfunction; L&N Galvanometer of the VK-3506 Flux Stabilizer  

Becconsall, J.K.  
Calculation of Solvent Magnetic Effects  

Pohl, L.; Mehrhof, W.  
Analyse C-19-anomerer Steroidgemische  

Glasby, J.S.  
Copolymers of Methyl Vinyl Ether with Maleic Anhydride and Substituted Maleic Acids  

Anteunis, M.  
Unpredictable Shifts  

Fraenkel, G.  
\( T_1 \) of N\(^{14} \) and Exchange Rates  

Retcofsky, H.L.; Friedel, R.A.  
Magnetic Relaxation in Bituminous Coal and Amorphous Carbon  

Johnson, F.A.  
\(^{19} \text{F} \) NMR of 'Gauche' N\(_2\)F\(_4\)  

Gore, E.S.; Gutowsky, H.S.  
The dissociation of Lithium and Sodium Tetramethylaluminate in Ether, Tetrahydrofuran, and 1,2-Dimethoxyethane  

Knorr, R.  
Cyclopentene Spectra Involving Long-Range Coupling  

Bothner-By, A.A.; et al  
Sic Transit Bibliography  

Stothers, J.B.  
\(^{17} \text{O} \) Carbonyl Shieldings in Acetophenones  

A monthly collection of informal private letters from laboratories of NMR. Information contained herein is solely for the use of the reader. Quotation is not permitted, except by direct arrangement with the author of the letter, and the material quoted must be referred to as a “Private Communication”. Reference to the IIT NMR Newsletter by name in the open literature is strictly forbidden.  

There restrictions apply equally to both the actual Newsletter participant-recipients and to all others who are allowed access to the Newsletter issues. Strict adherence to this policy is considered essential to the successful continuation of the Newsletter as an informal medium of exchange of NMR information.

OVER
Vijayaraghavan, R.; Easwaran, K.R.K.
Nuclear Magnetic Resonance in Some Transition Metal Fluorides

Béne, G.J.
XVème Colloque A.M.P.E.R.E. - Grenoble / Septembre 1968

Raban, M.; Kenney, G.
Chemical Shift Nonequivalence of Diastereotopic Protons in Sulfenamides

Crépaux, D.; Lehn, J.M.
Relative Signs of $^{15}$N,H Coupling Constants in $^{15}$N-formaldoxime

Deadline Dates: No. 116: 1 May 1968
No. 117: 5 June 1968

PLEASE NOTE:

Reminder: For the period August 10, 1967 to August 15, 1968 inclusive, all Newsletter contributions, enquiries, etc., should be addressed as follows:

Dr. Bernard L. Shapiro
Department of Chemistry
Stanford University
Stanford, California 94305

- CONTINUED ON THE OUTSIDE BACK COVER
Dear Professor Shapiro,

Please accept our apologies for the delay in submitting our contribution to the newsletter.

The Use of Spectrum Accumulation in the Study of Polymers

Only limited use seems to have been made of this technique in the study of polymer molecular structure. We should therefore like to report some results that we have obtained in our study of polyarylene sulphones.

It has previously been reported (Ref. 1) that the structure of polymers prepared by different Friedel-Crafts polysulphonylation reactions is dependent upon the structure of the monomers. The n.m.r. spectra of polymers prepared by the following routes have been examined, in order to investigate the possible presence of branched units in such polymers due to the attack of sulphonyl chloride chain ends on either of the linear repeat units shown.

\[
\text{i) } \begin{align*}
\text{C}_6\text{H}_5\text{O} - \text{C}_6\text{H}_5\text{SO}_2\text{Cl} & \xrightarrow{\text{HCl}} \left( \begin{array}{c}
\text{C}_6\text{H}_5\text{O} - \text{C}_6\text{H}_5\text{SO}_2 \end{array} \right)_n \\
\text{ii) } \left( \text{C}_6\text{H}_5\text{O} - \text{C}_6\text{H}_5\text{SO}_2 \right)_2 + \text{ClSO}_2 & \xrightarrow{\text{HCl}} \left( \begin{array}{c}
\text{C}_6\text{H}_5\text{O} - \text{C}_6\text{H}_5\text{SO}_2 \end{array} \right)_n \quad \sim 80\% \\
\text{iii) } \text{C}_6\text{H}_5\text{O} + \text{ClSO}_2 & \xrightarrow{\text{HCl}} \left( \begin{array}{c}
\text{C}_6\text{H}_5\text{O} - \text{C}_6\text{H}_5\text{SO}_2 \end{array} \right)_n \quad \sim 20\% 
\end{align*}
\]

Should such a reaction occur then the branched unit

\[
\text{C}_6\text{H}_5\text{O} - \text{C}_6\text{H}_5\text{SO}_2 - \text{SO}_2\text{H}
\]

will arise.
Again as previously reported, the n.m.r. spectrum should show a resonance near 1.4 T due to the proton situated between two sulphone groups as indicated. The n.m.r. spectrum of the polymers prepared from reactions (i) (iii) showed no evidence of such a resonance even under high amplification. A spectrum accumulation experiment was devised which resulted in the observation of a resonance at 1.4 T after the spectrum had been scanned a large number of times.

It was also possible to estimate the number of branches present in the polymer after calibration with known amounts of a highly branched, specially prepared polymer where the ratio of total protons to low field (1.4 T) protons was measured directly.

The results of this work compared very favourably with a chemical method of analysis and showed that the extent to which these polymers are branched depends upon both the reactants from which the polymers are prepared and the molecular weight.

<table>
<thead>
<tr>
<th>Polymer from reaction</th>
<th>R.V.</th>
<th>Branches per 100 polymer repeat units</th>
</tr>
</thead>
<tbody>
<tr>
<td>(i)</td>
<td>0.47</td>
<td>&lt; 0.4</td>
</tr>
<tr>
<td>(ii)</td>
<td>0.49</td>
<td>0.4 - 0.7</td>
</tr>
<tr>
<td>(iii)</td>
<td>0.11</td>
<td>0.7</td>
</tr>
<tr>
<td>&quot;</td>
<td>0.40</td>
<td>1.3</td>
</tr>
<tr>
<td>&quot;</td>
<td>0.55</td>
<td>1.7</td>
</tr>
<tr>
<td>&quot;</td>
<td>0.56</td>
<td>1.6</td>
</tr>
</tbody>
</table>
The accumulation experiment was performed with a J.E.O.L. RAI Spectrum accumulator in conjunction with a Varian H.A.100 n.m.r. spectrometer. All the samples and calibration standards were dissolved in dimethyl sulphoxide to give a 3.6 % wt/vol concentration. A more detailed account of this work will be published later this year in 'Polymer'.

Yours sincerely,

M.E.A. CUDBY
Research Department

A. BUNN
Research Department

Polymer, Vol. 6, p 589, 1965
March 4, 1968

Professor Bernard L. Shapiro
Department of Chemistry
Illinois Institute of Technology
Chicago, Illinois 60616

Dear Dr. Shapiro:

Please add us to your list of subscribers of the most informative and useful "N.M.R. Newsletter". We believe the following should qualify us for a subscription.

V-4341 VARIABLE TEMPERATURE SYSTEM MALFUNCTION

This is the standard Varian temperature system used on the HA-60-IL, DA-60-IL and the HA-100 and consists of the V-4343 Temperature Controller, stainless steel heat exchanger coil, polystyrene Dewar, and with the heater-sensor in the V-4333 probe. The problem encountered was the system not regulating the desired temperature which was in the range from +5°C to +20°C (i.e., just a little below room temperature). The symptoms of malfunction were: 1) slow oscillation of the needle on the REGULATION RANGE meter, at best, and at worst the needle at one end of scale moving to the other end of scale back and forth; 2) a random shifting of the methanol peak from one scan after another at 50 Hz SWEEP WIDTH on the paper. The remedy in our case was replacement of the Zener diode in the V-4343 temperature controller unit. We tried, without rectifying the situation, replacing all Tygon tubing, using dry ice instead of liquid air in the heat exchanger, and rotation of the heater-sensor in the probe.

One recurrent, often repeated theory as to the cause of the above mentioned symptoms, deserves comment. This theory states that the gaseous dry nitrogen flowing at 10-15 SCFH causes the heater-sensor to flop around or vibrate inside the probe. We constructed an unsilvered vacuum jacketed extension, 30 cm. long and just large enough to house the heater-sensor, so that we could observe what was occurring to cause oscillation of the REGULATION RANGE needle. Without liquid air in the heat exchanger or the V-4343 unit ON, dry nitrogen flowing as high as 15 SCFH caused no visible vibration of the heater-sensor element. With liquid air in the heat exchanger and the V-4343 ON and set at ca. +10°C, the REGULATION RANGE needle did slowly oscillate. Quite clearly, the meter needle movement corresponded with actual movement of the heater-sensor. Heater-sensor movement was caused by a cold blast of air caus-
ing the exposed resistance wire leads (going to the heater part) to contract, thus moving the heater-sensor to the center of air flow. On the heating cycle, the resistance wire leads expanded causing the heater-sensor to bend toward one side of the air flow. Rotation of the heater-sensor while the temperature control system was in operation did cause the thing to quiet down, that is, the needle remained in one spot of REGULATION RANGE and the methanol peak was superimposed after successive scans. In conclusion then, we feel the "air flow vibration theory" is incorrect as air flow alone does not cause the heater-sensor to rattle around.

L&N GALVANOMETER OF THE VK-3506 FLUX STABILIZER

The characteristic behavior of galvo trouble is as follows: 1) slight oscillation when centering hairline in BALANCE, 2) galvo kicks off when going to OPERATE necessitating several attempts to lock, 3) going from OPERATE back to BALANCE the galvo oscillates back and forth for longer than one minute (usually about five or more), and 4) HA-60-IL and HA-100 lose field-frequency lock very easily resulting in the STABILIZER kicking out. Characteristics 2) and 3) are the most obvious and also the most annoying. This trouble is due to lack of damping in the Leeds & Northrup Galvanometer Movement. Over a period of time, a few years, the damping mechanism of the galvo wears out. These movements can be purchased new for $91 (or the old one exchanged at a lower price) from your local L&N dealer. Specify part No. PI-195D for Model 2430D Leeds & Northrup Galvanometer, when ordering. Be sure to emphasize "D" as this designates the necessary sensitivity for the VK-3506 Field Flux Stabilizer.

Sincerely,

BRUCE E. WENZEL

[Signature]

E. M. BANAS
Dear Barry,

Calculation of Solvent Magnetic Effects

A useful feature of 220 Mc/s proton nmr is that solvent effects on chemical shifts are proportionately larger than at lower frequencies. This means that the number of instances where differential solvent shifts can be used to separate overlapping resonances is increased. Several organic chemistry laboratories are currently interested in using solvent shifts for structure diagnosis [e.g. J. Ronayne and D.H. Williams, J. Chem. Soc. (B), 540 (1967); J. Chem. Soc. (C), 2642 (1967); F. Hruska, D.W. McBride and T. Schaefer, Canad. J. Chem., 45, 1081 (1967); T. Winkler and W. von Philipsborn, Helv. Chim. Acta, 51, 183 (1968)]. We share this interest, and to this end we are doing both theoretical and experimental work. I mention here a calculation of solvent anisotropy shifts for non-polar spherical solute molecules in solvents with axially symmetric molecules; whilst it applies strictly only for this special case, it gives some insight into solvent anisotropy effects generally. For example, it provides a qualitative explanation of the correlation with molecular radius reported recently by Winkler and von Philipsborn for methyl-substituted cycloalkanes.

The most important features resulting from the calculation (for a spherical solute molecule with no strongly polar groups) are:

(i) as a result of random tumbling, the anisotropy contribution $\sigma_a$ to the nuclear screening is independent of the position of the nucleus within the solute molecule, being equal to that calculated for a nucleus at the centre of the molecule;

(ii) $|\sigma_a|$ decreases with increasing solute molecule radius.

The principal assumption made is that the solute and solvent molecules move randomly subject to the limitations imposed by their surfaces of
FROM: J.K. Beconsall
TO: Dr. B.L. Shapiro
DATE: 11.2.68.

exclusion. For a given molecule the surface of exclusion must approximate closely to the envelope of van der Waals radii. The forms used are:

for a disc-shaped molecule (e.g. benzene), a cylindrical middle section with edges of semicircular profile;

for a rod-shaped molecule (e.g. carbon disulphide), a cylinder with hemispherical caps at its ends.

The expressions obtained for $q_a$ are cumbersome, and in the case of disc-shaped solvent molecules the evaluation calls for a numerical integration. They satisfactorily predict the order of magnitude of the anisotropy shift and its dependence on solute molecule radius. The differential solvent shifts measured for methane, tetramethylsilane and cyclohexane at low solution concentrations in benzene and in carbon tetrachloride are, however, about half of the predicted shifts.

For spherical solute molecules at least, it should be possible to improve the model by including the effects of attractive van der Waals forces, which are expected to reduce $|q_a|$ by pulling the extremities of the solvent molecule towards the surface of the solute molecule. I also anticipate an extension to non-spherical solute molecules, although this is likely to call for some different mathematical techniques. The work done up to now has been submitted for publication in Molecular Physics, and some preprints should be available in due course for anyone interested.

In any work involving external referencing using the Varian HR-220 spectrometer, it must be remembered that the magnetic field is parallel to the axis of the sample tube; the well-known expression $q_B = (2/3)\pi X$ for the bulk susceptibility effect in a conventional spectrometer is in this case replaced by $q_B = -(4/3)\pi X$. This difference suggests an obvious and very convenient method of measuring diamagnetic susceptibilities for any laboratory having both a superconducting solenoid spectrometer and a conventional spectrometer, using an ordinary coaxial sample cell. Unfortunately in our case we cannot do it without changing sample tubes, as our Perkin-Elmer R.10 requires 4.6 mm. o.d. tubes.

Best wishes,

Jack Beconsall

J.K. Beconsall
Betr.: Analyse C-19-anomerer Steroidgemische

Sehr geehrter Herr Professor Shapiro!

Im Rahmen einer Arbeit über Syntheseweg zum 16-Methylen-17α-hydroxy-19-norprogesteron und seinen Derivaten, die in Kürze erscheint, wurden bei der C-19-Funktionalisierung eine Reihe von 19S- und 19R-Anomeren hergestellt, u.a. auch folgende zwei Verbindungen:

\[
\begin{align*}
19S- & \\
\text{II} & \text{II} \\
\text{19R-} & \\
\end{align*}
\]
Es zeigt sich dabei, dass derartige Anomere sowohl in CDCl₃ als auch in d₆-DMSO bezüglich der chemischen Verschiebung von C-13⁶ und C-19 Unterschiede aufweisen, die in CDCl₃ grösser als in d₆-DMSO sind. In der Reihe der von uns untersuchten Anomeren lagen die δ-Werte für C-18 zwischen 0,02 und 0,05 ppm, für 19-OH bei 0,20 ppm und für 19-H zwischen 0,4 und 1,00 ppm. Ein Einfluss auf andere Signale ist nicht zu beobachten.


<table>
<thead>
<tr>
<th>Subst.</th>
<th>C-18</th>
<th>19-H</th>
<th>19-OH</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>R</td>
<td>S</td>
<td>R</td>
</tr>
<tr>
<td>I</td>
<td>0,62</td>
<td>0,60</td>
<td>5,55d</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>j = 4,5 Hz</td>
</tr>
<tr>
<td>II</td>
<td>0,62</td>
<td>0,60</td>
<td>5,58d</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>j = 4,5 Hz</td>
</tr>
</tbody>
</table>

Lösungsmittel: d₆-DMSO

Bei der präparativen Aufarbeitung von C-19-Anomerenengemischen können daher die einzelnen Anomeren auch quantitativ leicht NMR-spektroskopisch identifiziert werden.


Mit freundlichen Grüssen

L. Kohl  W. Mehrhof
Dear Professor Shapiro,

Copolymers of Methyl vinyl Ether with Maleic anhydride and substituted Maleic acids

Thank you for the reminder and please excuse the delay of our contribution.

We have recently prepared a series of copolymers of methyl vinyl ether with maleic anhydride and with free and substituted maleic acids as shown in I and II.

Our main problem has been to determine the degree of either hydrolysis or esterification of I to form copolymers of type II under various conditions. Since most of these compounds are soluble only in aqueous media, infra-red techniques have proved difficult and accordingly we have examined them by NMR using a Perkin-Elmer R10 60 kcs spectrometer.
In Table 1 are given the assignments for the various protons, those due to -COOH, -NH₂ and -NH₄⁺ not being observable due to exchange with D⁺ since all of the compounds were examined in D₂O or acetone-D₆.

<table>
<thead>
<tr>
<th>Compound</th>
<th>a</th>
<th>b</th>
<th>c</th>
<th>d</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>5.8</td>
<td>6.4</td>
<td>6.4</td>
<td>7.7</td>
</tr>
<tr>
<td>11 R=OH, R'≡H</td>
<td>6.4</td>
<td>6.7</td>
<td>7.1</td>
<td>3.1</td>
</tr>
<tr>
<td>11 R=NH₂, R'≡NH₄⁺</td>
<td>5.3</td>
<td>5.9</td>
<td>6.5</td>
<td>7.4</td>
</tr>
<tr>
<td>11 R=OH, R'≡Na⁺</td>
<td>5.4</td>
<td>5.7</td>
<td>6.3</td>
<td>7.2</td>
</tr>
<tr>
<td>11 R=OH, R'≡Et</td>
<td>6.3</td>
<td>6.6</td>
<td>6.9</td>
<td>7.9</td>
</tr>
<tr>
<td>11 R=OH, R'≡Pr₁</td>
<td>6.2</td>
<td>6.6</td>
<td>6.9</td>
<td>7.9</td>
</tr>
<tr>
<td>11 R=OH, R'≡Bu</td>
<td>6.4</td>
<td>6.7</td>
<td>7.1</td>
<td>7.9</td>
</tr>
</tbody>
</table>

All of the above are τ-values.

The Table shows that both hydrolysis to the free acid and esterification produce a general shift to higher field and in particular, the protons α to the carboxyls can be well separated from the methoxyl protons. Salt formation, on the other hand, produces a similar shift downfield.

Curiously, we have found no difference between the two α-protons (c) even in those compounds having different substituents on these carbon atoms.

On the basis of these results we have been able to estimate the approximate degree of hydrolysis or esterification in the mixed copolymer.

Yours sincerely,

[Signature]

(J.S. Glasby)
Unpredictable Shifts.

Dear Prof. Shapiro,

We have shown earlier that in 4,6-disubstituted m-dioxanes an empirical relationship exists between $\delta_{2e-2a}$ and the degree of branching of the alkyl substituents. This is not only so for cis derivatives (1), but also for the trans series (2). Computation of shift values for whatever compound however remains difficult, because the midpoint of the AB system of the H-2 protons also depends slightly on the nature of substitution. In 4,6-dialkyl derivatives however, this complex problem may be solved (2).

We have now measured a lot of derivatives of m-dioxane, having also polar groups, i.e. CF$_3$ and O... Some of the results are shown in the table. The influence either on H-2e or H-2a for a 4-eq. O group f.i. falls fairly well into a monotonic trend as the other substituent is changed (Me $\rightarrow$ t.Bu) : no 1,2 (cf. 3 for the introduction of 4-eq. Me). However, this is not true for a 4-eq.CF$_3$ group : no 4 and 5. Such deviations from pure "additivity" of shifts seem even to be more pronounced for axial groups. Although it is perhaps obvious for reasons of ring deformation that the values found in 6 and 7 are not comparable, this is not so for 7 against 9. It is remarkable however that for non polar combinations (compare 7 and 8), the agreement is not too bad. (All these compounds are enancomeric (biased) and occur in chair forms, as follows from the observed coupling values (3)). Also the comparison for entries 12 and 13 (non-enancomeric) is bad, although the similarity of the $\delta_{2e-2a}$ values indicate the equilibrium state being for both roughly the same. Perhaps the most dramatic non-conformity may be found in entries 14, 15 and 16. Again the difference between 14 and 15 is perhaps trivial (gem O substitution; hence rotamer-changes ?), but this is not for 15 and 16.

From all these examples and others it follows that it is extremely difficult to predict exact shift values by comparing with standard values obtained from model compounds, especially when one of the substituents is polar and axial in nature. Presumably a special solvation effect is at the basis of the capricious changes? None of other criteria (dipole moment...
changes (4), concentration dependence or solvent bulk susceptibility...) may be at the basis of the variation. Presumably the introduction of an extra group may alter the specificity of the solvation shell which existed before the introduction of this group, and this should especially be true for polar derivatives (polar substituents and "polar"-axial positions). Some of these results will be published in more detail in the near future.

Truly yours,

Prof. M. Anteunis.

(2) D.Tavernier, M.Anteunis; unpublished results.

Relative Shifts for H-2e and H-2a in 1,3-dioxanes (a) (Shift differences of compounds I versus II).

<table>
<thead>
<tr>
<th>n°</th>
<th>I trans</th>
<th>II trans</th>
<th>ΔH-2e</th>
<th>ΔH-2a</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>cis</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>R&lt;sub&gt;1&lt;/sub&gt; R&lt;sub&gt;2&lt;/sub&gt; R&lt;sub&gt;3&lt;/sub&gt;</td>
<td>R&lt;sub&gt;1&lt;/sub&gt; R&lt;sub&gt;2&lt;/sub&gt; R&lt;sub&gt;3&lt;/sub&gt;</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1)</td>
<td>φ</td>
<td>φ</td>
<td>H</td>
<td>φ</td>
</tr>
<tr>
<td>2)</td>
<td>Me</td>
<td>φ</td>
<td>H</td>
<td>Me</td>
</tr>
<tr>
<td>3)</td>
<td>Et</td>
<td>φ</td>
<td>H</td>
<td>Et</td>
</tr>
<tr>
<td>4)</td>
<td>i-Pr</td>
<td>φ</td>
<td>H</td>
<td>i-Pr</td>
</tr>
<tr>
<td>6)</td>
<td>Me</td>
<td>Me</td>
<td>H</td>
<td>Me</td>
</tr>
<tr>
<td>7)</td>
<td>t.Bu</td>
<td>Me</td>
<td>H</td>
<td>t.Bu</td>
</tr>
<tr>
<td>8)</td>
<td>Et</td>
<td>Me</td>
<td>H</td>
<td>Et</td>
</tr>
<tr>
<td>9)</td>
<td>φ</td>
<td>Me</td>
<td>H</td>
<td>φ</td>
</tr>
<tr>
<td>11)</td>
<td>φ</td>
<td>CF&lt;sub&gt;3&lt;/sub&gt;</td>
<td>H</td>
<td>φ</td>
</tr>
<tr>
<td>12)</td>
<td>t.Bu</td>
<td>H</td>
<td>Me</td>
<td>t.Bu</td>
</tr>
<tr>
<td>13)</td>
<td>Me</td>
<td>Me</td>
<td>Me</td>
<td>Me</td>
</tr>
<tr>
<td>14)</td>
<td>t.Bu</td>
<td>Me</td>
<td>Me</td>
<td>t.Bu</td>
</tr>
<tr>
<td>15)</td>
<td>φ</td>
<td>Me</td>
<td>Me</td>
<td>φ</td>
</tr>
<tr>
<td>16)</td>
<td>t.Bu</td>
<td>H</td>
<td>CF&lt;sub&gt;3&lt;/sub&gt;</td>
<td>t.Bu</td>
</tr>
<tr>
<td>17)</td>
<td>φ</td>
<td>H</td>
<td>CF&lt;sub&gt;3&lt;/sub&gt;</td>
<td>φ</td>
</tr>
</tbody>
</table>

a) 0.85 mmol of product + 0.11 mmol 1,3-dioxane as internal reference in 1 ml CS<sub>2</sub> in cps under standard conditions at 100 M<sub>c</sub>. Shifts are positive when at increased field position.

b) trans-4-φ-6-CF<sub>3</sub>-m-dioxane seems to be conformationally pure with CF<sub>3</sub> axial (from J-values).

c) Δδ<sub>2e→2a</sub> = 14.94 cps.

d) Δδ<sub>2e→2a</sub> = 13.18 cps.
Dear Barry:

As I pointed out some time ago in the newsletter, the narrow line-widths for the \( \alpha \)-protons in pyridine are quite dependent on the nature of the solvent, on hydrogen bonding and metal complexation, respectively at nitrogen. Pure pyridine in ether, or the pure pyridine dibutylmagnesium complex give the usual broad lines for the \( \alpha \)-protons. However mixtures of these two species in ether give time averaged spectra, the \( \alpha \)-proton lines of which are much too narrow to be accounted for by just fast nitrogen metal exchange. Since the broadening observed, first, must come from some degree of nitrogen-proton coupling, its absence indicates the operation of a much shorter \( T_1 \) for nitrogen than is normal for pyridine (Moniz and Gutowsky) or its complex. What we would like to suggest is that fast nitrogen magnesium exchange is responsible for lowering the \( T_1 \) of nitrogen. Fast exchange should produce rapid fluctuations of the electric field gradient, \( \delta^2 F \), around, nitrogen. This fluctuation will not average out the field gradient because most likely the attack and dissociation of the magnesium takes place along the principal molecular axis, i.e. the motion of the magnesium with respect to the nitrogen is anisotropic.

We are presently observing the above effect in benzisouquinoline and trying to match the \( \alpha \)-proton lineshapes with calculated ones for various rates of chemical exchange and \( T_1 \) relaxation. By assuming the \( \eta^{14} \), \( \alpha \)-proton coupling constant (corresponding \( \eta^{15} \)-proton coupling constants are known in similar heterocycles) and the shifts for the various species we should be able to estimate the exchange rates and \( T_1 \)s.

With best regards.

Sincerely yours,

Gideon Fraenkel
Associate Professor
of Chemistry
Pittsburgh
Coal Research Center

Dr. Bernard L. Shapiro
Department of Chemistry
Stanford University
Stanford, California 94305

Dear Barry:

MAGNETIC RELAXATION IN BITUMINOUS COAL AND AMORPHOUS CARBON

Room temperature nuclear magnetic relaxation times for the protons in vitrain-rich Pittsburgh Seam coal (hvac; 82.6% m.a.f. carbon) and the $^{13}$C nuclei in an amorphous carbon prepared by the 1000$^\circ$C reduction of $^{13}$CO$_2$ have been measured through the generous co-operation of NMR Specialties, Inc.

$T_1$ and $T_2$ were found to be 50 $\mu$sec. and 9 $\mu$sec. respectively for the protons in the coal. Since all coals give strong ESR signals, it is likely that the rapid spin-lattice relaxation is due to the presence of paramagnetic species, presumably free radicals, in the coal.

$T_1$ and $T_2$ measurements for the $^{13}$C nuclei in the amorphous carbon which contained 60% $^{13}$C gave values of 36 msec. and 80 $\mu$sec. respectively. This material also gives an ESR signal; no evidence for electron-nuclear hyperfine splittings was found. Broadline NMR studies of the carbon are in progress.

Sincerely yours,

H. L. Retcofsky

R. A. Friedel
March 15, 1968

Dr. Bernard L. Shapiro
Department of Chemistry
Stanford University
Stanford, California 94305

Dear Barry,

The existence of rotameric forms of tetrafluorohydrazine (N$_2$F$_4$) was shown by the F$^{19}$ NMR at -155$^\circ$C (J. Chem. Phys., 43, 4526); about equal amounts of 'trans' and a d, l 'gauche' pair were found. An electron diffraction study, however, finds only 'gauche' (R. K. Bohn and S. H. Bauer, Inorg. Chem., 6, 304), while independent Raman-IR studies (J. R. Durig, F. A. Miller, private communications to C. B. Colburn) find both 'trans' and 'gauche'.

We were encouraged by this interest to improve upon our earlier F$^{19}$ work, and did so mainly by using solvent mixtures rich in NF$_2$NO and NO. An experimental half-spectrum of the 'gauche' rotamer is shown in Fig. 1 - the 'trans' isomer has only a single line.

The 'gauche' spectrum is interpretable as an AA'BB' system with the parameters given in Table I, derived from iteration with the Swalen-Reilly NMRIT program. The calculated spectrum is shown in Fig. 1. No deviation greater than 1.0 cps occurs - satisfactory, since the standard deviation of measured line positions is 1.4 cps (a combination of field drift and fat lines). While the magnitudes of the coupling constants are reasonable, the change in sign of the vicinal J's with dihedral angle has no precedent of which I am aware.

Sincerely,

[Signature]

F. A. Johnson
(205) 876-9637

FAJ:mm

Enclosures
\textbf{TABLE I}

\begin{align*}
\delta &= 688.6 \pm 0.1 \\
J_{14} &= 1489.6 \pm 0.2 \\
J_{12} &= 58.8 \pm 0.2 \\
J_{13} &= f13.4 \pm 0.2 \\
J_{34} &= \pm 109.0 \pm 0.2 \\
H_0 (1, 2) &< H_0 (3, 4)
\end{align*}

\textbf{Figure I}

$F_1 + F_2$ at $-344.3$ cps

\begin{center}
\begin{tabular}{ccc}
-760 & -660 & -560 cps \\
\end{tabular}
\end{center}

\begin{center}
$H_0 \rightarrow$
\end{center}
Title: The Dissociation of Lithium and Sodium Tetramethyl-
aluminate in Ether, Tetrahydrofuran, and 1,2-Dimeth-
onyethane.

Dr. Bernard L. Shapiro
Department of Chemistry
Stanford University
Stanford, California 94305

Dear Barry:

We have just completed an investigation of the dissociation of lithium and sodium tetramethylaluminate (LiTMA and NaTMA) in the solvents ether, tetrahydrofuran (THF), and 1,2-dimeth-
onyethane (DME).

Our results for the ether and DME solutions are in agree-
ment with those of other workers [1,2]. In ether the two salts exist predominantly in the intimate ion pair form and in DME, in the solvent separated ion pair form.

However in THF it was found that significant quantities of both types of ion pairs exist. The proton lineshape of the salts varies considerably with temperature and concentration. We have analyzed the lineshapes assuming that the exchange rate between the two species is fast enough so that the spectral parameters obtained from the experimental spectra are the weighted averages of the parameters for each of the two sites. Thus, the exchange process governing the proton lineshape is the spin-lattice relaxation of the $^{27}$Al nucleus, which tends to average out the $^{27}$Al-H J-coupling.

It was found that the plot of $R_1$ ($R_1=1/T_1$) of the $^{27}$Al nucleus versus temperature has a minimum in the case of LiTMA. For NaTMA no minimum was observed but $R_1$ was noted to increase with increasing temperature. This is a clear indication that $R_1$ cannot be determined solely by the quadrupole relaxation of a single molecular species; for if this were the case, $R_1$ would decrease monotonically with increasing temperature. In other words, the temperature dependence of $R_1$ reflects the changing equilibrium
proportions of the intimate and solvent separated ion pair forms as well as the temperature dependence of the correlation times for their reorientation.

From the variation of $R_1$ with temperature we were able to estimate some of the thermodynamic functions for the THF systems at $40^\circ$C. Writing the equilibrium as:

$$\text{M}^\dagger \text{A}^{-} (\text{CH}_3)_4 \leftrightarrow \text{M}^\dagger \text{A}^{-} (\text{CH}_3)_4$$

then for the LiTMA-THF system, $K=110$, $\Delta H^0 = -6.5$ kcal/mole, and $\Delta S^0 = -11$ e.u. Only $K$ could be determined for the NaTMA-THF system and this was 11.

Combining the proton lineshape data with some $^27\text{Al}$ resonance data we were able to calculate the $\text{A}^{-}\text{CH}_3$ coupling constants for various species. For the intimate ion pair of LiTMA $J=7.1$ Hz. and for NaTMA $J=9.1$ Hz. $J$ was found to be the same (within experimental error) for the solvent separated ion pair resulting from each salt and was equal to $6.3$ Hz.

Sincerely yours,

E. S. Gore

H. S. Gutow's

Dear Professor Shapiro:

"Cyclopentene Spectra involving Long-Range Coupling"

Since Professor Zimmermann and his group have left for Freiburg, we faced the unpleasant experience to live without your "Newsletters". We feel that somebody in the Munich Institute should be on your mailing list, so I hope that this might go as my first contribution.

I had the opportunity to look at the spectra of some cyclopentenes (general structure shown below) which have been synthesized by Dr. Dahl in Professor Huisgen's group. Each line of the AB system formed by the protons 1 and 2 in 1a and 1b shows up as a nearly binomial quartet; proton 3 appears as a quintet, regular in 1b, distorted in 1a. Compound 1c has a more complicated but still similar spectrum, whereas the spectrum of 1d consists of only two sharp lines, intensity ratio 1:2.

These ABXY-type spectra could be simulated with a modified version of the improved Marquardt-Ferguson program described by J.D. Roberts and F.J. Weigert in these letters.

The chemical shifts $\nu_i$ (in Hz at 60 MHz downfield from internal TMS) and couplings $J_{ij}$ of the protons 1 through 5 were obtained with good convergence and are shown in the table. Although the spectra involve some virtual coupling through the olefinic protons, all solutions other than that in the table could be ruled out due to slight asymmetries in the splitting pattern of 1a, except for the interchange of protons 4 and 5 and for the signs of $J_{12}$ and $J_{45}$.

Because of the deceptive simplicity of their spectra, the parameters for 1c and 1d could not be obtained by the iterative procedure, but are shown to lie along the general lines found for 1a and 1b.

Decoupling experiments would certainly desirable to confirm these assignments, but the results already obtained should be of interest for those looking for long-range coupling in the system $H\rightarrow H$ for which evidence is slowly accumulating. No long-range coupling could be detected in the epoxides of compounds 1a and 1c, the only ones investigated.

Sincerely,

(Rudolf Knorr)
<table>
<thead>
<tr>
<th>Compound</th>
<th>la</th>
<th>lb</th>
<th>lc</th>
<th>ld</th>
</tr>
</thead>
<tbody>
<tr>
<td>R = CO₂CH₃</td>
<td>CEN</td>
<td>C₆H₅</td>
<td>H (°)</td>
<td></td>
</tr>
<tr>
<td>ν₁</td>
<td>168.9</td>
<td>176.0</td>
<td>159</td>
<td>180</td>
</tr>
<tr>
<td>ν₂</td>
<td>211.2</td>
<td>201.9</td>
<td>205</td>
<td>180</td>
</tr>
<tr>
<td>ν₃</td>
<td>270.1</td>
<td>262.0</td>
<td>283</td>
<td>180</td>
</tr>
<tr>
<td>ν₄</td>
<td>353.3</td>
<td>341.5</td>
<td>349</td>
<td>343</td>
</tr>
<tr>
<td>ν₅</td>
<td>363.7</td>
<td>360.6</td>
<td>346</td>
<td>343</td>
</tr>
<tr>
<td>ν₆</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>180</td>
</tr>
<tr>
<td>J₁₂</td>
<td>16.05</td>
<td>-16.76</td>
<td>-17</td>
<td>-16</td>
</tr>
<tr>
<td>J₁₃</td>
<td>+1.86</td>
<td>+2.16</td>
<td>+1</td>
<td>+2</td>
</tr>
<tr>
<td>J₁₄</td>
<td>-2.17</td>
<td>-2.34</td>
<td>-2</td>
<td>-2</td>
</tr>
<tr>
<td>J₁₅</td>
<td>+2.19</td>
<td>+2.41</td>
<td>+2</td>
<td>+2</td>
</tr>
<tr>
<td>J₁₆</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+2</td>
</tr>
<tr>
<td>J₂₃</td>
<td>+1.77</td>
<td>+2.02</td>
<td>+2</td>
<td>+2</td>
</tr>
<tr>
<td>J₂₄</td>
<td>-2.12</td>
<td>-2.03</td>
<td>-2</td>
<td>-2</td>
</tr>
<tr>
<td>J₂₅</td>
<td>+2.15</td>
<td>+2.57</td>
<td>+2</td>
<td>+2</td>
</tr>
<tr>
<td>J₂₆</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+2</td>
</tr>
<tr>
<td>J₃₄</td>
<td>+2.10</td>
<td>+2.17</td>
<td>+2</td>
<td>+2</td>
</tr>
<tr>
<td>J₃₅</td>
<td>-2.13</td>
<td>-2.31</td>
<td>-2</td>
<td>-2</td>
</tr>
<tr>
<td>J₃₆</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-16</td>
</tr>
<tr>
<td>J₄₅</td>
<td>±5.82</td>
<td>±5.83</td>
<td>±6</td>
<td>±6</td>
</tr>
<tr>
<td>J₄₆</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>±2</td>
</tr>
<tr>
<td>J₅₆</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-2</td>
</tr>
</tbody>
</table>
Dear Barry:

At the 9th Experimental NMR Conference we took the opportunity to poll a number of readers of IITNMR newsletter on the degree to which they used the MELLON bibliography. The answers suggested that the number of references has become so large, that without some system of preclassification, it is too time-consuming and too unrewarding to wade through the whole list, and that in fact, very little use is being made of the bibliography now. We have considered plans for critical selection, indexing or abstracting, but any really useful plan appears to be beyond our limited resources to carry out. In view of the fact that the clerical cost in typing and listing all the references is now a sizeable fraction of our research budget, we feel that the time has come to relinquish our monopoly on the item and give some one else a chance to grapple with it, if they are so inclined.

We feel rather sad at the idea of giving up a tradition of such long standing, and we will listen to and seriously consider any vigorous protests at the discontinuance of the bibliography. However, unless something drastic happens, the accompanying bibliography will be the last one.

Le roi est mort - Vive le roi (i.e. Preston Abstracts, computer-aided literature retrieval, KWIC, etc. etc.).

Sincerely,

A. Bothner-By
S. Castellano
M. P. Williamson
D. G. Davis
R. Sprecher
J. Magnuson

and many others who have joined our post-prandial periodical perusal.

Title: Sic transit bibliography.
Dr. B. L. Shapiro  
Department of Chemistry  
Stanford University  
Stanford, Calif. 94305  
U. S. A.

Dear Barry:

RE: 170 Carbonyl Shieldings in Acetophenones

To bring my subscription up-to-date, following your blue reminder, I'd like to report some recent results obtained by Denny Sardella from the 170 spectra of a few substituted acetophenones.

Some time ago, our survey of carbonyl carbon shieldings revealed that these shieldings are insensitive to m- and p-substituents in the acetophenone series [Can. J. Chem. 43, 479 (1965)] and it seemed reasonable to suppose that this is due to the fact that the carbon atom is not at the terminus of the conjugated system. Our first test of this idea was an examination of the vinyl carbon shieldings of substituted styrenes which showed that the β-carbon shielding was appreciably substituent dependent although that of the α-carbon is not [Can. J. Chem. 43, 510 (1965)]. It follows that the carbonyl oxygen in the acetophenone series should be similarly affected. Denny prepared some 170-enriched examples and their shieldings indeed exhibit the expected trend. The results are shown in the Figure vs. the β-carbon shieldings for the corresponding styrenes. In addition, the effect of ortho-methyl groups was briefly examined and the results may be summarized as follows.

Effect of ortho-Methyl Groups on the X Shieldings*

\[
\begin{align*}
\text{Subst.} & & X = 170 (R=\text{Me}) & & 13\text{CH}_2 (R=\text{H}) \\
nil & & -554 & & 80.5 \\
2-\text{Me} & & -586 & & 79.1 \\
2,6-\text{Me}_2 & & -608 & & 74.3 \\
2,4,6-\text{Me}_3 & & (-595)^\dagger & & 74.7 \\
\end{align*}
\]

* in p.p.m. \(\delta_{\text{H}_2\text{O}}^0 \approx 5; \delta_{\text{CS}_2} \approx 0.3\)

† much less precise, ca. \(\pm 15 \text{ p.p.m.}\)

continued............./2
Dr. B. L. Shapiro, continued

From the Table it is apparent that steric inhibition of conjugation has a pronounced deshielding effect of up to 50 ppm. on the carbonyl oxygen. This change is in qualitative agreement with the correlation of Figgis, Kidd and Nyholm, Proc. Roy. Soc. A269, 469 (1962), namely, $\delta_o$ vs. $\Delta \varepsilon(n+n^*)$.

The $^{17}O$ results were obtained at 8.13 MHz using the wide-line capability of our DP-60 instrument and the shifts were measured in acetone solutions relative to external $H_2O$ using the concentric cell arrangement with which we have usually done our $^{13}C$ spectra. The $^{17}O$ enrichment is readily estimated from the IR spectra comparing the intensities of the $C=^{18}O$ band with the $C=^{16}O$ band, and knowing, by mass spectrometry, the $^{18}O/^{17}O$ ratio of the enriched water used for the exchange. A check by mass spectrometry established the validity of the IR method.

Best regards.

Sincerely,

\[\text{Jake}\]

JBS: caf

J. B. Stothers
Professor of Chemistry
$^{17}_O$ SHIFTS OF SOME ACETOPHENONES vs. $^{13}_C$ DATA FOR $\beta$C OF STYRENES
Dear Dr. Shapiro:

Thank you for your reminder about the Newsletter.

Some of our recent work has been concerned with the Nuclear Magnetic Resonance of non-magnetic atoms in paramagnetic compounds.

We have studied the $^{19}$F NMR in a number of transitions metal fluorides i.e. FeF$_3$, CuF$_2$, KFeF$_3$, RbFeF$_3$ and K$_2$NiF$_4$. The temperature and field dependences of these shifts are correlated with their magnetic susceptibility data and results discussed in terms of the hyperfine interactions. In FeF$_3$, the shift shows an anomalous temperature dependence (rather largely independent) as has been observed from the magnetic susceptibility measurements. The results are discussed in the light of antisymmetric coupling of the form $d \left[ S_1 \times S_2 \right]$ which cant the sublattice magnetization and gives rise to weak ferromagnetism. In CuF$_2$, the shift has a maximum value at a temperature which is $42^\circ$ above the $T_N$ deduced from the susceptibility measurement. In both KFeF$_3$ and RbFeF$_3$, the $^{19}$F shift follows the magnetic susceptibility and the resonance completely disappears below their respective Neel temperatures.

K$_2$NiF$_4$ is very interesting from its magnetic properties point of view, being the only compound of the kind reported so far which exhibit
a true two-dimensional antiferromagnetic layer structure.
The $^{19}\text{F}$ NMR shift shows only a small temperature dependence in
the region $450^\circ\text{K}$ down to its $T_N$. The signal disappears below
$228^\circ\text{K}$ (it is $49^\circ$ above the previously reported value of $T_N = 180^\circ\text{K}$
for this compound). It is likely that there is a residual long
range order in this compound till $228^\circ\text{K}$. The detailed work on this
is in progress.

Whereas the $^{19}\text{F}$ NMR in RbFeF$_3$ is shifted towards the lower
field giving a positive spin density at the fluorine site, the $^{85}\text{Rb}$
and $^{87}\text{Rb}$ NMR shows a small shift towards high field, resulting in
a negative spin density at the Rb site. We have also seen the $^{87}\text{Rb}$
resonance in the ordered state of this compound. All the results
will be published shortly.

Yours sincerely,

R. Vijayaraghavan
K.R.K. Baswaram

Title

Nuclear Magnetic Resonance in some transition metal fluorides.
Cher Professeur Shapiro,

Merci pour votre rappel de la date limite de notre contribution.

XVème Colloque A.M.P.E.R.E. - Grenoble / septembre 1968


Le programme se rapprochera au maximum de la définition du sigle "A.M.P.E.R.E. : Atomes et Molécules Par Etudes Radio-Electriques". Il se décomposera en cinq rubriques fondamentales :

A - Études radio-electriques d'états atomiques.
B - Propriétés et relaxation diélectriques (essentiellement solides).
C - Résonance paramagnétique électronique.
D - Résonance paramagnétique nucléaire.
E - Études radio-electriques de produits biologiques.

Les séances de travail auront lieu du lundi 16 au vendredi 20 septembre inclus, la réception des participants commençant le dimanche 15 septembre, et le samedi 21 étant réservé à des visites de laboratoires.
Les séances seront consacrées à :

1°) Des exposés invités.
2°) Des communications présentées en séances formelles.
3°) Des communications discutées en "tables rondes".

Les textes des communications doivent parvenir aux organisateurs avant le 15 juin 1968 pour être soumis au Comité de lecture. Ce Comité classera les textes retenus. Les textes complets des communications présentées en séances formelles, ainsi que les résumés des communications discutées en tables rondes seront publiés.

Les auteurs des communications soumises seront avertis dans la seconde quinzaine de juillet des décisions du Comité de lecture. Les épreuves des textes ou résumés retenus pourront être corrigées pendant le déroulement de la Conférence. La publication des comptes rendus est prévue pour la fin de l'année 1968.

---

Manuscrits

Les textes ne doivent pas dépasser deux mille mots (quatre pages imprimées); chaque photographie, schéma ou tableau doit être compté pour deux cent cinquante mots. Les résumés doivent être tapés dans le cadre d'une seule des feuilles spéciales jointes à cette circulaire. Ils ne doivent pas dépasser deux cent cinquante mots.

Les textes et résumés doivent être rédigés en français ou en anglais, langues officielles du XVème Colloque A.M.P.E.R.E.

Les auteurs doivent garantir que les textes proposés n'ont été, ni publiés, ni soumis pour publication à d'autres éditeurs. Dans le cas où un texte aura été retenu pour être présenté en séance, son matériel ne devra pas être soumis à une autre publication pendant l'année qui suivra le Colloque.
Les auteurs paieront à l'éditeur un droit de 50 florins par page imprimée, exception faite, toutefois, pour les deux premières pages de chaque article.

Inscriptions

Date limite : 15 juin 1968

Les droits d'inscription s'élèvent à 100 francs français par participant scientifique, et à 30 francs français pour toute personne accompagnante. Seuls les participants scientifiques recevront gratuitement le volume des comptes rendus. Les droits doivent parvenir aux organisateurs en même temps que l'inscription. Ils ne comprennent ni les frais d'hébergement, ni ceux de nourriture.

Hébergement

L'hébergement pourra avoir lieu soit en Maison d'étudiants, sur le Domaine Universitaire (chambres individuelles seulement), soit en hôtel à Grenoble (tarifs joints). Des services d'autobus assurent une liaison rapide entre le Domaine Universitaire et la ville. Les repas pourront être pris au Restaurant Universitaire, sur le Domaine.

Des circuits touristiques sont prévus pour les jours qui suivent la Conférence.

Je vous enverrai très prochainement une nouvelle lettre sur les travaux en cours de notre laboratoire.

Je vous prie de croire, cher Professeur, à l'assurance de mes meilleurs sentiments.

Prof. G.J. Béné
March 29, 1968

Professor Bernard L. Shapiro  
Department of Chemistry  
Stanford University  
Stanford, California 94305

Chemical Shift Nonequivalence of Diastereotopic Protons in Sulfenamides

Dear Professor Shapiro,

We recently reported that $N,N$-dibenzyl trichloromethanesulfenamide (Ia) exhibits chemical shift nonequivalence of the diastereotopic benzyl methylene protons. We have now completed a study of the variable n.m.r. spectra of I b-d and II a-b. As with Ia

$$R-S-N-\text{CH}_2\phi$$

\[ \text{I a } R = \text{CCl}_3, R' = \text{CH}_2\phi \]
\[ \text{I b } R = \text{CCl}_3, R' = \text{CH}_3 \]
\[ \text{I c } R = \text{CCl}_3, R' = \text{CH}_2\text{CH}_3 \]
\[ \text{I d } R = \text{CCl}_3, R' = \text{CH}(\text{CH}_3)_2 \]

the spectra (in CHCl$_3$) of I b-d all exhibit AB quartets for the benzyl methylene hydrogens at temperatures below about 10$^\circ$C. Nonequivalent ethyl methylene protons are also observed in I c. Upon raising the temperature the quartets broaden and coalesce. The pertinent data include free energy of activation for the process leading to coalescence are recorded in Table I.

We have also looked at the effect of solvent (Table II). It may be noted that while a solvent effect on chemical shift differences is apparent the height of the barrier is insensitive to solvent changes (at least for those solvents observed). Apparently solvation changes in going from ground state to transition state are not very important.

Although we can not be sure about the conformational changes which give rise to coalescence, two alternatives suggest themselves:

1. Slow inversion of the nitrogen pyramid, and
2. Slow rotation around the sulfur nitrogen bond of the kind long known to exist in disulfides. The ground state in this case would be a nonplanar structure in which the C-S bond would be staggered with respect to the C-N-C angle. The transition state would correspond to a structure in which the $\text{C}_3\text{Cl}_3$ group is eclipsing (or nearly so) one of the alkyl groups on nitrogen.

Precedent favors the first explanation. Numerous examples of slow nitrogen inversion due to a heteroatom directly bonded to nitrogen have been reported recently. However, one would expect steric acceleration on the basis of the slow inversion model. The results in Table I indicate steric deceleration which is more in accord with the slow rotation model.

We are continuing our investigation of conformational processes in sulfenamides and hope to obtain more definitive evidence concerning the process which corresponds to exchange of diastereotopic nuclei in these systems.

I hope this contribution will suffice as the fee for a new subscription to IITNMRN.

Sincerely yours,

Morton Raban

George Kenney
### TABLE I - Steric Effects

<table>
<thead>
<tr>
<th>Compound</th>
<th>$\Delta\nu$ (in Hz)</th>
<th>J (in Hz)</th>
<th>Tc (°C)</th>
<th>$\Delta G^*$ (in kcal/mole)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ib</td>
<td>8.9</td>
<td>14.7</td>
<td>15°</td>
<td>14.4</td>
</tr>
<tr>
<td>Ic</td>
<td>7.6</td>
<td>15.0</td>
<td>23°</td>
<td>14.9</td>
</tr>
<tr>
<td>Ia</td>
<td>8.0</td>
<td>14.8</td>
<td>28°</td>
<td>15.3</td>
</tr>
<tr>
<td>Id</td>
<td>5.4</td>
<td>15.4</td>
<td>47°</td>
<td>15.9</td>
</tr>
</tbody>
</table>

### TABLE II

Solvent Effect on the N. M. R. Spectra of Id

<table>
<thead>
<tr>
<th>Solvent</th>
<th>$\Delta\nu$ (in Hz)</th>
<th>J (in Hz)</th>
<th>Tc (°C)</th>
<th>$\Delta G^*$ (in kcal/mole)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CDCl$_3$</td>
<td>5.4</td>
<td>15.4</td>
<td>47°</td>
<td>15.9</td>
</tr>
<tr>
<td>Benzene</td>
<td>15.5</td>
<td>15.0</td>
<td>43°</td>
<td>15.8</td>
</tr>
<tr>
<td>Pyridine</td>
<td>8.5</td>
<td>15.4</td>
<td>51°</td>
<td>16.1</td>
</tr>
<tr>
<td>Hexane</td>
<td>7.3</td>
<td>15.0</td>
<td>43°</td>
<td>15.8</td>
</tr>
</tbody>
</table>
Dear Barry,

Relative Signs of $^{15}$N-H coupling constants in $^{15}$N-formaldoxime.

In the course of our work on N,H coupling constants we prepared a sample of $^{15}$N-formaldoxime (97% enriched) in water.

$$\text{H}_A \quad \text{C} = ^{15}\text{N} \quad \text{OH}$$

The p.m.r. spectrum of the CH$_2$ protons is shown in the figure. It is the AB part of an ABX spectrum. The A and B protons give respectively rise to the high field and low field quartets. The two AB sub-spectra may be identified from the relative intensities of the signals; they respectively comprise lines 1-3-7-8 and 2-4-5-6. This assignment has been confirmed by double irradiation spin-tickling experiments. The chemical shift difference $\Delta \nu_{AB}$ may be extracted from the spectrum of the $^{14}$N isotopomer. The analysis of this spectral pattern is straightforward. Agreement between the calculated and the experimental spectrum is only reached when opposite signs are assigned to the $H_A$-$C$=N and $H_B$-$C$=N couplings.

. . .
The spectral parameters are (water solution; see Figure):

\[ \delta(H_A) = 6.65 \text{ ppm} \]
\[ \delta(H_B) = 7.15 \text{ ppm (from internal (C}_3H}_7)_3Si(C}_2H}_5SO_3Na \]
\[ ^2J_{H_A,H_B} = 7.60 \text{ Hz} \]
\[ ^2J_{N_H_A} = 413.88 \]
\[ ^2J_{N_H_B} = \pm 2.68 \]

Studies of other aldoximes in acid solution (CF_3COOD) have shown that in the corresponding protonated forms the \( N,H_A \) and \( N,H_B \) are also of opposite sign. On protonation \( ^2J_{NH_A} \) decreases markedly (= ca. 2-3 Hz) while \( ^2J_{NH_B} \) is only slightly affected.

With our best wishes,

Cordially,

D. Crépaux

J.M. Lehn

60 MHz p.m.r. spectrum of the CH\(_2\) protons of \( ^{15}N \)-formaldoxime (97% enriched) in water.
"Photochemical Formation of 1,3-Diaza-2-oxa-cyclopentanes" R. O. Kan and R. L. Futz
J. Am. Chem. Soc. 80, 1666 (1968)

"A Nonclassical Free Radical" J. Warkentin and E. Sanford
J. Am. Chem. Soc. 80, 1667 (1968)

"The Synthesis of Cyclcopropenone" H. Smith, F. Weizs"cr and N. Rapoport
J. Am. Chem. Soc. 80, 1668 (1968)

"Hydrogen-Determinant Exchange in a Cobalt-Hydrogen Complex" C. Y. Farbman
J. Am. Chem. Soc. 80, 1669 (1968)

"The Structure of Sirenin" L. Macklis, W. H. Ruhling and N. Rapoport
J. Am. Chem. Soc. 80, 1674 (1968)

"Ring-Subiect Exchange Reactions of Cyclic Genthioxalime at Equilibrium" K. Moederitzer and J. L. Van Vaezer
J. Am. Chem. Soc. 80, 1708 (1968)

"Derivatives of Bis(trifluoromethyl)ketone which Contain Fluorosulfate, Difluoracetoxy, Fluorimino, and/or Fluorocarbon Groups" D. T. Nashiri and J. M. Shreve
J. Am. Chem. Soc. 80, 1711 (1968)

J. Am. Chem. Soc. 80, 1744 (1968)

"Chemistry of Cyclopropenone. VI. Cleavage by Electrophilic Halogen" C. H. dePuy, W. C. Arney, Jr., and D. H. Gibson
J. Am. Chem. Soc. 80, 1830 (1968)

"Attempts to Generate Diphenylcyclopropenylidene. IV." N. M. Jones, M. E. Stowe, E. E. Wells, Jr. and E. W. Lesker
J. Am. Chem. Soc. 80, 1849 (1968)

J. Am. Chem. Soc. 80, 1876 (1968)

"Stable Carbonium Ion. LXYV. Protonated Carbonic Acid (Trihydroxyether Ion) and Protonated Allyl (Trihydroxyether) Carboxylate and Hydrogen Carboxylate, and Their Cleavage to Protonated Carbonic Acid and Carbonium Ion. The Possible Role of Protonated Carbonic Acid in Biological Carboxylation Processes" G. A. Olah and A. M. White
J. Am. Chem. Soc. 80, 1884 (1968)

"Cycloaddition Reactions of 2,2-Dimethylcyclopropanone" N. J. Turró, S. S. Edelson, J. R. Williams, and J. E. Darling
J. Am. Chem. Soc. 80, 1926 (1968)

"The Radical-Catalyzed Rearrangement of Triisilaneols" C. G. Pitt and M. S. Fowler
J. Am. Chem. Soc. 80, 1928 (1968)

"Nuclear Magnetic Resonance Study of the Butadiene Pulp Cooking Process" V. V. Kuchmiao, R. A. Kuchmiao, and K. F. Misbchaenko
J. Appl. Chem. USSR, (English Transl.) 8, 1115 (1967)

"Nuclear Magnetic Resonance Study of Water Sorbed on Silica Alumina" M. Z. Fuller, IT and N. S. Bray, Jr.
J. Biol. Chem. 242, 2764 (1967)

"A New Natural Methylxanthine in Mycobacterium philinum. 2C-Dihydroxymethyl-9, Structure and Function" F. J. Dugulub, D. L. Guitnick, P. G. Phillips and A. P. Brode
J. Biol. Chem. 242, 296 (1962)

"F-F Spin-Spin Coupling in Perfluoro-o-Xylene" J. Jonas

"Proton Magnetic Resonance Protonation-Number Study of ALC13 in Aqueous Mixtures of Aconit, N, N-Dicyclohexylcarbodiimide, Dimethylformamide, and Tetrafluoroethylene" A. Bratiello, R. E. Lee, V. M. Nishida, and E. B. Schuster

"Signs of Spin-Spin Coupling Constants between Metall Protons and Ring Flouline Nuclei in Fluorotoluenes Derivatives. Further Evidence for a Positive Hyperfine Interaction in the C-G Bond" D. J. Bier, S. S. Danguly, and R. Schaffner

"73 Nuclear Magnetic Resonance of Single Crystals of Od Ice" F. Balderstein and S. V. Babidein

"Nuclear Spin Relaxation in 1,1-Difluoroethenes in Solution" Y. Kanakawa
J. Chem. Phys. 47, 5537 (1967)

"Alternative Representation of Energy Level Diagrams for NIR Spectra" E. A. Johnson and A. A. Bohmen-Joy

"NMR Spectra of Diphosphorus Tetrafluoride" F. A. Johnson and G. W. Rudolph

"Nuclear Magnetic Resonance in Lithium Borohydride" G. W. Osman and J. W. McLaughlin
J. Chem. Phys. 47, 5452 (1967)

"Magnetic Equivalence of Nuclear Spins in Oriented Molecules" A. Sape and J. Nehring

"Magnetic Equivalence of Nuclear Spins" J. J. Musher
J. Chem. Phys. 47, 5460 (1967)

"The Signs of Spin-Spin Coupling Constants in Square Planar Complexes of Platinum(II)" W. McFarlane

"Transition Metal-Carbon Bonds. Part XI. A Crotetra-2,4,5,7-Octatetraene Complex of Iridium(III)" E. W. Shaw and E. Singleton

"The Thermal Substitution Reactions of Iodotricarbonyl-2-cyclopentadienylnitrobenzene(II)" A. R. G. Brown


"The Role of Singlet and Triplet Excited States in the Photochemistry of 3,5-Cycloheptadiene"  
D. L. Schuster, B. R. Schonick and F. T. H. Lee  
J. Am. Chem. Soc. 90, 1300 (1968)

"The Structure of Prontocillin"  
G. A. Ellettad, M. P. Kunsman, H. A. Whaley and E. L. Patterson  
J. Am. Chem. Soc. 90, 1325 (1968)

"The Stereochemistry and Inversion of Trivalent Oxygen"  
J. E. Lambert and D. M. Johnson  
J. Am. Chem. Soc. 90, 1349 (1968)

"The Stereoregulation of Arsenic"  
J. E. Lambert and G. F. Jackson, III  
J. Am. Chem. Soc. 90, 1350 (1968)

"Internal Return in the Silver Ion Catalyzed Rearrangement of 6-Chloramines"  
P. G. Gaseman and R. L. Cryberg  
J. Am. Chem. Soc. 90, 1355 (1968)

"The Crystal and Molecular Structure of the 1:1 Adduct of Antimony(V) Fluoride and Sulfur Dioxide"  
J. W. Moore, H. Wallace and H. B. Miller  
J. Am. Chem. Soc. 80, 1338 (1958)

"Electrochemical Equilibration of the Dichloropentanes. A Model System for Polyvinyl Chloride"  
W. E. Billups and A. N. Kurtz  
J. Am. Chem. Soc. 90, 1361 (1968)

"Transannular Directive Influences in Electrophilic Substitution of [2.2]Paracyclophane"  
H. J. Reich and D. J. Cran  
J. Am. Chem. Soc. 90, 1365 (1968)

"Isolation of Crystalline Keto-Enoic Tautomers. Conversion of Indoles and Oxindoles"  
J. W. Schubenberg  
J. Am. Chem. Soc. 80, 1367 (1958)

"Heterocyclic Studies, XXVII. Tautomerism in the Dimethyl-1,2-diselenyl-4-one System"  
R. C. Plavia and J. A. Moore  
J. Am. Chem. Soc. 90, 1369 (1968)

"Photolysis of Triphenylcarbenium, Tropylium, and Triphenylcyclopentadienyl Ions"  
E. E. van Tamelen, T. H. Cole, A. Greeley and H. Schumacher  
J. Am. Chem. Soc. 90, 1372 (1968)

"Association of Indole and Phenol with Diethyl Chalcogenides"  
J. Jorgonowski and M. W. Brandt  
J. Am. Chem. Soc. 90, 1386 (1968)

H. M. Liechman and D. N. Grant  
J. Am. Chem. Soc. 90, 1400 (1968)

"Iodo- and Fluoropentaboranes. Nuclear Magnetic Resonance Comparison of 2-Pentaborane(9) Derivatives"  
A. R. Burg  
J. Am. Chem. Soc. 90, 1407 (1968)

"Stereochemically Nonrigid Organometallic Molecules. XII. The Temperature Dependence of the Proton Nuclear Magnetic Resonance Spectra of the 1,3,5,7-Tetramethylcyclooctatetraene Triacarbonyl Compounds of Chromium, Molybdenum and Tungsten"  
F. A. Cotton, J. W. Faller and A. Musco  
J. Am. Chem. Soc. 90, 1438 (1968)

"Stereochemically Nonrigid Organometallic Molecules. XIII. Preparation of 1,3,5,7-Tetramethylcycloocta-1,2,4-trinuclear Derivatives of the Iron Carbonyls"  
F. A. Cotton and A. Musco  
J. Am. Chem. Soc. 90, 1444 (1968)

"The Addition of Acetonitrile to 'Bent' of Bonds"  
P. G. Gaseman and K. T. Mansfield  
J. Am. Chem. Soc. 90, 1517 (1968)

"Reaction of Cryomonitor with Cyclooctatetraene. 1,4- and 1,2 Additions"  
A. G. Anastassos  
J. Am. Chem. Soc. 90, 1527 (1968)

"Photolyses of Trienes. III. Selective Photo reactions of 2,1,7-Triazapentacyclotriene!"  
L. B. Jones and Vera K. Jones  
J. Am. Chem. Soc. 90, 1540 (1968)

"Photoproducts from Irradiation of Lumisantoin in Aqueous Medium"  
N. R. Fisher and J. H. Richards  
J. Am. Chem. Soc. 90, 1553 (1968)

"Nuclear Magnetic Resonance Spectroscopy. Carbon-13 Coupling Constants in Organometallic Compounds"  
F. J. Weigert, M. Minkin and J. D. Roberts  
J. Am. Chem. Soc. 90, 1566 (1968)

"Equilibrium Studies. The Energy Differences for Some Bis-Substituted Heterocyclic Methyl Amidocarboxylic Ions"  
P. Beak, J. Bonham and J. T. Lee, Jr.  
J. Am. Chem. Soc. 90, 1569 (1968)

"Solvolysis Displacement Reactions in Trifluoroacetic Acid. I. Trifluoroacetolysis of 2-Phenylethyl-γ- 
Tolueneisulfonate. Evidence for Ethylenephenonium Ion"  
J. E. Nordlander and W. G. Blanken  
J. Am. Chem. Soc. 90, 1590 (1968)

"Studies in Flurin Chemistry. VII. Synthesis of Four Isomeric 7,8,17,18-Dibenzo[20]annulene 4,11,14-Di-
oxides"  
J. A. Ellis and M. V. Sargent  
J. Am. Chem. Soc. 90, 1631 (1968)

"Reactions of Methanesulfonyl Bromide with Silver  
2,4,6-Trinitrobenzenesulfonate in Organic Solvents"  
G. K. Helnass, D. C. Quall, W. M. Barnes and H. W. Cassey  
J. Am. Chem. Soc. 80, 1835 (1958)

"The Stereospecific Total Synthesis of 3L-Lycopodilne"  
C. Storck, R. A. Kretzmer and R. L. Schlessinger  
J. Am. Chem. Soc. 90, 1647 (1968)

"The Synthesis of 3L-Lycopodilne"  
W. A. Ayer, W. R. Boxman, T. C. Joseph and P. Smith  
J. Am. Chem. Soc. 90, 1648 (1968)

"Norbertadene-7-oxidium Triacarbonyl"  
J. M. Landesberg and J. Sieczkowski  
J. Am. Chem. Soc. 90, 1655 (1968)

"A Novel Bidentate x-Bonding Ligand Derived from 1,2-
Diacetyl-1,4-bisdecahydrocarbene(12)"  
J. N. Francis and M. F. Hawthorne  
J. Am. Chem. Soc. 90, 1663 (1968)

"A Simple Trimerization of 2,3-Butanedione Yielding a  
Selective Regent for the Modification of Arginine in Proteins"  
J. A. Yankelevitz, Jr., G. D. Mitchell and T. H. Crawford  
J. Am. Chem. Soc. 90, 1664 (1968)
"Photolysislation of Cyclic Acetals"  
I. Rosenblatt and D. Elad  
J. Org.Chem. 33, 805 (1968)

"Compresson Effects in 1,4-Di-t-butylsulphides. Chemistry and Nuclear Magnetic Resonance Spectra"  
R. W. Franck and K. Yenagi  
J. Org. Chem. 33, 811 (1968)

"2-Acynonyoic Acids as Benzynes Precursors"  
T. E. Stevens  
J. Org. Chem. 33, 853 (1968)

"Studies on the Synthesis of Extended β-Carboxyl Compounds"  
K. T. Buck and A. A. Olofson  
J. Org. Chem. 33, 867 (1968)

"Reactions of Benzy1 Halides with Nickel Carboxyl in Various Media"  
E. Yoshisato and S. Teutem  
J. Org. Chem. 33, 869 (1968)

"Nucleophilic Displacement in a Propargyl β-Toluene-sulfonate"  
J. L. Godman and D. Norton  
J. Org. Chem. 33, 872 (1968)

"The Preparation of 4-Substituted Bicyclo[2.2.1]heptane-1-carboxylic Acid"  
C. F. Wilcox, Jr., and C. Leung  
J. Org. Chem. 33, 877 (1968)

"Synthesis and Stereochemistry of Hydrophenanthrenes. VI. A Special Case of the Semler-Wolff Rearrangement"  
Z. G. Hajy, D. R. Parish and H. W. Goldberg  
J. Org. Chem. 33, 882 (1968)

"The Rearrangement of a 2-Aminobenzylideneaminocetic Acid N-Oxide with Ethyl Chloroformate"  
S. C. Bell  
J. Org. Chem. 33, 886 (1968)

"Further Studies on Reactions of Perfluorophenolates with Substituted Pentfluorobenzenes and Perfluorocyclocubenzene"  
R. J. DePasquale and C. Tamborski  
J. Org. Chem. 33, 890 (1968)

"Constituents of the Cotton Bud. VIII. β-Bisabolol, a New Sesquiterpene Alcohol"  
J. F. Hinney, A. C. Thompson and P. A. Redin  
J. Org. Chem. 33, 909 (1968)

"Steroid Hormone Analogs. IV. C-Nor-D-homostereone"  
S. H. Kopchan, A. W. Py and H. S. Flem  
J. Org. Chem. 33, 911 (1968)

"A Study of the Oximation of the Cross-Conjugated Steroidal Ω"-3-Strione System"  
O. K. Rodig and G. Zanati  
J. Org. Chem. 33, 914 (1968)

"The Additon of Formaldehyde to Lovopimic Acid and Methyl Lovopimic acid"  
R. L. Suttine and J. L. McLanahan  
J. Org. Chem. 33, 918 (1968)

"Citraconic Anhydride Photodimer. Structure and Stereochemistry"  
H. Ziffer and J. R. Williams  
J. Org. Chem. 33, 920 (1968)

"The Use of Nuclei Magnetic Resoncence as a Monitor in Optical Resolutions"  
D. R. Galpin and A. C. Huitric  
J. Org. Chem. 33, 921 (1968)

"The Palladium-Catalyzed Decarbonylation of β-Phenyl-isovaleraldehyde. A Notable Dimution of the Neophyl Rearrangement"  
J. W. Wilt and V. F. Abegg  
J. Org. Chem. 33, 923 (1968)

"The Chemistry of Carbanions. XIV. Factors Influencing the Rate of Addition of Dimethylmagnesium to Benzophenone"  
H. O. House and J. E. Oliver  
J. Org. Chem. 33, 929 (1968)

"The Chemistry of Carbanions. XV. The Stereochemistry of Alkylation of 4-α-Bromo-α-pyrones. An Unusual Pyrimidine into Pyrazole Conversion"  
K. Y. Zeng-Cheng and C. C. Cheng  
J. Org. Chem. 33, 934 (1968)

"Twofold Acrylation of Certain Amides by Means of Sodium Pyridide"  
J. F. Wolfe and G. Z. Trimmitt  
J. Org. Chem. 33, 894 (1968)

"Methylation of 10-Methyl-1(9)octal-2-ones by Organocopper Reagents"  
J. A. Marshall and H. Roonke  
J. Org. Chem. 33, 869 (1968)
"The Action of Toluenesulphonamide on Cyclic Amines"  
A. C. Birchall and M. Rosenburger  

"Nitro-steroids. Part V. Spectra of Nitro-steroids and Related Compounds"  
A. J. Baylin, J. B. Bull, G. D. Meakins, and (Mrs.) E. E. Richards  

"Chlorination of 5α-Cholesterol-1-one"  
C. W. Shoppee and S. C. Sharma  

"The Reaction of Ethyl 2-(2-Oxo-3-indolinoxy)indoline-2-hydropyrazacine with Propionic Anhydride and Pyridine"  
M. Alm and J. A. Ballantine  

"The Structures of Compounds X and Y. Two Labdane Diterpenoids, from "Leptomis leonina""  
E. R. Kaylan and D. K. A. Blinewt  

"The Synthesis of Homoporphinone-type Compounds by Phenolic Oxidative Coupling"  
T. Kametani, H. Yagi, F. Satoh and H. Fukumoto  

"The Permanoxane Oxidation of Thymidines"  
P. Howgate, A. S. Jones, and J. B. Tittmson  

"The Reaction of Maleic Anhydride with Dimedone"  
P. M. Molton  

"Alenes. Part XX. The Preparation of 3-Alkylo and 3,3-Dialkyldialkylstilbenes"  
P. M. Groves, S. R. Landor and D. R. J. Laws  

"Pyroles and Related Compounds. Part XIII. Porphyrin Synthesis through β-Dioxolanes and Alkaloids (Doporphyrin)"  

"Pyroles and Related Compounds. Part XIV. The Structure and Transformations of Clophorins (Isoxyphyrins)"  
A. H. Jackson, G. U. Kenner, and K. M. Smith  

"Chemistry of the Constituents of "Eucalyptus aethiopicus". The Structure of Eucalyptic Acid, a New Diterpene Acid"  
D. R. E. Ekong and A. U. Ogbe  

"Heterocyclic Studies. Part III. Hydrates of Ethyl Pteridine-4-carboxylate and Some Methyl Derivatives"  
J. Clark  

"Organometallic Reactions. Part X. The Preparation and Reactions of Some Alkyllead Compounds"  
A. G. Davies and N. J. Puddefoot  

"Photochemical Transformation. Part XXXI. Some Reactions of 4,4-Ditiochromenesulphonylmethyl Derivatives"  
D. H. Barton, T. Nakano and P. G. Sannes  

"Biphenyls. Part XVII. Preparation and Reactions of Some 1-Substituted Biphenyls"  
A. J. Boulton, J. B. Chadwick, C.R. Harrison and J. P. W. Mobbs  

"Dyes in Photochemistry. Part VI. The Photochemical Transformation of Some Styrylquinolinolines and Styrylisoquinolinolines"  
C. E. Loader and G. J. Timmons  

"Nucleosides. Part V. General Lewis Acid Catalysis of Glycoside Anomerisation and O - N Glycosyl Rearrangement"  
D. Thacker and T. L. V. Ulbricht  

"Addition Reactions of Heterocyclic Compounds. Part XXXII. Cyclolactams and Quinolizidines from Stilbenes with Dimethyl Acetylenedicarbonylate, and their Nuclear Magnetic Resonance Spectra"  
R. N. Acheson and R. B. Perlberg  

"Addition Reactions of Heterocyclic Compounds. Part XXXIII. Oxylylquinolines with Amino-quinolines possessing Activated Methyl Groups"  
R. N. Acheson, J. M. F. Cagan and D. R. Harrison  

"Addition Reactions of Heterocyclic Compounds. Part XXXIV. Methylinquinolines with Acetylenic Esters"  
R. N. Acheson and M. W. Foxton  

"Addition Reactions of Heterocyclic Compounds. Part XXXV. Addition of Aldehydes and Acetals to Some Ethaniones"  
R. N. Acheson, M. W. Foxton and A. R. Hands  

"Addition Reactions of Heterocyclic Compounds. Part XXXVI. Dimethyl Acetylenedicarbonylate with Indazole, the Triazoles, and Diazomethane"  
R. N. Acheson and M. W. Foxton  

"Unsaturated Lactones and Mercaptans. Part III. Lactone of 2-(Oxybutyloxy)-2-methylisobutylcarboxylic acid from 4-Aminobenzoic Acid (Pent-3-ene-4-olide) and Cysteine, and its N.m.r. Spectrum"  
M. Hellstrom, S. O. Almqvist and M. Amisepp, S. Rodar  

"Perfluoroalkyl Derivatives of Nitrogen. Part XXVI. The Preparation and Arrangement of Perfluoroalkylvinylamines and of Trifluoromethyl Trifluoroalkyl Ether"  
E. E. Hasseldin and A. E. Tipping  

"Synthetic Steroids. Part III. The Preparation of 3β,15β,17β-Trihydroxyandrost-5-ene and the Attempted Preparation of 3β,14β,17β-Trihydroxyandrost-5-ene"  
R. W. Kelly and R. J. Sykes  

"Synthetic Steroids. Part IV. The Reaction of 3β-Hydroxy-5α-cholest-1-ene and 3β-Hydroxycholest-4-ene with Toluenesulphonylmethyl Chloride in Pyridine"  
S. B. Leung and P. J. Sykes  

"Geometrical Isomerism in the 1-Alkyl Thiocarboxylate Series: A New Oxime Fragmentation"  
J. H. Davies, R. H. Davis and P. Kirby  

J. H. Jones and G. T. Young  

"Constitution and Biosynthesis of Capsaicin"  
D. J. Bennett and G. W. Kirby  

"Steroids. Part X. Acid-catalysed Rearrangement of Cholest-1,3,5-triene-7-one': J. F. Connolly, R. O. Dorchai and J. B. Thomson

"The Hydroboration-oxidation of Abietic Acid" B. E. Cross and P. L. Myers


"Etude par RMN de composés organo-phosphorés. XII. 2-Céphosphorénes" G. Mavel, R. Makowsk-Faveller et G. Sturts


"Etude par RMN de composés organo-phosphorés. XIV. Conformation des phosphonates alliyliques substitués" G. Mavel, R. Makowsk-Faveller, G. Larrielle et G. Sturts

"Etude par résonance magnétique nucléaire de composés organo-phosphorés. XV. Signe relatif des couplages phosphore-proton dans divers groupements ionisés" G. Mavel et R. Makowsk-Faveller

"Influence des substitutions progressives sur les spectres de RMN (31P) de quelques composés du type M (PO2)3 (Cl, " P. Gascon, J.-F. Lacroix et J.-P. Laurent

"Addition of Benzeneselenol to 1,3-Dienes" F. G. Shevzranov, Yu. Yu. Samitov, and E.G. Katsav
J. Gen. Chem. USSR (English Transl.) 37, 715 (1967)

"Polyfluoro Aromatic Compounds Containing Cytotoxic Groups" F. T. Abagacq and B.V. Sokolov
J. Gen. Chem. USSR (English Transl.) 37, 139 (1967)

J. Gen. Chem. USSR (English Transl.) 37, 814 (1967)

"Unsaturated Stannas-hydrocarbomethane VII. Rearrangement of Tri-Containing 2-Halo Acetylens" V. S. Zverovich, B. I. Ionin, and A. A. Petrov
J. Gen. Chem. USSR (English Transl.) 37, 898 (1967)

"Pyrrolidines Alkaloids. VII. The Total Synthesis of the Alkaloid Viridiflorine" A. M. Likhosherstov, B. N. Patakov, and N. K. Kossetun
J. Gen. Chem. USSR (English Transl.) 37, 956 (1967)

"Unsaturated Fluoroalkylphosphonates" N. A. Kudina, V. A. Ponomarenko, A. V. Kossekh, and E. P. Prokof'ev
J. Gen. Chem. USSR (English Transl.) 37, 964 (1967)

"Production of Bis (p-Chlorotrifluoromethyl) Ether" V. S. Tunitsov and S. V. Sokolov
J. Gen. Chem. USSR (English Transl.) 37, 991 (1967)

J. Gen. Chem. USSR (English Transl.) 37, 1016 (1967)

"Electron Transfer in Reactions of Nitroso Compounds. VII. Conjugate Reactions of Trifluoromethanesulfonic Acid with Nitroso Chloride and Polychloroform" V. A. Dinzburg, I. L. Martysova, M. F. Kebdelova, E. A. Tsetl'baum, and A. N. Medvedev
J. Gen. Chem. USSR (English Transl.) 37, 1020 (1967)

J. Gen. Chem. USSR (English Transl.) 37, 1043 (1967)

"Phosphorus-containing Heterocyclic X. Some Derivatives of Phosphopolyacryl and Chloropolyacryl Acids" N. A. Razumova, K. I. Nefyot, and M. V. Kuir
J. Gen. Chem. USSR (English Transl.) 37, 1073 (1967)

"Spin-Spin Coupling in Nuclear Magnetic Resonance Spectra of Organophosphorus Compounds" E. I. Ionin, V. B. Lobodov, and A. A. Petrov
J. Gen. Chem. USSR (English Transl.) 37, 1117 (1967)

"Arylchalcones from Aroyl-substituted Di- and Tri-Chloromethanes and Lithium" O. N. Nevedov and V. I. Shilova
J. Gen. Chem. USSR (English Transl.) 37, 1160 (1967)

"Trifluromethyl Vinyl Sulfonate and Trifluoromethyl Vinyl Sulfone" I. L. Emunyants, I. V. Rozhkov, A. M. Aleksandrov and L. M. Vaygol'd Sh
J. Gen. Chem. USSR (English Transl.) 37, 1210 (1967)

J. Gen. Chem. USSR (English Transl.) 37, 1232 (1967)

"Unsaturated Phosphonic Acids and Their Derivatives. IV. Structure of Methyl(hydroxy)phosphonic Dichloride Prepared by the Reaction of Isoprene with PCl3" L. N. Meshilaykovskii, B. Yu. Ionin, I. S. Okunevskii and A. A. Petrov
J. Gen. Chem. USSR (English Transl.) 37, 1237 (1967)

"Reactions of Esters, Mixed Anhydrides, and Ester Derivatives of Phosphorin Acid with Mesoxalic Esters" A. N. Tovuik, I. V. Gur'yanova, S. P. Ferekexentseva and T. V. Zykova
J. Gen. Chem. USSR (English Transl.) 37, 1266 (1967)

"Rearrangement of Phosphomethylen Esters in Reactions with Carbonyl Compounds. X. Action of α-Halo Carbonyl Compounds on Cyclic Propane Dialkylphosphomethanes" S. V. Abramov, S. S. Brusilov and T. V. Zykova
J. Gen. Chem. USSR (English Transl.) 37, 1260 (1967)

J. Gen. Chem. USSR (English Transl.) 37, 1269 (1967)

J. Gen. Chem. USSR (English Transl.) 37, 1293 (1967)

"Unsaturated Organosilicon Compounds Addition of Thiols to 1,3-Aldikynylsilanes" B. G. Shakhovski and A. A. Petrov
J. Gen. Chem. USSR (English Transl.) 37, 1298 (1967)


"N,N-Difluoroalkylamines by Direct Fluorination of Alkylamines" C. M. Sharts J. Org. Chem. 33, 1008 (1968)


"Conformations in Five-Membered Rings of Restricted Mobility" G. Ehro J. Org. Chem. 33, 1042 (1968)


"Reaction of Carbohydrates with Methylsulfonyl Chloride in N,N-Dimethylformamide. Preparation of Some Methyl 6-Chloro-4-deoxyglycosides" M. E. Evans, L. Long, Jr., and P. W. Parrish J. Org. Chem. 33, 1074 (1968)


"Catenane Reactions from a Disomethyltetraene. Contrast with the Isotactic Acid" P. A. S. Smith and J. E. Wright J. Org. Chem. 33, 1152 (1968)


"Hydroperoxide Oxidations Catalyzed by Metals. II. The Oxidation of Tertiary Aminos to Amine Oxides" N. M. Sheng and J. G. Zajacek J. Org. Chem. 33, 586 (1968)


Tetrahedron 24, 1577 (1968)

Tetrahedron 24, 1601 (1968)

"Stereochemische Zuordnung in der Pinaceenreihe" M. Mühlstädt, M. Herrmann and A. Zachunke
Tetrahedron 24, 1611 (1968)

Tetrahedron 24, 1633 (1968)

"The E. uliberia and NMR Spectra of Hydroxymethyline Ketones" K. M. Baker and J. P. Bartley
Tetrahedron 24, 1651 (1968)

"Transformations of Camphor" K. M. Baker and R. R. Davis
Tetrahedron 24, 1655 (1968)

"Long Range Coupling and Solvent Shifts in the NMR Spectra of Branched Derivatives" K. H. Baker and B. R. Davis
Tetrahedron 24, 1663 (1968)

Tetrahedron 24, 1687 (1968)

"Garfrinio, A Sesquiterpenoid Lactone from Geigeria Africana Gries—II. Conformation" W. T. De Kock, and K. G. R. Fischler
Tetrahedron 24, 1701 (1968)

"Conformation and the Anomeric Effect in 2-Oxy-Substituted Tetrahydropyranes" C. B. Andersen and D. T. Sepp
Tetrahedron 24, 1707 (1968)

"Mechanism of Reactions of C-1,2-Diisoualfoxides—Further Study of the Acid-Catalysed Hydrolysis of Aryl- and Alkylsulfonylazidomethanes" J. B. F. M. Engberts and B. Ewensen
Tetrahedron 25, 1737 (1968)

"Preparation and Stereochemical Characterization of the Diastereoisometric 1-Phenyl-4-t-Butoxy-2-pyrone Oxides and 1-Phenyl-4-t-Butoxy-2-pyrone-1,2-Diol" G. Carter, B. Macchi and F. Macchi
Tetrahedron 25, 1755 (1968)

"Studies on Julimycins—I. The Structure of Julimycin B-11" H. Trogi
Tetrahedron 25, 1765 (1968)

"Spirooxyporphosphorins" F. Ramiras, M. Haghshenas and C. P. Smith
Tetrahedron 25, 1785 (1968)

"Reduction of 14-Alkenylcodeinones by Sodium Borohydride in Pyridine" J. W. Lewis and M. J. Rodhead
Tetrahedron 25, 1829 (1968)

"Nachweis in Molekularer Beweglichkeit Durch NMR-Spektroskopie—III. Magnetische Richtäquivalente Geminaler Gruppen Durch Rorationsbewegung in Aktiven Molekülen" H. Kessler
Tetrahedron 25, 1857 (1968)

"NMR Spectra of Intramolecularly Hydrogen-Bonded Compounds—I. 1,5-Diketones, o-Hydroxalkylhydres and o-Hydroxyalkones" D. G. Needsbeii
Tetrahedron 25, 1869 (1968)

"Vinylamines—VIII. The Reaction of Cyclohexenone Enaminides with 1- and 2-Methylenes" A. Risaliti, M. Forchiassin and E. Valentin
Tetrahedron 25, 1889 (1968)

"Total Synthesis of Optically Active (—)-17β-Hydroxycholesterol Dihydro-5-ene-3,10-dien-5-one" Z. G. Hoyos, U. F. Parrish and E. P. Oliveto
Tetrahedron 25, 2039 (1968)
"Nuclear Spin Relaxation and Dynamic Polarization Versus Electron Spin-spin Relaxation"
K. Berrini

"Quadrupole Effects in the Nuclear Magnetic Resonance Spectrum of D-Manganese"
L. O. Andreasen


"Nuclear Spin-Lattice Relaxation via Paramagnetic Centers"
I. J. Love and D. Dee
Phys. Rev. 166, 279 (1968)

"Nuclear Double-Resonance Investigation of Ag Substitutional Impurity in SCM"
O. T. Wallieos, Jr. and R. I. Schumacher
Phys. Rev. 166, 350 (1968)

"Nuclear Spin-Lattice Relaxation in Magnetic Insulators" P. Beemar and P. Fines
Phys. Rev. 166, 359 (1968)

"Application of the Statistical Model to Nuclear Magnetic Relaxation in Solid Hydrogen" C. C. Sung


"Alkaloidal Constituents of Peganum Harmala and Synthesis of the Minor Alkaloid Deoxyvendacine" A. Chatterjee (Mrs.) and M. Ganguly (Miss)
Phytochem. 1, 37 (1968)


"Reaction of Enamines with Aromatic Nitro-compounds" S. Danishefsky and B. Cavanagh Chem. Ind. (London) 2171 (1967)

"5-Chloro-6-methoxy-1-methylisatin, A Metabolite of Microspermae Carbohydrae" R. Reinmnn and R. Jare Cam. Ind. (London) 2173 (1967)

"Total Synthesis of Racemic Dehydrofurapelasogenes"  
G. Bleigh and H. Wiat  
Tetrahedron 24, 2049 (1968)

"Sur Les Isolants et la Structure de Deux Dehydrofurapelasogenes, Nouveaux Sesquiterpenes de L'essence de Geranium Bourbon"  
C. Giemza and H. Sohosna  
Tetrahedron 24, 2055 (1968)

"Naturally Occurring Fulvene Hydrocarbons"  
D. J. Bertelli and J. H. Crabtree  
Tetrahedron 24, 2079 (1968)

"Reaction of 2,6-Dimethyl-4-Methoxybenzaldehyde with Methylmagnesium Iodide and Some Properties of the Reaction Products"  
T. Kaminaga, M. Nanami and T. Kubota  
Tetrahedron 24, 2091 (1968)

"The Isolation and Structure of Cyclopropanionic Acid, A Toxic Metabolite of Pencillium Cyclopium Mating"  
C. W. Holsapf  
Tetrahedron 24, 2101 (1968)

"A New Flavone from Bergamot Oil. Weak Coupling in Some Between Ring and Methoxy Protons"  
S. Farid  
Tetrahedron 24, 2121 (1968)

"Structure and Synthesis of Nojirimycin"  
S. Inoue, Y. Tsuruoka, T. Ito and T. Mida  
Tetrahedron 24, 2125 (1968)

"Transformation of Cholic Acid by the Culture Mycobacterium L129"  
Tetrahedron 24, 2145 (1968)

"Cyclization of Geraniolene and Competive Cyclization-Cycloalkylation of Some Phenyl Derivatives"  
B. C. Rock, J. U. Venland, Th. J. de Boer and in part E. Lodewijk and J. de Lenn  
Tetrahedron 24, 2155 (1968)

"Chemistry of the Podocarpacese--XV. Elaboration of Podocarpic Acid"  
B. R. Davis and W. E. Hitchen  
Tetrahedron 24, 2163 (1968)

"5,6-Dimethoxy-2-isopropenylbenzenofuran from Ligularia Stoechaseta Matsum. et Koidze"  
T. Nose, T. Yamasaki and T. Tatsushima  
Tetrahedron 24, 2177 (1968)

"Photochemical Reactions of 2-aza-Anthrole"  
H. Noseki, T. Otani, H. Noyori and M. Kawanishi  
Tetrahedron 24, 2183 (1968)

"The Photochemistry of 1,2,3-Triphenoxyaziridines"  
H. Noseki, S. Fujita and H. Noyori  
Tetrahedron 24, 2193 (1968)

"NMR Spectra of Estrogen Catechols"  
J. Fishman and J. E. Liang  
Tetrahedron 24, 2199 (1968)

"The Vinyl Interchange Reaction. I. Vinyl Acetate with Carboxylic Acids Stronger Than Acetic Acid"  
H. Moppff and M. A. Osman  
Tetrahedron 24, 2205 (1968)

"Electrophilic Substitution in Indoles. III. Rearrangements of 3,3-Dialkyl Indolene"  
A. H. Jackson and J. F. Smith  
Tetrahedron 24, 2227 (1968)

"The Preparation and Reactions of Stable Phosphorus Ylides Derived from Maleic Anhydrides, Malesimes or Isomaleimes"  
L. Redaya and S. Theodoropoulos  
Tetrahedron 24, 2241 (1968)

"Deuterodecarboxylation. A Convenient Method for the Preparation of Labelled Pyridines"  
J. A. Zoltekwa, C. L. Smith and J. D. Meyer  
Tetrahedron 24, 2269 (1968)

"Triminooxyporphinum Diphenyl Ions and Triminodioxy Phosphorus from the Reaction of Trimino phosphines with 2-Diketones. Demonstration of the Co-existence of 4-Coordinated and 3-Coordinated Phosphorus in Solution. PMR Spectra"  
F. Mézire, A. V. Patwardhan, H. J. Kugler and C. P. Smith  
Tetrahedron 24, 2275 (1968)

"Zur Struktur und Stereochemie des Amorolins und Amorolins Esser neuer Alkaloid von Dihydroproporphin-Typ-LX"  
W. Dopek and J. Plentie  
Tetrahedron 24, 2297 (1968)

"The Structure of Sclerotin, a Metabolite of Sclerotinia Libertiana"  
T. Tokoroyama, T. Kamikawa and T. Kubota  
Tetrahedron 24, 2345 (1968)

"Nucleophilic Dequaternization of Condensed Azetidinum Salts. III. 8-Methyl-8-azonium Triacyclo[2.2.1.1.2.7]monene Salts -- an NMR Study"  
K. Igarashi, T. Homma, T. Ito and I. Ueno  
Tetrahedron 24, 2357 (1968)

"Correlation of Kinetic Studies by NMR and Other Methods. Rates of Inversion of Doubly-bridged Biphenyl by NMR"  
M. Ogi and R. Demura  
Tetrahedron 24, 2377 (1968)

"Geminal Coupling Constants in Methylenecyclohexane. Nitrogen and Oxygen Atoms in 3- and 6-Membered Ring Compounds"  
R. M. Cogar and T. A. Crabb  
Tetrahedron 24, 2383 (1968)

"Cycloaddition of Furan with Nitritimines"  
P. Caro  
Tetrahedron Letters 743 (1968)

"Unusually Low PCH Coupling Constants in the Nuclear Magnetic Resonance Spectra of Phosphonium Salts and Phosphine Oxides"  
D. W. Allen, I. T. Millar, and J. C. Tebby  
Tetrahedron Letters 745 (1968)

"Addition Reactions of Glycals. III. Chlorination of Cycloaddition of Furan with Nitritimines"  
J. F. Kotley and J. H. Rogers  
Tetrahedron Letters 755 (1968)

"Novel Triterpenes from Silk Spruce (Picea Sitchensis [Bong.] Carr)"  
J. F. Kotley and J. H. Rogers  
Tetrahedron 24, 2381 (1968)

"Nitric Acid Esters of Pyrimidine Nucleosides"  
R. Buschinsky and U. Epenberger  
Tetrahedron Letters 5103 (1967)

"Nuclear Magnetic Resonance Spectra of Protonated 2,2'-Dimehylbenzophenonum"  
M. van der Linde, J. W. Dornseiffen, J. U. Veenland and Th. J. de Boer  
Tetrahedron Letters 525 (1968)
"The Structure of Petasin, A New Sesquiterpene from Petasites Japonicus Maxim,"
K. Hays and T. Takagi
Tetrahedron Letters 629 (1968)

"A Novel Dipyridyl-Dipyrromethene Prodigiosin Analog from Serratia Marcescens,"
H. N. Wasseman, D. J. Friedland and D. A. Morrison
Tetrahedron Letters 641 (1968)

"The Conformation of Cyclic Ketones, Solvent Shifts in NMR,"
T. Ledaal
Tetrahedron Letters 651 (1968)

"Total Synthesis of Kanmycin-A, "Chloror" von Flavon- and Biflavonoderivaten" und "Terpenoids, Orientalis"".
N. Kurihara, H. Shibata, T. Ueno, and H. Nakatsuka
Tetrahedron Letters 839 (1968)

"Canadensolide - An Antifungal Metabolite of Penicillium Canadense,"
M. J. McCormick, J. L. C. Wright, P. W. Brim, B. M. Clarke, and S. A. Hutchinson
Tetrahedron Letters 727 (1968)

"The New-Hydroxylation and non-Gentoxylolation of Pyridine Octaethylammonochromes",
R. Bonnet and M. J. Dimsdale
Tetrahedron Letters 731 (1968)

"2-Thionol- and 2-Acetol-Azulenes",
A. V. El'tsov, A. A. Gineine and L. N. Kivokurczeva
Tetrahedron Letters 733 (1968)

"Vinca Alkaloids, XXX. Chemistry of the Deoxyvinblastines (Oxy-VLB), Lecovin (VLB), and Plenorosine, Dinergic Alkaloids from "Vinca Rosea" Linn. (Catharanthus Roseus G. Don)",
K. Neuss, H. Gomian, N. J. Cone and L. L. Hucklestep
Tetrahedron Letters 783 (1968)

"The Structure of Tabernessine",
R. F. Benol, R. R. Burnett and J. D. Medine
Tetrahedron Letters, 807 (1968)

"Conomurevin, A New Coumarin from Murraya Paniculata (L.) Jack",
E. Ramstad, W. C. Linn, T. Lin and W. Koo
Tetrahedron Letters, 811 (1968)

"G-Substituted Sulfoxanilides and Sulfonic Acids, I. G-Mtro Derivatives",
B. Locy, F. Doonan, I. M. Fried and M. M. Goodman
Tetrahedron Letters, 817 (1968)

"The Structure of Kusunox, A New Sesquiterpene from Petasites Japonicus Maxim.,"
K. Hays and T. Takagi
Tetrahedron Letters 629 (1968)

"Chloroform of Flavon- and Flavonoldervativen"
H. Loh and H. Diederich
Tetrahedron Letters 715 (1968)

"The Isoxazole Aromatization Reaction, A Synthetic Approach to Diterpenoid Phenols",
M. Ohashi, T. Maruzihi and H. Kakiyasa
Tetrahedron Letters 719 (1968)

"Thermal Decomposition of Tropometocetylhydroxone",
T. Nukai, T. Nakasawa and K. Isobe
Tetrahedron Letters 565 (1968)

"The Reactions of N-Halosuccinimides with 2-Hydroxy-3-(O-Akylvinyl)-1,4-Naphthoquinones",
K. H. Dudley, and R. W. Miller
Tetrahedron Letters 565 (1968)

"Stereoselective Synthesis of (5)-Lermophil-3,11-Diene and Related Compounds. Comments on the Proposed Structure of Lermophile",
E. Piers and H. J. Keizer
Tetrahedron Letters 583 (1968)

"Rotational Barriers in o-(N,N-Dimethylcarbanoyl)-Oximes",
C. Hacket Busherrer, and M. A. Tobias
Tetrahedron Letters 595 (1968)

"Fragmentation of a Griinwald Reagent",
G. Frankei and J. W. Cooper
Tetrahedron Letters 595 (1968)

"Application of Paramagnetic Additions of the Structure Determination of Some Pyrazoles by NMR",
Tetrahedron Letters 617 (1968)

"Total Synthesis of Kenaycyle-A",
M. Okajima, A. Basug, K. Kirihara, H. Shibata, T. Ueno, and H. Nishimura
Tetrahedron Letters 623 (1968)


"Synthesis of 5,6-Dimethoxy-7-acetoxynorbornene and 5,6-Dimethoxy-7-acetoxynorbornone"
B. François, H. C. Baird, Jr., and J. N. Surridge
J. Org. Chem. 23, 1288 (1958)

"Reaction of Nitro Alcohols with Sulfur Tetrafluoride"
K. Baum
J. Org. Chem. 23, 1293 (1958)

"The Oxidation of Amines with Lead Tetraacetate, II"
B. T. Gillis and M. P. Lemontagne
J. Org. Chem. 23, 1294 (1958)

"The Acetate-Catalyzed Enolization of 2-Butanone"
J. Warkentin and K. A. Cox
J. Org. Chem. 23, 1301 (1958)

"Conformational Analysis of the Carbon-Oxygen Bond of Alcohols Using 1H NMR"
H. L. Baad and Y. S. Kim
J. Org. Chem. 23, 1303 (1958)

"Indolothiapylium Compounds, IV. Indol-1,2-e thiapylium Perchlorate"
T. E. Young and C. J. Omenshott
J. Org. Chem. 23, 1306 (1958)

"Reinvestigation of the Orientation of Halogen Substitution in Imidazoles by Nuclear Magnetic Resonance Spectroscopy"
M. E. R. Holdt and R. E. Besusson
J. Org. Chem. 23, 1307 (1958)

"Malleability of Poly(methyl Methacrylate) Prepared by Radical Polymerization Within a Monolayer of Methyl Methacrylate Adsorbed on Montmorillonite"
A. Blumstein and A. C. Wartner
J. Polymer Sci., Pt B, 2, 65 (1958)

"Investigation of Phase Transition in Adsorbed Water by NMR"
V. I. Khizhnyak and V. P. Kiselev
J. Struct. Chem. USSR (Engl. Transl.) 8, 102 (1967)

"PMR Study of the Structure of Aquapoly Compounds. I. Calcium Polymethylene and Tungstates"
V. V. Gantyuk, V. V. Krivobok, and V. V. Vokhmsky

"Study of the Nature of the Hydration of Epsiconyate by Means of the Infrared Absorption Spectrum and Proton Magnetic Resonance"
G. F. Stavitskaya, Ya. I. Ryshkin, A. I. Koltsov, E. I. Shul'gin, and A. A. Pobedimostov

"IR and PMR Spectra and Structure of Zirconium and Hafnium Borohydrides"
V. V. Volkov, E. V. Solobov, E. E. Zemov, and O. I. Shapiro

"NMR Study of Intramolecular Hydrogen Bond Protons in Quinoid Structures"
K. H. Kugler and O. M. Salterga

"Nuclear Magnetic Resonance Studies of Polysaccharides: Solutions"
M. B. Priket and R. D. Davis
Macromolecules 1, 87 (1968)

"On the Chromophore of Polycyctonitrile. V. The Oxidation of Isobutyronitrile"
J. Bradzins
Macromolecules 1, 72 (1968)

"Line Width of Nuclear Magnetic Resonance High Resolution Spectra of Vinyl Polymers"
A. J. Begno
Macromolecules 1, 93 (1968)

"Syntheses of Heterocycles, 105, Mitt.: Über Synthesen mit Kohlenstoff-Abkömmlingen"
E. Ziegler, R. Boder, H. Stradzsky and E. Friedewaldskis
Monatsh. Chem. 91, 2001 (1960)

"Heterolytische Anlagerung an Acetylen-Verbindungen, 1. Mitt.: Stereochemie und kinetik der Anlagerung in System Dibenzylcyanyle-3-Brom-Succinimid-Boräquivalente-Wasser"
A. Jortzschkeff and S. L. Spassev
Monatsh. Chem. 91, 2272 (1960)

"Heterolytische Anlagerungen an Acetylen-Verbindungen, 2. Mitt.: Einwirkung von N-Bromsuccinimid auf 4-Pheny1-3-buty1-1-ol oder 3-Pheny1-2-propan-1-ol im Eissieher"
A. Jortzschkeff and S. L. Spassev
Monatsh. Chem. 92, 2226 (1968)

"Darstellung des 2,4,6-Tri-O-acetyl-3-O-[benzthiolio]-carbonyl]-3-O-galaktopyranosylbromids"
W. Sihrai, R. L. Liebert, and L. Schmid
Monatsh. Chem. 92, 2180 (1968)

"NMR Studies of Craniocicline S in Solution"
A. M. Liguori and F. Conti
Nature 211, 615 (1966)

"3-H-Spektroskopische Untersuchung von Aminomethylchloro-pentacarbonylchrom(0)"
K. Moser and E. O. Fischer
Naturwissenschaften 54, 615 (1967)

"Angular-Momentum Detection in Magnetic Resonance at Low Fields"
E. Arimondo

"Paramagnetic Resonance Experiments at Low Fields with Angular-Momentum Detection"
G. Ahlo, E. A. Arimondo, C. Ascoli, and A. Bonzini

"Some Reactions of dl-Champhoric Acid Derivatives"
M. Maasooor-I-Roha, (Mbr.) M. Abouer and (Mbr.) S. Querciati

"Spin-Static Relaxation of Protons and Deuterons in Hg(NO3)2 and Hg(DO)2"
L. Klemens and T. Zehkin

"An N. M. R. Search for Thermal Anomalies in Proton Spin-Static Relaxation Times for Water"
L. E. Bowen
Phys. Letters 29A, 150 (1968)

"Comments on NMR Resolution of the Chemical Shift in Solids"
J. S. Waugh, L. N. Ruber, and E. D. Ostrick
Phys. Letters 29A, 211 (1968)
"Condensation of Alkylene Phosphorofluoridites with 1,3-Alkadienes"
A. A. Petrov, H. A. Razumova and Zh. L. Svitikho
J. Gen. Chem. USSR (English Transl.) 37, 1340 (1967)

"The Preparation and Nuclear Magnetic Resonance Study of 5- and 7-Nitrobenzole"
N. R. Baulin, W. G. Kruggel, D. D. Titus and D. C. Van Landuyt
J. Heterocycl. Chem. 5, 1 (1968)

"The Synthesis of 2,3-Dicyanomethylaminoimidazo[2,1-b]pyrazinino [2,3-d], Pyrido[2,3-d]-, Imidazo[4,5-e]- and Imidazo [1,5-a]pyridazines"
J. Heterocycl. Chem. 5, 13 (1968)

"Synthesis of Some 6-Methoxyimidazo[1,2-b]pyridazines"
J. G. Lombardino
J. Heterocycl. Chem. 5, 35 (1968)

"The Synthesis of Pyridazino[4,3-d]pyridazines, Pyrazino[2,3-d]pyridazines and a Pyrimide[4,3-d]pyridazines"
L. DiStefano and R. N. Castle
J. Heterocycl. Chem. 5, 53 (1968)

"The Mass Spectra of 1,2,4-Oxadiazolines"
R. M. Srivastava and L. B. Clopp
J. Heterocycl. Chem. 5, 61 (1968)

"The Nitrobenzenes and N-benzhydrones"
D. E. Bowell, J. A. Brennan, P. S. Landis, P. G. Rolenstad
J. Heterocycl. Chem. 5, 69 (1968)

"Aztridinyl ketones XVIII. The Hydrogenation of 2-Phenyl-3-Arylazetidines to Aztridinylcarbinols"
J. Heterocycl. Chem. 5, 77 (1968)

"Furamino-substituted Heterocycles. II. Purazans"
N. K. Goborn
J. Heterocycl. Chem. 5, 83 (1968)

"Trifluoromethylfurans"
E. L. Banbury, H. K. Yektin and K. K. Wyckooff
J. Heterocycl. Chem. 5, 95 (1968)

"A Nuclear Magnetic Resonance Study of Sulfur and Selenium Analog of Silonycyclanes"
G. Grandolini, A. Ricci, W. P. Buch-Holz and P. Perini
J. Heterocycl. Chem. 5, 133 (1968)

"Catalytic Reduction of Xanthone"
G. Gatti and C. Morelli
J. Heterocycl. Chem. 5, 145 (1968)

"Recent Investigations of Indian Medicinal Plant Products"
S. C. Puroshuck
J. Indian Chem. Soc. 35, 837 (1968)

"Isomerization of the 1,3,5-Tribromo-1,2,3-triphenyltriphosphorinatrium, [BF4][P(OMe)3]3"
B. G. Vashkes, R. M. Chen, and T. Feuster

"Analysis of C-H Satellite Spectra of Symmetrical Pyrimidine Complexes by PMR Spectroscopy"
J. M. Pauld, Jr., R. M. Creecy, and J. M. Goldstein
J. Mol. Spectrosc. 19, 107 (1966)

"Double Quantum Transitions in Nuclear Magnetic Resonance Spectra of Systems with Four Protons"
L. Lambazi and P. Tagdel
J. Mol. Spectrosc. 25, 113 (1966)

"Fluorophenyl Derivatives of the Elements XIV. The Thermal Decomposition of 2-Fluorophenyloxyphosphoramide"
A. C. Ober, A. J. Zuckerman, H. B. Niles and A. O. Naseby
J. Organometal. Chem. 11, 385 (1968)

"Some New Associated (Phenylethynyl)Metallic and Organicmetallic Compounds"
E. A. Jeffrey and T. W. Mill
J. Organometal. Chem. 11, 99 (1968)

"Beitrag zur Chemie des bor bors XII. Darstellung von Organobororganogenen"
K. Huch and H. Vahrenhagen
J. Organometal. Chem. 11, 299 (1968)

"The Prediction of 29Si-H and 13C-H Coupling Constants in Substituted Silanes and Methanes"
M. A. Jensen
J. Organometal. Chem. 11, 423 (1968)

"The Reaction of o-Trialkylsilyl Carbanes"
J. W. Connelly
J. Organometal. Chem. 11, 629 (1968)

"Functionally Substituted Trisilylamino Derivatives"
L. W. Read and R. C. Elliott
J. Organometal. Chem. 11, 477 (1968)

"Polyhalo-organometallic and Organometalloidal Compounds. XIII. Some Perchlorophenyl-substituted Polysilylides"
P. J. Morris and R. Gilman
J. Organometal. Chem. 11, 463 (1968)

"Polyhalo-organometallic and Organometalloidal Compounds. XIV. Some Polychlorophenyl Compounds Containing Silicon and Tin"
K. Shina, T. Brennan and R. Gilman
J. Organometal. Chem. 11, 471 (1968)

"Study of the Chemical Bond in Methyltin Halides and Organotin Compounds I. A Study of the Interaction of the Halogen Bond in Ethylchlorotin Compounds"
E. V. von den Berghe and P. F. van der Kelen
J. Organometal. Chem. 11, 479 (1968)

"Comparative PMR Study of Methyl-, Ethyl- and Halogenostylytin Halides"
L. Verdonck, G. P. van der Kelen and Z. Kekulá
J. Organometal. Chem. 11, 487 (1968)

"The PMR Spectra of Functionally-Substituted Ethyltin Compounds"
L. Verdonck and G. P. van der Kelen
J. Organometal. Chem. 11, 491 (1968)

"An Inclusion Compound from Hexaphenyliditin and Tetraphenyltin"
W. R. McHillmont, R. C. Miller and M. Thevarasa
J. Organometal. Chem. 11, 499 (1968)

"Brom-substituted Propyl- and Cychlexyl-tin Compounds"
H. Meyer
J. Organometal. Chem. 11, 525 (1968)

"Reactivity of Metal-Metal Bonds. V."
A. D. Beveridge and H. C. Clark
J. Organometal. Chem. 11, 601 (1968)
### Author Index - IIT NMR Newsletter No. 115

<table>
<thead>
<tr>
<th>Author</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anteunis, M.</td>
<td>12</td>
</tr>
<tr>
<td>Banas, E.M.</td>
<td>4</td>
</tr>
<tr>
<td>Becconsall, J.K.</td>
<td>6</td>
</tr>
<tr>
<td>Bene, G.J.</td>
<td>28</td>
</tr>
<tr>
<td>Bothner-By, A.A.</td>
<td>22</td>
</tr>
<tr>
<td>Bunn, A.</td>
<td>1</td>
</tr>
<tr>
<td>Crepau, D.</td>
<td>34</td>
</tr>
<tr>
<td>Cudby, M.E.A.</td>
<td>1</td>
</tr>
<tr>
<td>Easwaran, K.R.K.</td>
<td>26</td>
</tr>
<tr>
<td>Fraenkel, G.</td>
<td>14</td>
</tr>
<tr>
<td>Friedel, R.A.</td>
<td>15</td>
</tr>
<tr>
<td>Glasby, J.S.</td>
<td>10</td>
</tr>
<tr>
<td>Gore, E.S.</td>
<td>18</td>
</tr>
<tr>
<td>Gutowsky, H.S.</td>
<td>18</td>
</tr>
<tr>
<td>Johnson, F.A.</td>
<td>16</td>
</tr>
<tr>
<td>Kenney, G.</td>
<td>31</td>
</tr>
<tr>
<td>Knorr, R.</td>
<td>20</td>
</tr>
<tr>
<td>Lehn, J.M.</td>
<td>34</td>
</tr>
<tr>
<td>Mehrhof, W.</td>
<td>8</td>
</tr>
<tr>
<td>Pohl, L.</td>
<td>8</td>
</tr>
<tr>
<td>Raban, M.</td>
<td>31</td>
</tr>
<tr>
<td>Retcofsky, H.L.</td>
<td>15</td>
</tr>
<tr>
<td>Stothers, J.B.</td>
<td>23</td>
</tr>
<tr>
<td>Vijayaraghavan, R.</td>
<td>26</td>
</tr>
<tr>
<td>Wenzel, B.E.</td>
<td>4</td>
</tr>
</tbody>
</table>

### Sponsors of the IIT NMR Newsletter

- Albright and Wilson (Mfg) Ltd. (England)
- American Cyanamid Company
- Badische Anilin- & Soda-Fabrik AG (Ludwigshafen, Germany)
- The British Petroleum Company Limited (England)
- Carnegie-Mellon University
- Dartmouth College
- The Dow Chemical Company
- Fairchild Camera and Instrument Corporation
- Farbenfabriken Bayer AG (Germany)
- J. R. Geigy S.A. (Switzerland)
- The Goodyear Tire and Rubber Company
- W. R. Grace and Company
- Hooker Chemical Corporation
- Illinois Institute of Technology
- Imperial Chemical Industries Limited (Great Britain)
- The Lilly Research Laboratories, Eli Lilly and Company
- Merck, Sharp and Dohme Research Laboratories
- Monsanto Company
- Montecatini Edison S.p.A. (Italy)
- National Research Council of Canada
- Nuclear Magnetic Resonance Specialties, Inc.
- The Procter and Gamble Co., Miami Valley Laboratories
- The Royal Institute of Technology (Sweden)
- Shell Development Company
- Southern Research Institute
- Sterling-Winthrop Research Institute
- Texas Christian University Research Foundation
- Union Carbide Corporation
- Varian
- Wilmad Glass Company, Inc.