Illinois Institute of Technology
N-M-R Newsletter

Brouwer, Mackor
NMR Spectra of Protonated Ketones (Flialkylhydroxycarbonium Ions)

Richards
Dynamic Nuclear Polarisation in Phosphorus compounds

Kim, Anderson, J. M.
The NMR Spectrum of 1,5-Dimethylnaphtalene; or A Deceptively Complicated Poor Girl's Decoupled Spectrum

King
Uses for a Frequency Synthesizer, 1

Wisnosky, Kostelnik
A Program Yclept CYCLIST

Reever
1F NMR of Fluoroberylolate ions in Solution

Johnson, F. A.
19F and 31P NMR of P_2F_4

Hummer, Callaghan
C-C and C-H Bond Diamagnetic Anisotropies

Morton, Fulmor
An Example of Long-range Coupling Across Four Single Bonds

Barney, Lancaster
Variation of the V3521 Modulation Frequency

Jensen
Magnetic Non-equivalence/equivalence in Methylene Groups

Gutowsky
Spin-Echo Studies of Internal Rotation in CF_2BrCCl_2Br

Spasov
Rotational Isomerism in |-Oximino-Esters

Read, Goldstein
Adaptation of LACOSX-11 for the IBM-1620 Computer

Fraenkel, Togihira
1H and 13C Shifts in Pyridine

Kaufman
Modification of the Varian HA-60-EL Proton Stabilizer for Use with Other Nuclei

Levenberg
A Vernier Control for the HP 200AB Audio Oscillator

Lustig
Position Available in Instrumentation Section; Fourier Transform Spectrometry

OVER
Please note dates!!!!

Deadline Dates: No. 105 - 10 June 1967
 No. 106 - 10 July 1967

A monthly collection of informal private letters from laboratories of NMR. Information contained herein is solely for the use of the reader. Quotation is not permitted, except by direct arrangement with the author of the letter, and the material quoted must be referred to as a "Private Communication".
Dear Dr. Shapiro,

NMR spectra of protonated ketones (dialkylhydroxycarbonium ions)

The existence of an appreciable barrier to rotation about the partially double C-O bond in hydroxy- or alkoxycarbonium ions has recently gained increasing interest\(^1\)-\(^5\). The expectation that in protonated ketones the barrier must be high enough to render the two isomeric forms I and II observable by NMR has been borne out by the spectra (60 and 100 MHz) of a series of eight of these carbonium ions in HF:SbF\(_5\) at -20 °C. Unsymmetric ketones (\(R_1 \neq R_2\)) give two spectra, one for each isomer, the relative intensities of which vary with the combination of \(R_1\) and \(R_2\). (The isomer ratio varies from about one for ethyl isopropylketone to about 15 for methyl tert-butyketone.) Symmetric ketones (\(R_1 = R_2 = CH_3\), or \(C_2H_5\)) give spectra that show the methyl or ethyl groups to be magnetically non-equivalent.

The shielding of the OH hydrogen appears to depend exclusively on the alkyl group syn to the OH hydrogen (\(R_1\) in I, \(R_2\) in II); it increases from -14.7 ppm for \(R = CH_3\) to -14.4 for \(R = CH_3\), isopropyl, or neopentyl to -14.1 for \(R = CH_3\), tert-butyl. The shielding was found to be independent of the anti alkyl group. We believe the influence of the alkyl groups on the OH shieldings to be due mainly to steric effects on the solvation of the OH group. The shielding of hydrogens bonded to \(\text{C}_\alpha\) (the carbon attached to the carbonyl C) is greater by 0.05-0.11 ppm for alkyl groups anti to the OH hydrogen, whereas that for \(\beta\)-CH\(_3\) hydrogens is greater for syn alkyl groups by about 0.12 ppm (for \(R = CH_3\)) to about 0.04 ppm (for \(R = i-CH_2CH(\text{CH}_3)\)).

There is a weak long-range coupling between the \(\alpha\)-hydrogens of the two alkyl groups \(R_1\) and \(R_2\) ranging from 0.7 c/s in methyl-isopropyl to 1.8 c/s in methyl-ethyl hydroxycarbonium ion.

Various spectroscopic features point to the existence of preferred conformations about the OC-C\(_\alpha\) bonds. For \(\alpha\)-ethyl, isopropyl, and tert-butyl groups the most stable rotamer is probably that with \(\beta\text{CH}_3\) eclipsing the OH group (III), as found with unprotonated\(^6\) and protonated\(^5\) aldehydes. For \(\text{syn}\) alkyl groups the preferred rotamers are concluded to be as shown in IV for \(R_1 = \text{ethyl or isopropyl}, \) and similar to IV with three \(\beta\text{CH}_3\) groups for \(R_1 = \text{tert-butyl}.

Finally it is of interest to note that the existence of two distinct isomers of protonated acetaldehyde, as indicated in a recent paper by Hogeveen\(^8\), has been conclusively established. The spectrum at -20 °C in HF:SbF\(_5\), which appears to be entirely free from impurity peaks, shows not only two OH doublets but also two CH\(_2\) doublets (each pair with an intensity ratio of 4:1) and two overlapping doublets of quartets for the CH resonance.

With kind regards,

D.M. Brouwer

Amsterdam, 8th March 1967

Dear Barry,

We are at the present time extending our nuclear electron double resonance measurements to carbon-13 and phosphorus-31 nuclear resonances. The carbon-13 resonances are sometimes enhanced and sometimes reversed but in many compounds we are able to observe quite strong signals at 3300 gauss. We have just added a noise decoupler to this machine and are obtaining sharper and stronger carbon resonances from it. We are very interested in the mechanism by which the unpaired spin density is transferred from the radical to the carbon nucleus in the compounds for which the resonance is enhanced, and for the reason for the lack of this transfer in the compounds for which the resonances are inverted. It is too early yet to be able to give a definite answer to this question.

Some of the results on phosphorus resonances are however rather more clear. Measurements of thirteen organic compounds containing phosphorus in an oxidation state of five, and seven compounds with phosphorus in an oxidation state of three have been studied at both 3300 gauss and 12,500 gauss. Very strong enhancements of the phosphorus resonance are observed in all the trivalent phosphorus compounds except diethoxy chloro-phosphine where the effect at 12,500 gauss is rather small. Most of the trivalent compounds give a negative phosphorus resonance except for some compounds which have hydrogen directly attached to the phosphorus. We thought that this effect might be due to a 'three spin effect' in which the strong negative polarisation of the protons pumps the phosphorus into a positive enhancement. Triple resonance measurements have shown, however, that this is not so in these cases. There is therefore a fairly definite correlation between the nuclear polarisation in these experiments and the valence state of the phosphorus.

The mechanism by which the spin density is transferred from the radical to the phosphorus nucleus is too complex to treat quantitatively at this stage, but Peter Atkins and Raymond Dwek have been able to show qualitatively that one would expect a much more effective spin transfer to occur by interaction with the unshared pair of the trivalent phosphorus compounds than with the pentavalent phosphorus compounds.

We have a number of other topics which I hope to report on during the next few months but which are not quite ready at the present time.

Yours sincerely,

Short title: Dynamic nuclear polarisation in phosphorus compounds.
23 April 1967

Prof. Barry Shapiro
Illinois Institute of Technology
Chicago, Illinois 60616

Dear Barry:

The NMR Spectrum of 1,5-dimethylnaphthalene; or, a Deceptively Complicated Poor Girl's Decoupled Spectrum.

The analysis of the 1H NMR spectrum of 1,5-dimethylnaphthalene, recorded at 60 MHz on a Varian A-56/60A spectrometer, reveals an unusual high-order splitting pattern, similar to those reported by DeWolf and Baldeschwieler [1] and by Freeman and others [2], the latter most recently at the 8th ENC under the title, "A Poor Man's Spin Decoupler."

We considered the aromatic protons in 1,5-dimethylnaphthalene as two equivalent and uncoupled ABC systems, and neglected any coupling to the methyl groups. The spectrum is shown in Figure 1a (solvent, CDCl₃). This spectrum resembles neither the usual ABX (for example) pattern nor its "deceptively simple" modifications [3].

However, as indicated by DeWolf and Baldeschwieler, this pattern can be interpreted as the result of a fortuitous overlap of an A-transition with a B-transition, each of which carries the same C spin state. This overlap requires the appearance of high-order structure in the AB region of the spectrum, and the possibility of new structure (analogous to "spin-tickling" double resonance experiments) in the C region. For example, if J_{ab}, J_a, and J_{ac} are all positive, a high-field line in the A spectrum has frequency $-v_0 = J_{ab}/2 + J_{ac}/2$, and a highfield line in the B spectrum, $-v_0 - J_{ab}/2 - J_{bc}/2$, where the usual notation is used. If these lines overlap,

$$-v_0 + v_0 = (J_{ac} - J_{bc})/2 = 0,$$

which is identical to the statement about matrix elements of the Hamiltonian,

$$<a^a|H|a^a> = <a^a|H|a^a> = J_{ab}/2,$$

and the appearance of unusual high-order splitting in the AB region. This condition also implies
that, in order for such an effect to occur, $\delta_{ab} = (J_{ac} - J_{bc})/2$.

In the spectrum shown, it is difficult to tell the relative sign of J_{bc} by inspection because the absolute magnitude of this coupling is so small. The calculation shown in Figure lb offers a least-squares error fit to the experimental spectrum to within experimental error (approximately 0.8 hz); the calculation shown in Figure 1c, with J_{bc} of opposite sign relative to J_a and J_c gives a least-squares error of more than twice that of calculation lb.

The spectrum of 1,5-dimethylnaphthalene in C_6D_6 is shown in Figure 1d. Here, the effect of the fortuitous overlap of the A and B lines is somewhat less dramatic. As Freeman has shown, in molecules where the chemical shift may be very dependent on the solvent, the "poor man's (or, for us, girl's) spin decoupling" technique may be extremely valuable in spectral assignment.

The spectrum of 1,5-dimethylnapthalene reported earlier [4] at resolution lower yet was analyzed with slightly different values of coupling constants. We acknowledge the guidance of Professor Ernst Berliner of this Department; the analysis of the NMR spectrum of 1,5-dimethylnaphthalene was originally undertaken as part of his research in aromatic substitution.

Sincerely yours,

Jean B. Kim

April 25, 1967

Dr. B. L. Shapiro
Department of Chemistry
Illinois Institute of Technology
Chicago, Illinois 60616

Dear Barry:

We have recently acquired a Hewlett-Packard 5100A frequency synthesizer and consider it the finest invention since the wheel. Using it to drive a V-4311 when running 31P or 19F on our old and unlocked HR-60 makes calibration easy and sideband ambiguity much less troublesome. For quick observation on the scope we use a remote programmer on the 10^{-2}-10^3 decades with two banks of decade switches selected by a manual switch or a flip-flop driven by the linear sweep flyback:

![Linear Sweep](Schmitt) ![Flip-flop](5100A Selectors)

With sample and reference peaks displayed on alternate sweeps of the long-persistence CRO rapid calibration to at least ± 5 Hz can be achieved by superimposition, even for very large shifts.

Further talents of this very versatile device are being explored and will be reported in these letters provided, as we all hope, that they are still extant.

Sincerely yours,

Roy W. King

WMK/1d
A computer program has been written (Mellon Institute Report February 1, 1967) to solve the simple, nevertheless time-consuming, problem of measuring NMR spectra and determining an accurate experimental frequency for each line. A brief explanation of the procedure and of the program called 'cyclist' follows.

As many as 20 scans (typically an equal number in each direction) with appropriate audio sidebands are made over the region of interest. The observed lines (max. 500 each spectrum) are assigned a number (1 to n) beginning with the line of lowest frequency. The relative position of each line with respect to the sidebands is measured in centimeters and recorded. These measurements together with the centimeter position and frequency of each sideband are punched on data cards. (Twelve measurements may be punched per card.)

The program determines a scale factor Hz/cm for each spectrum sheet, interpolates the line position with respect to the sidebands and assigns a frequency in Hz to each line. Each line then has a distribution of frequencies that corresponds to the number of spectrum sheets on which it appeared. From this data the mean frequency of each line is determined and the rms error for each distribution is obtained. The output also contains the mean rms error of all measurements.

Sample spectra Fig. (1) and corresponding output Fig. (2) are shown below. We have found this method to be a great improvement over the various hand and electronic approaches that we have tried in the past. The major advantages are that efficiency increases with the number of calculations involved and that consistent accuracy can be depended upon.

A complete Fortran (63) source list (53 card images) and instructions will be furnished upon request.
<table>
<thead>
<tr>
<th>LINE</th>
<th>SPECTRUM</th>
<th>SPECTRUM</th>
<th>SPECTRUM</th>
<th>SPECTRUM</th>
<th>LINE</th>
<th>MEAN</th>
<th>RMS ERROR</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>406.79</td>
<td>406.76</td>
<td>406.77</td>
<td>406.79</td>
<td>1</td>
<td>406.780</td>
<td>.008</td>
</tr>
<tr>
<td>2</td>
<td>407.59</td>
<td>407.59</td>
<td>407.63</td>
<td>407.64</td>
<td>2</td>
<td>407.611</td>
<td>.016</td>
</tr>
<tr>
<td>3</td>
<td>410.24</td>
<td>410.28</td>
<td>410.28</td>
<td>410.33</td>
<td>3</td>
<td>410.284</td>
<td>.022</td>
</tr>
<tr>
<td>4</td>
<td>410.73</td>
<td>410.76</td>
<td>410.76</td>
<td>410.84</td>
<td>4</td>
<td>410.777</td>
<td>.025</td>
</tr>
<tr>
<td>5</td>
<td>414.12</td>
<td>414.13</td>
<td>414.09</td>
<td>414.14</td>
<td>5</td>
<td>414.121</td>
<td>.013</td>
</tr>
<tr>
<td>6</td>
<td>414.43</td>
<td>414.49</td>
<td>414.96</td>
<td>414.48</td>
<td>6</td>
<td>414.492</td>
<td>.032</td>
</tr>
<tr>
<td>7</td>
<td>415.76</td>
<td>415.72</td>
<td>415.22</td>
<td>415.62</td>
<td>7</td>
<td>415.755</td>
<td>.028</td>
</tr>
<tr>
<td>8</td>
<td>417.30</td>
<td>417.28</td>
<td>417.20</td>
<td>417.31</td>
<td>8</td>
<td>417.292</td>
<td>.008</td>
</tr>
<tr>
<td>9</td>
<td>423.44</td>
<td>423.44</td>
<td>423.49</td>
<td>423.52</td>
<td>9</td>
<td>423.473</td>
<td>.023</td>
</tr>
<tr>
<td>10</td>
<td>423.76</td>
<td>423.80</td>
<td>423.79</td>
<td>423.86</td>
<td>10</td>
<td>423.802</td>
<td>.026</td>
</tr>
<tr>
<td>11</td>
<td>424.72</td>
<td>424.75</td>
<td>424.76</td>
<td>424.82</td>
<td>11</td>
<td>424.763</td>
<td>.024</td>
</tr>
<tr>
<td>12</td>
<td>425.03</td>
<td>425.07</td>
<td>425.10</td>
<td>425.14</td>
<td>12</td>
<td>425.087</td>
<td>.025</td>
</tr>
<tr>
<td>13</td>
<td>431.46</td>
<td>431.42</td>
<td>431.37</td>
<td>431.29</td>
<td>13</td>
<td>431.384</td>
<td>.041</td>
</tr>
<tr>
<td>14</td>
<td>432.79</td>
<td>432.96</td>
<td>432.88</td>
<td>432.94</td>
<td>14</td>
<td>432.894</td>
<td>.044</td>
</tr>
<tr>
<td>15</td>
<td>434.07</td>
<td>434.15</td>
<td>434.11</td>
<td>434.20</td>
<td>15</td>
<td>434.132</td>
<td>.032</td>
</tr>
<tr>
<td>16</td>
<td>434.39</td>
<td>434.47</td>
<td>434.45</td>
<td>434.54</td>
<td>16</td>
<td>434.463</td>
<td>.039</td>
</tr>
<tr>
<td>17</td>
<td>437.79</td>
<td>437.78</td>
<td>437.74</td>
<td>437.83</td>
<td>17</td>
<td>437.773</td>
<td>.023</td>
</tr>
<tr>
<td>18</td>
<td>438.24</td>
<td>438.27</td>
<td>438.21</td>
<td>438.20</td>
<td>18</td>
<td>438.251</td>
<td>.017</td>
</tr>
<tr>
<td>19</td>
<td>440.92</td>
<td>440.93</td>
<td>440.93</td>
<td>440.89</td>
<td>19</td>
<td>440.918</td>
<td>.010</td>
</tr>
<tr>
<td>20</td>
<td>441.73</td>
<td>441.69</td>
<td>441.72</td>
<td>441.75</td>
<td>20</td>
<td>441.722</td>
<td>.014</td>
</tr>
</tbody>
</table>

GLOBAL RMS ERROR IS .027

<table>
<thead>
<tr>
<th>LINE</th>
<th>SPECTRUM</th>
<th>SPECTRUM</th>
<th>SPECTRUM</th>
<th>SPECTRUM</th>
<th>LINE</th>
<th>MEAN</th>
<th>RMS ERROR</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>420.04</td>
<td>419.99</td>
<td>420.01</td>
<td>420.15</td>
<td>1</td>
<td>420.015</td>
<td>.041</td>
</tr>
<tr>
<td>2</td>
<td>420.60</td>
<td>420.50</td>
<td>420.54</td>
<td>420.62</td>
<td>2</td>
<td>420.546</td>
<td>.071</td>
</tr>
<tr>
<td>3</td>
<td>428.09</td>
<td>428.00</td>
<td>428.04</td>
<td>428.623</td>
<td>3</td>
<td>428.047</td>
<td>.061</td>
</tr>
<tr>
<td>4</td>
<td>428.70</td>
<td>428.54</td>
<td>428.62</td>
<td>428.623</td>
<td>4</td>
<td>428.623</td>
<td>.111</td>
</tr>
</tbody>
</table>

GLOBAL RMS ERROR IS .071

Fig. 2
Dr. B. L. Shapiro
Illinois Institute of Technology
Chicago, 60616
U. S. A.

Dear Barry,

We have done some studies of the 19F magnetic resonance of fluoroberyllate ions in solution. The equilibrium constant for the dissociation reaction:

$$\text{BeF}_4^- \rightleftharpoons [\text{BeF}_3(\text{OH}_2)]^- + F^-$$

was determined from intensity measurements as $K_e = 8.0 \pm 0.9 \times 10^{-2}$ moles Kg$^{-1}$. Line width studies show that in addition to the dissociation and re-association process there is fluoride ion exchange. We have analysed the reactions according to the following scheme and we give below the rough rate constants. These are correct within a factor of three at 33°C.

\begin{align*}
\text{BeF}_4^- & \overset{k_1}{\rightleftharpoons} \text{BeF}_3^- + F^- \quad \ quad
The slow process is the insertion of a water molecule in the tightly bound tetrahedral arrangement in BeF$_2^-$. We also find two resonances in BeF$_2$ solutions in water and evidence seems conclusive that a non dissociative equilibrium of the type:

$$\text{BeF}_2 \rightleftharpoons (\text{BeF}_2)_{\text{tr}}$$

occurs. 9Be chemical shifts do not change very much as might be expected.

We are preparing a paper which will contain these conclusions as well as other aspects of the problem. We have ambitions to do a complete line shape fit so as to get better rate constants and attempt a temperature study. To this end we have been modifying in a small way the comparative Fortran IV program 'BLOKIN' written by Chuck Holm at Shell. Our aim of making this iterative is now virtually accomplished. Mr. Stewart has been largely responsible for this work. The basic program will handle up to 30 lines with simultaneous exchange occurring. The rates in equations (1)-(4) can be regarded as a simple form of a 9 site problem where the spin states of the 9Be nucleus produce quadruplets for BeF$_3^-$ and BeF$_4^-$.

All Best Wishes,

L. W. Reeves
Professor

LWR/bas
April 20, 1967

Professor Bernard L. Shapiro
NMR IIT Letters
Illinois Institute of Technology
Chicago, Illinois 60616

Dear Barry,

F19 and P31 NMR of P\textsubscript{2}F\textsubscript{4}

In cooperation with Dr. Ralph Rudolph (F. J. Seiler Research Laboratory, U. S. Air Force Academy), I've been working on the P31 and F19 spectra of P\textsubscript{2}F\textsubscript{4}, diphosphorous tetrafluoride. This is one of the few AA'X'A''XX' systems I am aware of and this one has some interesting quirks.

First, the F19 spectra are identical at 12.8, 40 and 56 Mc - thus all the F's have the same shift, as do the two P's. Second, we observe no changes in F19 spectra down to -150°C, implying the configuration is fixed.

Proceeding on these assumptions we have arrived at the constants in Table I, following Harris [Mol. Phys., 10, 437 (1966)] and Lynden-Bell [Mol. Phys., 6, 601 (1963)].

<table>
<thead>
<tr>
<th>Coupling Constants of P\textsubscript{2}F\textsubscript{4}</th>
</tr>
</thead>
<tbody>
<tr>
<td>J\textsubscript{PF} (direct) = 1198.5 cps</td>
</tr>
<tr>
<td>J\textsubscript{PF} (distant) = -67.5 cps</td>
</tr>
<tr>
<td>J\textsubscript{PP} = 227.4 cps</td>
</tr>
<tr>
<td>J\textsubscript{FF} = 34.4 cps</td>
</tr>
<tr>
<td>J\textsubscript{FF} (gem) = 0.0 cps</td>
</tr>
<tr>
<td>J\textsubscript{FF} (gem) ~ 300 cps</td>
</tr>
</tbody>
</table>

The relative signs of J\textsubscript{PF} and J\textsubscript{PF}' are certain - all others appear to be indeterminate. One of the J\textsubscript{FF}'s must be 0 ± 0.5 cps - this leads to extensive degeneracy (only four "characteristic" lines of the eight described by Lynden-Bell), and makes the calculated spectra quite insensitive to relative signs and to the magnitude of J\textsubscript{FF} (gem). The three values in column one are all quite similar to known values - the three in the second column appear to be the first of their kind.
IR and Raman spectra indicate the structure is "trans" i.e. $\psi \approx \pi$. We have tentatively assigned $J_{FF} = 34.5$ to the 'trans' coupling (dihedral angle $\sim 180^\circ$) and $J_{FF} = 0$ to the 'cis' ($\sim 80^\circ$), although this is admittedly rather speculative.

Sincerely,

Fred

Frederic A. Johnson
(205) 876-9037

Figure 1 - ^{19}F Low Field Half-Spectrum of P_2F_4 at 40 Mc
Dear Professor Shapiro,

C-C and C-H Bond Diamagnetic Anisotropies

Thank you for your reminder that a subscription to the IIT N-M-R newsletter is due from us. Recently, we have been commissioning a new laboratory to accommodate both our existing Perkin-Elmer R10, together with our new addition, the last of the A.E.I. R.S2 spectrometers. Nevertheless, we have found sufficient time to do some NMR research, and would like to inform you of some of our findings.

Considerable interest has been shown in bond diamagnetic susceptibility parameters, and the possibility of using these in the calculation of proton chemical shifts. Because limited success in predicting shifts had been achieved by calculating the secondary fields arising from the anisotropy in bond diamagnetic susceptibilities, we have attempted to calculate the chemical shifts for some compounds in which we are interested (bicyclo[2.2.1] heptanes). Using the various literature values that are available for $\Delta \chi_{CC}$ and $\Delta \chi_{CH}$ we have only achieved moderate success when account is taken of C-H contributions, but we have obtained quite good agreement with observed shifts in calculations which account only for C-C contributions to shielding.

This stimulated us to review the bond anisotropy situation. As a result, it was evident that the literature values for $\Delta \chi_{CC}$ and $\Delta \chi_{CH}$ were by no means consistent. This appeared in part to be due to the apparently misplaced necessity for making compatible the results of NMR and magnetic birefringence measurements. We have, therefore, deduced $\Delta \chi_{CC}$ and $\Delta \chi_{CH}$ purely from NMR measurements. Our results are certainly incompatible with magnetic birefringence measurements, and from our work it would appear that the reason for this could be due to a fallacy in the method used for comparing continued...
the data from the two techniques. The generally accepted method of comparison is essentially dependent on the assumption that bond magnetic susceptibility components are truly additive. We consider that unlike some other bond parameters this is not the case for bond susceptibilities.

We have devised a rigorous method of estimating both the magnitudes of the C-C and C-H bond anisotropies, and the point along the C-H bond at which the induced point dipole acts, assuming that the C-C point dipole acts from the centre of the C-C bond. \(\Delta \chi_{\text{CC}} \) is found to be \(+4.3 \times 10^{-6} \text{ cm}^3 \text{ mole}^{-1}\) and \(\Delta \chi_{\text{CH}} \) is zero, or less likely to have a small negative value not exceeding \(-1.2 \times 10^{-6} \text{ cm}^3 \text{ mole}^{-1}\), in which case the point dipole acts from the carbon atom. The negative sign is surprising, but Zurcher \(^1\) has previously found a value of \(-0.74 \text{ cm}^3 \text{ mole}^{-1}\) for \(\Delta \chi_{\text{CH}} \). These values, which incidentally agree very favourably with those obtained by Moritz and Sheppard \(^2\) and other workers who have based their calculations only on NMR data, enable relative shifts for a wide range of hydrocarbons to be predicted.

Yours sincerely,

J. Homer

D. Callaghan

April 26, 1967

Dr. B. L. Shapiro
Illinois Institute of Technology
Technology Center
Chicago 16, Illinois

Dear Doctor Shapiro:

An Example of Long-range Coupling Across Four Single Bonds

We wish to report on an interesting example of long-range coupling across four single bonds. This coupling \(J_{1,3} \) is appreciably larger than is normally observed.\(^1\)

We believe that this large long-range coupling \(J_{1,3} \) occurs by the "Meinwald" type mechanism, that is, direct overlap between the small orbitals of the carbon atoms involved.\(^2\)

The initial approximate coupling constants and chemical shifts for the cyclobutane protons were refined by computer analysis.\(^3\) The structure and refined coupling constants are as follows:

\[
\begin{align*}
J_{1,2} &= +8.2 \text{ cps} \\
J_{1,3} &= +3.5 \text{ cps} \\
J_{1,4} &= +0.6 \text{ cps} \\
J_{2,3} &= +5.9 \text{ cps} \\
J_{2,4} &= +9.1 \text{ cps} \\
J_{3,4} &= -12.9 \text{ cps}
\end{align*}
\]

Very truly yours,

G. O. Morton and W. Fulmor
April 28, 1967

Dr. B. L. Shapiro
Illinois Institute of Technology
Chicago, Illinois 60616

Dear Barry:

The 2kHz modulation frequency of the V3521 integrator can be varied approximately ±5% by making the following modification:

(1) Remove C201 and C202 from the V3521.

(2) Install the following circuit:

```
  C1A     C1B     → To Junction, R201-R203
  •       •      
  C2      C2      → To Junction, R201-V201 (pin 1)
                  → To R202 (Free End)
```

C1 - 3.6 to 52 pf (Hammarlund type HFD-50)
C2 - Approximately 1000 pf, silver mica, selected to give center frequency of 2000 Hz.

We have found this useful in eliminating interferences between centerband peaks in an F19 spectrum and their sideband responses when their chemical shifts are accidentally some multiple of the modulation frequency. Homo-nuclear spin decoupling is also facilitated when the modulation can be set exactly to 2000 Hz.

Sincerely,

A. F. Barney
J. E. Lancaster
magnetic non-equivalence/equivalence in methylene groups.

Dear Dr. Shapiro,

I wish to report an example of magnetic equivalence of methylene protons in a case where non-equivalence would have been expected.

Investigating the product distribution from the reaction:

\[\text{II} \rightarrow \text{I} \quad \text{or} \quad \text{III} \]

\[\text{I} \quad \text{II} \quad \text{III} \]

\[A = \text{Me, Et and i-Pr.} \]

I have found that the \(\alpha \)-methylene protons in II exhibit magnetic non-equivalence when \(A = \text{Me and i-Pr} \), but, surprisingly, not when \(A = \text{Et} \).

The data are given in the table:

<table>
<thead>
<tr>
<th>A</th>
<th>(\gamma)</th>
<th>(\delta)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Me</td>
<td>7.68 doublet</td>
<td>7.16 doublet</td>
</tr>
<tr>
<td>Et</td>
<td>7.51 singlet</td>
<td>7.51 singlet</td>
</tr>
<tr>
<td>i-Pr</td>
<td>7.58 doublet</td>
<td>7.57 doublet</td>
</tr>
</tbody>
</table>

An explanation might be, that \(\alpha \)-neighbouring \(\alpha \)-carbon-atom is "less asymmetric" and substituted with ethyl, butyl, or isopropyl, butyl - but I have found nothing in the literature confirming this explanation.

I would like to hear your comments.

Yours sincerely,

[Signature]

[Name, Institution, Date]
May 4, 1967

Professor Bernard L. Shapiro
Department of Chemistry
Illinois Institute of Technology
Chicago, Illinois 60616

Dear Barry:

This is in reply to your letter of April 17th reminding me that I should pay for my subscription.

For this purpose I wish to report the results of a recently completed fluorine spin-echo study of internal rotation in liquid 1,1-difluoro-1,2-dibromodichloroethane. This work was actually done by Bob Vold.

Carr-Purcell spin-echo (CPSE) trains were observed from -115° to +100°C with rf pulse spacings of 0.4 msec to 32 msec. Modulation of the echo trains was observed at temperatures below -60°C, and the modulation frequencies were found to agree quantitatively with predictions of a general theory for the combined effects of scalar coupling and chemical exchange in spin-echo experiments. At -100°C, effects of the internal rotation are negligible and dipole-dipole interactions give different relaxation rates for fluorines in different rotamers. Above -60°C the echo trains decay exponentially. The dependence of the observed decay rates on pulse spacing was used to obtain values of the free energies of activation for exchange between rotamers and values of the fluorine chemical shifts in the different rotamers. The free energies of activation are in agreement with values obtained by steady state NMR, and by analysis of CPSE trains at lower temperatures, but the apparent chemical shift values are about 25% too large.

I hope this will fill the bill for the time being at least.

Sincerely yours,

[Signature]

H. S. Gutowsky

Subject: Spin-Echo Studies of Internal Rotation in CF₂BrCCl₂Br.
Subject: Rotational Isomerism in α-Oximino-Esters

Dear Dr. Shapiro:

We studied the NMR-spectra of the syn- and anti-forms of some α-oximino-esters:

$\begin{align*}
\text{syn} & : R^1 = \text{C}_6\text{H}_5\text{CH}_2 \text{ (I), } \text{C}_2\text{H}_5 \text{ (II), } \text{m-C}_4\text{H}_5, \text{ etc.} \\
\text{anti} & : R^1 = \text{OH, } \text{HO-CH}_2, \text{ etc.}
\end{align*}$

The spectra of the anti-isomers are quite trivial, but for the syn-isomers are observed double signals for the most proton-containing groups, as CH_2 and CH_3O in syn-I, (see the figure), C_6H_5 and CH_3O in syn-II, etc. Almost no changes are noted in the spectra of the syn-forms in various solvents, and also in the temperature interval 30 to 130°C.

We propose that the syn-α-oximino-esters exist as mixtures of two rotational isomers, stabilized by hydrogen bonding and resonance effects:
From the chemical shift difference of 2.3 Hz (at 60 MHz) between the CH$_3$O-signals of syn-II at 150°C, the calculated lower limit of the rotational barrier ΔF^\ddagger is 24 kcal./mole. The magnitude of the barrier suggests that some syn-α-oxirano-esters might be separated into rotational isomers, as in the cases of substituted amides2) and nitrosoamines3).

Our investigations, which are carried in collaboration with scientists from Germany and Czechoslovakia include besides NMR, also dipole moment measurements and calculations, H-D exchange, IR, and chemical studies. The results are already sent to the Monatshefte für Chemie4), and further work is in progress.

Yours sincerely,

Stefan Spassov

Stefan L. Strassov

3) A.Mennschreck, H.Münsoh, and A.Mattheus, Angew. Chem. 77, 751 (1965).
Adaptation of LAOCOON-II for the IBM-1620 Computer

May 4, 1967

Dr. B. L. Shapiro
Department of Chemistry
Illinois Institute of Technology
Chicago, Illinois 60616

Dear Barry:

A recently completed project of ours may be of interest to a number of your readers. For the past several months we have been involved in adapting the Bothner-By-Castellano program, LAOCOON-II, for use on the relatively small IBM 1620 computer. The resulting 1620-SPS-III program, which we call PROSPECT-1, should permit 1620 users to perform many of the sophisticated spectral analyses that previously required a large computer such as the IBM 7090.

PROSPECT is capable of both computing spectra from a set of trial parameters and also making the iterative refinements of these parameters in order to produce a "best" fit between the calculated and observed spectra. Like version two of LAOCOON, PROSPECT is written in two parts. Part 1 will calculate the theoretical spectrum of any system of from three to seven 1/2-spin nuclei. Output of the theoretical spectrum may then be obtained on either the standard print unit or an online curve plotter. Part 2, which performs the iterative calculations, will operate on any system from 3 to 5 spins in size. In the future we hope to extend part 2 to even larger systems.

We feel that PROSPECT could be of great value to those persons who either do not have access to large computers or, like us, find the smaller system more convenient. Accordingly we would like to make this program available to interested parties. However, there are some problems associated with distributing the program. First, since we do not have the facilities to prepare and ship the card decks, this will have to be done by a local computer center at some small cost to the user. By far the more serious problem concerns the wide variety of 1620 configurations available. There will be quite a few 1620 systems on which PROSPECT will not operate and we ask the potential user to carefully check the machine requirements listed in the next paragraph so that he may be certain the program will (or will not) work on his 1620.
For execution PROSPECT requires a 1620 with a 40 K (or larger) memory, a 1311 disk drive, floating point hardware indirect addressing and the special instructions transmit numeric strip, transmit numeric fill and move flag. In addition one disk pack is needed for program and intermediate data storage. We suggest that this disk not be used for other programs. The input/output configuration is flexible. The program as written is for paper tape/typewriter I/O. However, in the near future we do plan to generate the card decks for both card/typewriter and card/line printer I/O. The use of the 1627 plotter is strictly optional. The lack of a plotter will not affect normal program operation.

Those persons wishing to obtain either card decks of paper tape copies of PROSPECT should address inquiries to J. H. Goldstein, Chemistry Department, Emory University, Atlanta, Ga. 30322.

John M. Read, Jr. J. H. Goldstein
May 5, 1967

Dr. B. L. Shapiro
Chemistry Department
Illinois Institute of Technology
Chicago, Illinois 60616

Dear Barry:

We have been interested in calculating 1H and ^{13}C shifts in heterocycles particularly pyridine. Using the formulas of Pople and Karplus in conjunction with Mataga and Nishimoto's SCF wave function we calculated diamagnetic and paramagnetic terms both for a purely covalent and partially ionic sigma framework. These shifts are listed in the table below. Also shown are the direct π-electron density shifts obtained from 160 ppm/electronic charge for ^{13}C and 10 ppm/electronic charge for 1H. All the shifts in the table are in ppm with respect to benzene.

It is seen that it doesn't matter much whether the sigma bonds are ionic or not. The sums of the diamagnetic and paramagnetic terms correlate very badly with the observed shifts. On the other hand if the direct π-density term is included the correspondence between observed and calculated values is remarkable.

In principle one should not have to include the π-density effect as a separate term. It is not clear why the above treatment works so well. Perhaps certain effects are undervalued due to approximations in the theory. We are trying other wave functions.

With best regards.

Sincerely yours,

Gideon Fraenkel

Tadashi Tokuhiro
Calculated and Observed Shifts for Pyridine

<table>
<thead>
<tr>
<th></th>
<th>^{13}C</th>
<th></th>
<th>^1H</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>calc dia + para</td>
<td>calc dia + para</td>
<td>calc dia + para</td>
</tr>
<tr>
<td></td>
<td>calc charge</td>
<td>Δ calc</td>
<td>obs</td>
</tr>
<tr>
<td>covalent</td>
<td>∇</td>
<td>-7.23</td>
<td>-13.8</td>
</tr>
<tr>
<td>covalent</td>
<td>∇</td>
<td>+1.47</td>
<td>+2.8</td>
</tr>
<tr>
<td>ionic</td>
<td>∇</td>
<td>-9.58</td>
<td>-13.8</td>
</tr>
<tr>
<td>covalent</td>
<td>∇</td>
<td>+3.66</td>
<td>+2.8</td>
</tr>
<tr>
<td>ionic</td>
<td>∇</td>
<td>-4.20</td>
<td>-7.3</td>
</tr>
<tr>
<td>ionic</td>
<td>∇</td>
<td>-1.75</td>
<td>-7.3</td>
</tr>
</tbody>
</table>

6. This work.
Professor B. L. Shapiro
Department of Chemistry
Illinois Institute of Technology
Chicago, Illinois 60616

Dear Professor Shapiro:

MODIFICATION OF THE VARIAN HA-60-EL PROTON STABILIZER FOR USE WITH OTHER NUCLEI

The Varian NMR External Reference Proton Stabilization Controller has been adapted for stabilization of other nuclear resonances which can be observed at 14.1 kG. Field stabilization is achieved by mounting the Varian proton control probe (the "piggyback" probe) on the analytical probe of the nucleus of interest and sweeping the resonance frequency of the "piggyback" sample with a 60 MHz signal derived from a commercially available voltage controlled crystal oscillator (VCO). Sweeping the resonance frequency of the "piggyback" sample has the same effect as sweeping the current through the set of small coils which surround only this "piggyback" sample (the latter being the procedure in the conventional system), since the field stabilization system maintains the "piggyback" reference sample on resonance by adjusting the field whenever there is a shift in either field or frequency. This compensating field variation is "seen" by both the "piggyback" control and analytical samples so the sweep of the control sample resonance frequency results in a field sweep over the analytical sample resonance.

The use of a VCO is a compromise between a costly and highly stable frequency synthesizer, and a less expensive and relatively unstable conventional swept oscillator. A block diagram of the system is shown in Figure 1. The 15 MHz VCO is swept ± 5KHz by ±5V. A linear sweep voltage is provided by a Spectromagnetic Industries Model 9011 Sweep Generator. At the end of each sweep the voltage returns to zero in a time which depends on the length of the sweep. For most sweep times used, the feedback is sufficiently slow for the field stabilization system to remain locked to the proton resonance.

In order to provide an adjustable starting voltage for the sweep, a biasing voltage is added to the sweep voltage in an operational amplifier. The sum of these two voltages controls the frequency of the 15MHz oscillator. The VCO output is amplified to a 15V peak to peak level and fed into the Varian 60 MHz V-4311 RF unit at the junction of R107 and R105, which is the input to the first frequency doubler. The V101 oscillator tube in the V-4311 unit is removed.
The system was tested on a ^{31}P resonance at 24.3 MHz. The limiting factor on the stability of the system is the relative drift between the 60 MHz frequency of the control probe and the 24.3 MHz ^{31}P resonance frequency. Figure 2 shows the low field quintet of diethyl phosphite taken at a sweep rate of about 1 Hz/sec for which the coupling constant is 8.0 Hz.

I wish to acknowledge the encouragement of my thesis advisor, Professor Julian H. Gibbs, and the excellent technical assistance of Mr. Henry Klos, Mr. George Carnegis and Mr. Fred Bargoot.

This work was supported in part by U.S.P.H.S. grant GM-10906(06), Air Force grant AFOSR 1027-66, Army contract DA-18-035-AMC-274, A.E.C. contract AT(30-1)1983, the Advanced Research Projects Agency, and by a N.A.S.A. Traineeship in Chemistry.

Sincerely yours,

Stanley Kaufman
Figure 1.
Block diagram of the modified field stabilization system.

Figure 2.
The low field ^{31}P spectrum of diethyl phosphite in a 5mm spinning sample tube, with a sweep rate of 1 Hz/sec.
May 5, 1967

Professor Barry Shapiro
Department of Chemistry
Illinois Institute of Technology
Chicago, Illinois 60616

Dear Barry,

I regret that we have been out of touch with IIT NMR Newsletter so long. To rectify this situation, I wish to submit a simple but useful modification of an HA-100 system.

A Vernier Control for the HP 200AB Audio Oscillator

The Varian HA-100 NMR spectrometer can include a Hewlett Packard model HP 200AB audio oscillator which is used to generate H_2, the RF sideband used for double resonance experiments. The existing vernier on the oscillator is much too coarse for the fine adjustments needed in NMR work, particularly for spin tickling experiments.

We have added a 10K potentiometer to the resistance network on the range switch at a point where it will be effective only when the instrument is used in the X100 range. The potentiometer was mounted on the left side of the front panel above the range switch. A log taper pot was found to provide an output frequency shift reasonably linear with angular displacement of the control. This circuit shifted the oscillator by 3 Hz when the pot was at maximum resistance and provided a range of 9 Hz (the additional shift at zero resistance). There was no detectable distortion of the sine wave and with reasonable lead dress this modification did not affect the stability of the oscillator. The range of the adjustment could easily be increased by lowering the value of the 1.5K resistor.

Sincerely yours,

Milton I. Levenberg
Chemical Physics Laboratory
May 12, 1967

Professor B. L. Shapiro
Department of Chemistry
Illinois Institute of Technology
Technology Center
Chicago, Illinois 60616

Dear Barry,

Please include in IITNMRN (LONG MAY IT LIVE!) the following two announcements:

1. Position Available in Instrumentation Section

 Qualifications - M.S. or Ph.D. with n.m.r. background (physical or organic). Some knowledge of electronics and computer techniques desirable; at least interest in these areas is important. Applicants for this Civil Service position must be U.S. citizens.

 Type of Work
 a) Research initiated by staff members of n.m.r. group and related to problems and substances of current or potential significance to FDA's mission.
 b) Research on organic molecules (structure, rate processes, etc.) originated by other groups working in organic and biological chemistry.
 c) Development of instrumentation, and of instrumental and interpretative techniques.

 Publication is encouraged.

 Equipment
 a) Available now: HA-100, A-60, and C-1024.
 b) To be built: double-resonance apparatus based on frequency synthesizer (components on order).
 c) Computer facilities: IBM 360-30 (being installed in FDA building; 360-40 available early 1968), access to CDC 3800; search capability for Preston n.m.r. abstract cards.

(over)
2. Fourier Transform Spectrometry

We should like to explore who is interested in having his high-resolution n.m.r. spectrometer adapted to Fourier transform spectrometry*. We assume that the present price for such an adaptation may come down substantially, if and when several parties join in approaching Varian on this.

Any steps taken in this direction at this stage by anyone (including us) should and will not imply any commitment whatsoever.

I should appreciate any response from the readers of this newsletter. Please indicate what type of spectrometer is involved.

Best regards.

Sincerely yours,

Ernest Lustig
Division of Food Chemistry
Bureau of Science
Dear Sir/Madam,

Your subscription demand letter caught me in one of those periods when it is very difficult to write of anything which would interest a wide audience. I have computer programs which are about to produce interesting results, but which have not done so yet, hence I wonder if I can get away with an appeal for other people to tell me what they are doing? I am writing a review on fluorine chemical shifts together with Laurie Phillips of Imperial College, and I would very much appreciate any preprints or chemical shift data which is in the process of publication. We are particularly interested in attempts to calculate chemical shifts, and studies of medium effects (including complex formation) of fluorine.

Yours ever,

Jim Emsley.
MELLOR INSTITUTE BIBLIOGRAPHY

"The Signs of the Methyl-Chloro Spin Couplings in 2,3-Dimethylindazol, 2,3-Dimethylthiophen, and 2,3-Dimethylfurane" S. Rodanz, P. Rodanz, A. All Khair, S. Groosditz, and V. Pavnias Acta. Chem. Scand. 20, 2515 (1966)

"The V Value Isomerization of 9,10-Diphenyl-1,2,3,4-Tetrahydro-2,1,4-Oxadithiaphene" S. R. P. Sasse and P. J. Collin Australian J. Chem. 20, 131 (1967)
"Studies on tert-Butyl Derivatives of D-Glucose"
A. N. de Belder, E. J. Fournean and H. Weigel
Carbohydrate Res. 3, 1 (1966)

"Studies on the Products Obtained by the Periodate Oxidation of Ozaones"
H. El. Khandem and M. M. A. Abdel Rahman
Carbohydrate Res. 2, 3 (1966)

"Monosaccharides with Stickstoffhaltigem Ring"
E. Paulsen and F. Leupold
Carbohydrate Res. 4, 76 (1966)

"The Reaction of Unsaturated Carbohydrates with Carbon Monoxide and Hydrogen. Part VI. Structure and Stereochemistry of the Major Anhydroglycals from tetra-O-acetyl-D-glucuronic acid (D-Mannose) and hexa-O-mannuronic acid" A. Rosenthal and D. Abson
Carbohydrate Res. 3, 112 (1966)

"Periodate Oxidation of Ozaones"
H. El. Khandem and M. M. A. Abdel Rahman
Carbohydrate Res. 2, 104 (1966)

"Nucleosides. XXXIV. 1-(2,3,5-Tri-O-trityl-β-D-ribofuranosyl)uracil (2',3',5'-tri-O-trityl uridine)"
W. Grimme
Chem. Ber. 100, 113 (1967)

"Synthesis and Hydrierung von Triasteran, Tetracyclol 3.3.1.0 2.8.0 4.6 nonan" H. Musso und U. Biethan
Chem. Ber. 100, 119 (1967)

"Photosensibilisierte Cycloadditionen mit Vinylcarbonsäure" W. Hartmann and U. Steinmetz
Chem. Ber. 100, 217 (1967)

"Ketone durch basenkatalysierte Autoxydation von Aldehyden"
W. Surow
Chem. Ber. 100, 259 (1967)

"A New Route to 3-deoxy-3-fluoro-D-glucose"
K. W. Buck, A. R. Foster, R. Hems, and J. M. Wauber
Carbohydrate Res. 2, 137 (1966)

"Steroides aus Hydrosycholinsäure: über den Seitenkettenabbau einer 6α,19-Epoxy-cholinsäure" R. Ziegler, H. Rosendecker, K. Barntkol-Oettler, H. Greiner and F. W. Kustmann
Chem. Ber. 100, 9 (1967)

"Isolierung des Guajacylglycerins und seines diäromen β-Arylalkohols aus Fichtenlignin" H. Rinke
Chem. Ber. 100, 181 (1967)

"Synthese von 12α,20R-Epoxy-5α.14β.17β-pregnans" R. Techesche und E. Schwin
Chem. Ber. 100, 464 (1967)

"Darstellung und Eigenschaften von Chlorfluormethylsulfenylpseudohalogeniden" A. Haas und D.-Y. Oh
Chem. Ber. 100, 480 (1967)

"Stabile Phenox-Kationen aus arylierten Phenolen" K. Dimroth, W. Umbach und H. Thomas
Chem. Ber. 100, 132 (1967)

"Intramolekular Beweglichkeit von Azepinen und Diazepinen" A. Mannschreck, G. Rissmann, F. Wächtle und D. Wild
Chem. Ber. 100, 335 (1967)

"Stabile Phenox-Kationen aus arylierten Phenolen" K. Dimroth, W. Umbach und H. Thomas
Chem. Ber. 100, 132 (1967)

"Eine einfache Benzyl-chinolinizin-Synthese. Zugleich eine Modellreaktion für die Alkaloid-Biogenese" H.-J. Teuber und D. Laudien
Chem. Ber. 100, 35 (1967)
The summary of the provided text is as follows:

11-Substituierte 2-Trifluormethyl-4-trifluoracetyl-

methylenoxazolidon-(5) und Umwandlungsprodukte
W. Steglich and V. Austel
Chem. Ber. 100, 547 (1967)

Beiträge zur Chemie der Dithiocarbonsäureester und
Ketenmercaptane
R. Gompper and H. Schäfer
Chem. Ber. 100, 591 (1967)

Die Polyine der Gattung \textit{Matricaria} L.
F. Bohlmann, H. Münch and P. Blaszkiewicz
Chem. Ber. 100, 611 (1967)

Über Chinole, Chinolinderivate und Chinolester aus arylierten
Phenolen
K. Dinach, W. Fert, K. Schüller, K. Worschach and
K.-H. Müller
Chem. Ber. 100, 629 (1967)

4-Phenyl-1,2,4-triazolin-dion-(3,5) als Dienophil
J. Sauer and B. Schröder
Chem. Ber. 100, 678 (1967)

Die Anlagerung von Thiobenzoylisocyanat an Norbornen
und Norbornadien
R. Weis
Chem. Ber. 100, 685 (1967)

Notiz über die Darstellung von Tri-tert.-butylphosphin
R. Hoffmann and F. Schellenbeck
Chem. Ber. 100, 685 (1967)

Notiz über die geometrische Isomerie der \(\Delta^4 \)-Cholestenon-

(1)-diaminophenylhydrazone
A. K. Sen Gupta
Chem. Ber. 100, 694 (1967)

The Structure of \(\alpha \)-Methylstyrene Terramute
M. N. Berger, J. J. K. Houlton, B. W. Brooks, and
N. J. Evans
Chem. Commun. 6 (1967)

The Structure of Olearin, a Diterpene Dilactone
J. T. Finney and R. F. Simpson
Chem. Commun. 9 (1967)

The Reaction of Cycloheptatriene with Benzoylum
Fluoroborate
J. A. Blair, G. F. McLaughlin, and J. Pasziewski
Chem. Commun. 12 (1967)

The Alkaloids 8,14-Dihydroalutaridin and 8,14-Dihydro-

noralutaridin from \textit{Croton linearis} Jacq.
L. J. Haynes, G. E. M. Husbands and K. L. Stuart
Chem. Commun. 15 (1967)

The Structure of Entandrophragmin
D. A. H. Taylor and K. Wragg
Chem. Commun. 81 (1967)

The Structure of Heudelottin, an Extractive from
\textit{Trichilia heudelottii}
D. A. Okorie and D. A. H. Taylor
Chem. Commun. 83 (1967)

Uncarine C, D (Speciophylline), E, and F; C-3 and C-7
Epimeric Oxindoles related to Tetrahydroalstonine
N. K. Hert, S. R. Johns, and J. A. Lambert
Chem. Commun. 87 (1967)

The Alkaloids 8,14-Dihydrosalutaridine and 8,14-Dihydro-

noralutaridin from \textit{Ebelin} Lactone
R. A. Eade, J. Ellis and J. H. Simes and J. S. Shannon
Chem. Commun. 60 (1967)

Stereo-Selective Photo-rearrangement of a Pyrrole
1-Oxide
J. B. Rapat and D. St. C. Black
Chem. Commun. 73 (1967)

The Structure of Olearin, a Diterpene Dilactone
J. T. Finney and R. F. Simpson
Chem. Commun. 9 (1967)
"Solvent Effect in the PMR-Spectra of Dehydroboronocarbons"
R. Rahkamaa
Suomen Kemistilehti 32, 278 (1966)

The Structure of Peruvinin—A Pseudoguianolide Isolated from Ambrosia Peruviana Willd
J. Romo, F. Joseph-Nathan, A. R. de Vivar and C. Alavera
Tetrahedron 23, 529 (1967)

"Sulphonium and Oxsulphonium Carbalkoxymethylides"
H. Nosaki, D. Tonemoto, S. Matoba and K. Konoe
Tetrahedron 23, 545 (1967)

"Structure and Absolute Configuration of α-Kessyl Alcohol and Kessyl Glycol"
S. Itô, M. Kodama and T. Nozoe
Tetrahedron 23, 553 (1967)

"Stable Carbenoide—XXI. Oligomer des "Isopropyliden-
Z. Majerski, M. Nikoletic, S. Boricic and D. E. Sunko
Tetrahedron 23, 565 (1967)

"The Protonation of N-Phenylpyrroles"
Y. Chiang, R. L. Himan, S. Theodoropulos and E. B. Whipple
Tetrahedron 23, 745 (1967)

"The Structure of the Oxidation Product of Pyrrole, C_{12}H_{17}O"
V. Rocchi, L. Chierici and G. P. Gardini
Tetrahedron 23, 737 (1967)

"Studies of the Elimination of 1,2-Diaryl-4-Dimethyl-
B. Tursch, I. S. de Souza Guimaraes and B. Gilbert, R. T. Allin, A. M. Duffield and C. Djerassi
Tetrahedron 23, 761 (1967)

"Studies on Bicyclo(3.3.1)Nonanes—II. Transannular
W. Hanselin and W. Zündorf
Tetrahedron 23, 585 (1967)

"Studies of the Elimination of 1,2-Bis-4-Dimethyl-
A. F. Casy and F. Pocha
Tetrahedron 23, 633 (1967)

"The Reaction of Benzenesulfonyl Halides with Phenyllithium. Preparation of Sulfones"
T. Shirata, T. Nagai and N. Tokura
Tetrahedron 23, 639 (1967)

"The "Bicyclobutonium Ion" Reaction of (1-Methylcyclo-
Z. Major, H. N. Nikolic, S. Boricic and D. E. Sunko
Tetrahedron 23, 661 (1967)

"cis-1H,1H,4H-Trifluorobuta-1,3-Diene. The Characterisation of a New Conjugated Diene by NMR Spectroscopic Analysis"
T. N. Huckerby, E. F. Mooney and R. Stephens
Tetrahedron 23, 709 (1967)

"New Metabolites of Gibberella Fujikuroi—XII. Gibberellin A_{15}"
J. R. Hanson
Tetrahedron 23, 733 (1967)

"The Structure of the Oxidation Product of Pyrrole, C_{12}H_{17}O"
V. Rocchi, L. Chierici and G. P. Gardini
Tetrahedron 23, 737 (1967)

"A New Synthetic of Diethyl β-Ketoaladipate"
E. C. Taylor and A. McEllopp
Tetrahedron 23, 879 (1967)

"The Synthesis and Stereochemistry of Some Isatyldiene-
R. L. Autrey and F. C. Tandy
Tetrahedron 23, 901 (1967)

"Terpenoids—XXIV. Synthesis of Novel Longifolane
S. G. Patnekar and S. C. Bhattacharyya
Tetrahedron 23, 919 (1967)

"Chemistry of the Podocarpaceae—XII. Oxidation of 0-
C. E. Bennett and R. C. Camble
Tetrahedron 23, 927 (1967)

"Studies on Lactams—VII. A New Synthesis of β-Amino-β-
A. K. Bose and I. Kugayevsky
Tetrahedron 23, 957 (1967)

"The Establishment of Double Bond Character in Methyl Derivatives of Phenantherene, Pyrene, Chrysene and Coronene by NMR"
E. Clar, B. A. McAndrew and M. Zander
Tetrahedron 23, 985 (1967)

"Studies on A-Heterosteroids—VI. Directing Effects of the
T. Kubota and F. Hayashi
Tetrahedron 23, 995 (1967)

"The Absolute Configuration of Paeonanthine and Hirustine"
W. F. Trager, C. M. Lee, J. D. Phillips and A. W. Beckett
Tetrahedron 23, 1043 (1967)

"ERRATE; Geminal Coupling Constants in Methylene Groups"
R. C. Cookson, T. A. Crabbe, J. J. Frankel and J. Hudec
Tetrahedron 23, 1055 (1967)
The IIT NMR Newsletter will continue unchanged, at least for the next several months. Those recipients (academic as well as industrial, research institutes, government labs, etc.) who might be able to help out with a contribution toward the costs of the Newsletter are encouraged to consider the possibility of doing so at some time in the not-too-distant future.

B. L. Shapiro

29 May 1967

"The Nuclear Magnetic Resonance Spectra of Some Related Alkylene-Substituted Diethylamines"
M. Freifelder. R. W. Nafziger and H. Kriese

"The Examination of Lobina line and Some Degradation Products by Mass Spectrometry"
D. M. Clugston and D. B. MacLean and R. H. F. Manske

"Dimerization of an Intermediate During the Sodium in Liquid Ammonia Reduction of L-Tryptophane-4-
Carbonyl Acid"
P. Blondeau, C. Berge, and D. Gravel

"Photochemistry of Nitroso Compounds in Solution. V. Photolysis of N-Hitrosodialkylamines"
Y. L. Chow

"Synthesis of Some Disubstituted Naphthazarins"
P. C. Aroca and P. Brassard

"Oxalic Acid Analouges. The Synthesis and Identifidica-
tion of 4-Loropyl-3,5-Dihalogeno-2-Pyrroli dine"
Y. C. Kim and G. H. Cocolas

"The Reaction of all-cis Cyclopentadetetrahydroxy-
Acid Dihydroxy with Primary Amines"
Y. P. Mattoon and R. K. Kriese

"Alkaloids of Aspidosperma vargasii A. DC."
R. H. Burnett and D. B. Casa

"The Radiation Chemistry of Dihydromyrcene"
J. L. Brash and M. A. Golub

"Charge Distribution in Substituted Cyclopentadienyl-
manganese-tricarbonyl Compounds"
C. J. A. Corbune

"Kinetics and Mechanism of Bromination of Styrenes"
K. Yates and W. V. Wright

"Nuclear Magnetic Resonance Studies. X. Determination of the Thermodynamic Parameters of the Self-Association of Triclyclic Aromatic Aldehydes in Solution"
Gurudara, R. R. Klincek, and J. B. Stothers

"Etude Quantitative des Réactions d'ozonolyse. IV. Ozonation de l'indène"
S. Fitzs, Cz. Belshek and J. B. Chylińska

"C.n.m.r. Studies. IX. 13C Spectra of Some Substituted Methyl Benzoylates"
K. S. Dhawan and J. B. Stothers

"C.n.m.r. Studies. X. 13C Spectra of Some Substituted Methyl Benzoylates"
K. S. Dhawan and J. B. Stothers

"Mechanism of the α-Silylcarbinol to Silyl Ether Rearrange-
ment"
A. G. Brook, G. E. LeGrouve, and D. M. MacRae

"A New Synthesis of Twistanol"
J. Gauthier, and P. Deslongchamps

"Lignans of Western Red Cedar (Thuja plicata Donn). VI. Dihydroxythujaplicatin Methyl Ether"
H. MacLean and E. Nakamoto

"Natural Coumarins. VI. Nuclear Magnetic Resonance Spectra of Some Coumarin and Coumarinic Acid Derivatives"
E. A. Abr-Mustafa and M. S. E. Fayed
Can. J. Chem. 45, 335 (1967)

"Fully Fluorinated Alkoxides. Part II. Ethoxides, Propoxides, and Butoxides"
M. R. Hochood and C. J. Willis

"Proton Magnetic Resonance Study of Water as Hydrogen Donor to M-Trimethylformamide and Dimethyl Sulfoxide"
S. L. Tung, S. M. Wang, and H. C. Li

"The Alkaloids of Lycopodium cernuum L. I. The Structures of Coumarine and Lycocearin"
W. A. Ayer. J. K. Jenkins. and S. Valverde-Lopez

"The Alkaloids of Lycopodium cernuum L. II. The Stereo-
chemistry of coumarine and lycocearin"
W. A. Ayer, J. K. Jenkins, K. Piers, and S. Valverde-Lopez

"The Alkaloids of Lycopodium cernuum L. III. The Synthesis of Dihydroscepaclloucin"n"
W. A. Ayer and K. Piers

"Pyrroleiones. VII. Concerning the Formation of Olefins From the Pyrolysis of Pyrroleiones"
D. E. McGreer and W. S. Wu

"The Synthesis of 12-Methylcortisone and 12-Methyl-
Hydrocortisone"
M. Tanabe and D. F. Crowe

"Reductive Cleavage with Metal in Liquid Ammonia. II. Olefin Formation in Attempted Selective Cleavage of Methyl β-benzyl-4,6-0-benzylidene-3-0-methyl-2-thio-a-D-Altropyranoside and its β-methyl analogue by Sodium Metal in Liquid Ammonia Dilute with 1,2-Dimethoxyethane"
Y. G. Hayak, M. Sharma, and R. K. Brown

"The Selective Phosphorylation of Ethanolamine"
R. Greenhalgh and M. A. Weisberger

"Structural Biochemistry. IV. 3β-Hydroxy-17β-(L-prolyl)
amino-androst-5-ene"

"Configuration of Pyruvic Acid Ketals. 4,6-0-Linked to D-
Galactose Units, in Bacterial and Algal Polyasaccharides"
P. A. J. Gorin and T. Tabakawa
"Rhodium(I) and Iridium(I) Carbonyl Derivatives of Some Schiff Bases of Acetilacetonate"
F. Rosati and A. Ugo

"Acetoacetate-Acetoxy-Palladium Adducts of I,5-Cyclooctadiene"
C. B. Anderson and B. J. Burress

"Medicinal Chemistry of the Mesionic Compounds"
L. B. E. Kier and E. B. Roche
J. Pharm. Sci., 26, 249 (1967)

"Isolation of Cantharidin from Epicauta pestifera"
W. G. Walter and J. F. Cole
J. Pharm. Sci., 26, 774 (1967)

"Coumarins. IV. Coumarins of Pteryxia terebinthina. Structures of Two New Coumarins, Isoperythol and Calipterycin"
R. K. Nielsen and T. O. Seise
J. Pharm. Sci., 26, 174 (1967)

"NMR Spin–Spin Decoupling Studies of Some 5,6-Disubstituted 1,2,3,4-Tetrahydro-2-Carbazol-2-ones"
D. A. Roll, B. J. Rust, and A. C. Nutric
J. Pharm. Sci., 26, 215 (1967)

"3-Thenyl Nitrogen Mustards"
W. Lewis Holmes and C. M. Darling
J. Pharm. Sci., 26, 284 (1967)

"Signs of Spin Densities and Vibronic Interactions in 1- and 1,4-Alkyl-Substituted Benzene Anions"
E. de Boer and J. P. Colpa

"Polymer Nuclear Magnetic Resonance Spectroscopy. XII. The Stereoregularity of Polyvinyl Chloride and its Dependence on Polymerization Temperature"
F. A. Booy, P. F. Hood, B. W. Anderson and R. L. Kornegay

"The Proton Magnetic Resonance Spectra of Ammonia Nickel Cyanide Complexes"
K. Umemoto and S. S. Dayalu

"Rates and Solvent Participation in Acid-Base Acations of Substituted Phenols and Phenoxides in Methanol"
E. Grunwald, C. F. Jumper, and M. S. Puru

"Proton Chemical Shifts and Hydrogen Bonding in the Ternary System Carbon Tetrachloride-Dioxane-Methanol"
N. Muller and F. Simon

"Proton Resonance Spectra of S Substituted Mono-, Di-, and Trisubstituted Silanes"
H. J. Campbell-Ferguson, E. A. V. Ebnoworth, A. G. MacDiarmid, and T. Yoshida

"Etude par Resonance Magnetique Nucleaire des Functions D'Onde des Molecules D'Hydrogene et D'Hydrogene Deutere Adsorbees a Basse Temperature"
P. Monod, J. A. Owen et W. H. Hardy

"Resonance Magnetique Nucleaire Dans le Rubidium et le Cesium Metalliques"
J. Polizena

"Fluorine Nuclear Magnetic Resonance in Dilute Paramagnetic Spins with Fluorine Charge Compensation"
A. Sobel

"Etude par la R.M.N., Entre – 30°c et 20°c, du Mouvement de Rotation des Molecules d'Eau Adsorbees par L'Edinitorite Naturelle"
J. P. Cohen-Addad et M. Chalouche

"Lability of the α-Hydrogen in Polycyclocitrin"
W. L. Hunter

"Proton Magnetic Relaxation in Dilute Solutions of Paramagnetic Ions"
H. Pfeifer, D. Michel, D. Sames and H. Sprinz
Mol. Phys., 11, 591 (1966)

"Nuclear Magnetic Resonance and Electron Structure of Uranium, Thorium, and Zirconium Tetrafluorides"
S. P. Gabda, Yu. V. Goginatskii, and A. G. Luchin

"Mechanism of Spin-Spin and Spin-Lattice Relaxation in Complex Compounds of Antimony Trichloride"
V. S. Grechishkin and A. D. Gordeev

"The NMR Spectrum of Methylchloromethylidinyloxysilane"
F. V. Petrovskii, E. I. Fedin, L. Braier, I. K. Simonov, and A. D. Donner

"Studies on the Polymeration of Difunctional Monomers. XI. The Cyclic Polymerization of Divinyl Ether and the Structure of the Polymers"
C. Aso, S. Yoshio, and N. Sakabe
Makromol. Chem., 100, 100 (1967)

"Determination of the Relative Signs of Spin Coupling Constants from the Temperature Dependence of N.M.R. Spectra. \(\gamma \) (H-C-C(=C))"
R. Freeman
Mol. Phys., 11, 505 (1966)

"The Limitations of Generalization in Sub-Spectral Analysis of N.M.R. Spectra"
P. Diehl and A. Traueken
Mol. Phys., 11, 531 (1966)

"1H Chemical Shifts in Primary and Secondary Amides"
P. Sampson and A. Machias

"Proton Magnetic Relaxation in Dilute Solutions of Paramagnetic Ions"
H. Pfieifer, D. Michel, D. Sames and H. Sprinz
Mol. Phys., 11, 591 (1966)

"An N.M.R. Study of N,N-Dimethylformamide Complexes"
A. Pretiello, R. Schuster and D. P. Miller

"A Simple Formula for Some Nuclear Spin-Spin Coupling Constants"
W. T. Dixon
Tetrahedron Letters 24 (1967)

A. K. Bose and I. Kugeljevsky

"Stereochemistry of Protopanaxadiol. Acid-Catalyzed Epimerization of C-20 Hydroxyl of Betulafolienetriol, Protopanaxadiol, and Their Derivatives"

O. Tanaka, H. Nagai, T. Ohnawa, N. Tanaka and S. Shibata

Tetrahedron Letters 391 (1967)

"Rearrangement of 10-Ethyl-2-Keto-c[19](9)3(6)-Hexahydro-

naphthalenes"

K. H. Bell

Tetrahedron Letters 397 (1967)

"Total Synthesis of 4-Santalol"

R. G. Lewis, D. H. Gustafsson, and W. F. Erman

Tetrahedron Letters 401 (1967)

"The Chemistry of Cephalosporin F"

T. S. Chou and E. J. Eisenbraun

Tetrahedron Letters 409 (1967)

"Solvent-Dependent Chemical Shifts of 4-α-Hydrogen Resonance in NMR Spectra of Quaternary Piperidinium Salts"

A. T. Bottini and M. K. O’Halloran

Tetrahedron Letters 429 (1967)

"Organic Photochemistry. IV. A Novel Photodimerisation in the Tropolonoid System. A Dimer of 2-Methoxy-4-

Phenyltropane"

T. Hikai, T. Miyashita and H. C. Woods

Tetrahedron Letters 431 (1967)

"The Direct Synthesis of Pseudoaldoheuronic Acid"

P. Sipos, S. Bauer

Tetrahedron Letters 443 (1967)

"A New C20 α, β-Unsaturated Aldehyde (1, 7,13-Triene-1-

1,10-Isopropyl-2,6,11,13-Tetradecatetraen-1-Al) (I) from Tobacco"

J. L. Courtney and S. S. McDonald

Tetrahedron Letters 459 (1967)

"The Solvent Effect on the Photoactivation of Tetrphenyl-

cyclopentadionenone"

I. Moritani and N. Toshima

Tetrahedron Letters 467 (1967)

"The Structure of Harmine"

A. Chatterjee, G. P. Dutta and S. Bhattacharyya, and H. K. Audier and B. C. Das

Tetrahedron Letters 467 (1967)

"The Isolation and Characterisation of a New Type of Biflavon Derivative from a Xanthorrhoea"

A. J. Birch, G. J. Dalil and A. Pelier

Tetrahedron Letters 48 (1967)

"The Ginkgolides. II. Derivation of Partial Structures"

M. Haruyama, T. Terahara, Y. Itagaki and K. Nakaniishi

Tetrahedron Letters 303 (1967)

"The Ginkgolides. III. The Structure of the Ginkgolides"

M. Haruyama, T. Terahara, Y. Nakadaira, M. C. Woods and K. Nakaniishi

Tetrahedron Letters 309 (1967)

"The Ginkgolides. IV. Stereochemistry of the Ginkgolides"

M. Haruyama, T. Terahara, Y. Nakadaira, M. C. Woods, Y. Takagi and K. Nakaniishi

Tetrahedron Letters 315 (1967)

"The Ginkgolides. V. Some Aspects of their NMR Spectra"

M. C. Woods, I. Miura, Y. Nakadaira, A. Terahara, M. Maruyama and K. Nakaniishi

Tetrahedron Letters 321 (1967)

"Aliphatic Chloro-oxyines and Their Applications in the

Synthesis of Isoxazole and N-Furanone Systems"

G. Casnati and A. Ricca

Tetrahedron Letters 327 (1967)

"Hydrogen-Deuterium Exchange in Some Halopyridine N-Oxides: Relative Positional Reactivities"

J. A. Zoltewicz and G. M. Kauffman

Tetrahedron Letters 333 (1967)

"Interconversion of 9, 10-Dihyronaphthalene and Bicyclo

[4.2.0]Deca-2,4,7,9-Tetraene"

J. W. Rosenthal

Tetrahedron Letters 341 (1967)

"An Unusual Photochemical Transformation of Tetrphenyl-

cyclopentadienone"

N. Toshima and T. Moritani

Tetrahedron Letters 357 (1967)

"Rearrangements of the Benzobicyclo[3.2.0]Heptenyl to the 2-(2-Indenyl)Ethyl and Benzobicyclo[2.2.1]Heptenyl

Systems"

H. Tanida, Y. Hata and H. Ishitobi

Tetrahedron Letters 361 (1967)

"Modified Steroid Hormones—XLVII. Some Further Penta-
cyclo Types"

J. M. Allison, D. Burn, F. K. Butcher, M. T. Davies and

V. Petrow

"Biosynthetic Studies. V. Structures of and Rotation Barriers in Pentadentylmethanes"

R. E. Bates, D. W. Donselink and J. A. Kaczynski

Tetrahedron Letters 205 (1967)

"The Structure of Ryanodine"

M. Maruyama, A. Terahara, Y. Nakadaira, M. C. Woods and K. Nakaniishi

Tetrahedron Letters 211 (1967)

"The Isolation and Characterization of the Various Groups"

M. Haruyama, A. Terahara, Y. Itagaki and K. Nakaniishi

Tetrahedron Letters 235 (1967)

"The Structure of Jegosapogenol"

A. K. Bose and I. Kugeljevsky

Tetrahedron Letters 235 (1967)

"Magnetic Non-Equivalence in the Methylene Group of an

Ethyl Ether"

G. E. Hall, D. Hughes, D. Rae and A. P. Rhodes

Tetrahedron Letters 241 (1967)

"Formation of a Methylene Hydrogen in the Reactions de Clivage des Germacyclobutanes par les

Hydrogeno-germanes" P. Assavilas, J. Dubac et M. Lesbre

Tetrahedron Letters 255 (1967)

"General Synthesis of C Substituted Imidazoles"

A. Novelli and A. De Santis

Tetrahedron Letters 265 (1967)

"Modification of Protopanaxadiol; Acid-Catalysed Epimerisation of C-20 Hydroxyl of Betulafolienetriol, Protopanaxadiol, and Their Derivatives"

O. Tanaka, M. Nagai, T. Ohnawa, N. Tanaka and S. Shibata

Tetrahedron Letters 391 (1967)

"Rearrangement of 10-Ethyl-2-Keto-c[19](9)3(6)-Hexahydro-
naphthalenes"

K. H. Bell

Tetrahedron Letters 397 (1967)

"The Isolation and Characterisation of a New Type of Biflavon Derivative from a Xanthorrhoea"

A. J. Birch, G. J. Dalil and A. Pelier

Tetrahedron Letters 48 (1967)

"The Ginkgolides. I. Isolation and Characterization of the Various Groups"

M. Haruyama, A. Terahara, Y. Itagaki and K. Nakaniishi

Tetrahedron Letters 299 (1967)
"On the Reaction of Nitrochlorination of Alkenylmethyl-
xioloxanes"
Academician K. A. Andrianov, V. I. Sidorov, and L. M.
Khamarashvili

"On the Structure of Certain O, 8-Unsaturated Ketones
and Their Oxides"
Sanin, and L. K. Yul’kheva

"A General Method for the Synthesis of 3-Nitro-
isoazoles"
V. A. Tartakovskii, A. A. Otsabekho, I. E. Chlennov
and B. S. Rovikov

"Die Konstitution von Roridin A"
B. Böhrer and Ch. Tamm

"Die Konstitution von Roridin D"
B. Böhrer and Ch. Tamm

"Stoffwechsel-Endprodukte von Phyllochinon, Menachinon-
4), Ubichinon-9) und Hexahydroplastochinon-4 (Phyl
plastocho

U. Gloor J. Wursch, H. Mayer, O. Isler und O. Wiss

"Ceolchlorin"
J. J. Dugan, M. Hesse, U. Renner und H. Schmid

"Weitere Alkaloide von Aspidosperma
A. A.
Geiger, E. Weiss und T. Reichstein

"Strogsid, Strukturbestimmung"
U. P. Geiger, E. Weiss und T. Reichstein

"Über die photochemische Cyclisierung von 2-Allylph
V. J. Dastoor, A. A. Gorman und H. Schmid

"Über die photochemische Cyclisierung von 2-Allylph
G. Frater und H. Schmid

"19-nor-Steroide V. Neue Synthese von 6-Dehydro-19-nor-
Steroiden"
J. Kalvoda und G. Anner

"Über eine außergewöhnliche Stereospezifität bei der
Hydroborierung der diastereomeren (1R)-Isopulegole
it Diboran"
K. H. Schulte-Elte und G. Ohloff

"Organische Phosphorverbindungen. XXVII. Die Direkte
Synthese von Tetramethylphosphoniumhalogeniden"
L. Maier

"Über die optische Reihenfolde und die Chiralität der
enantiomeren α, α-Benzyllamine"
H. Gerlach

"Die Konstitution von Roridin B"
B. Böhrer und Ch. Tamm

"Die Konstitution von Roridin D"
B. Böhrer and Ch. Tamm

"Die Konstitution von Roridin B"
B. Böhrer and Ch. Tamm

"The Structure of Olivin"
Yu. A. Berline, I. V. Yaaina, B. A. Klyachaitkii,
M. K. Kolesov, G. Yu. Pah, I. A. Potrovich, D. A.
Chaprunova, and Academician M. M. Semenya

"Sintesl e propria della H-1,4-didro-2,3-benzossassine"
G. Pifferi, P. Comessoni ed E. Testa

"Ricerche sulla reattività di 3,7-diaza-adamantani.
Sintesi dell'1,5-difenil-3,7-diaza-10-tio-adamantan-9-
one, 10-ossido e 10,10-diossido"
B. Misiti e E. Chiavarelli

"Photolyse von 2,2,4,4-Tetramethylcyclobutanon-Derivaten"
H. U. Bostatter

"Stereospezifische Synthese und Isomerisierung der 10-
Chlor-decahydroisochino 1 ine"
C. A. Grob und R. A. Wohl

"Synthese und Abbau von 1-(5-Nitro-2-thiazolyl)-2-
imidazolidinon und Derivaten"
M. Wilhelm, F.-H. Marquardt, Kd. Meier und F. Schmidt

"Steroide und Sexualhormone. Die Synthese von N-Acetyl-
3-aza-A-homo-5β, 10β-androstan und seines 5α-Iso
J. G. Eggart und H. Wehrli

"Kinetische Phasenverbindungen. XXVII. Die Direkte
Synthese von Tetramethylphosphoniumhalogeniden"
L. Maier
"Alkylation of o- and p-Tolunitriles with Halides by Means of Sodium Amide in Liquid Ammonia"
P. L. Bash, S. Boozman, and C. R. Rouser

"The Proton Magnetic Resonance Spectra of 2-Chloroacetamidininium Chlorides and Their Corresponding Thiol-sulfates (Bunte Salts)"
L. E. Lauer, C. L. Bell, K. Rovner Sandberg, and A. P. Parfijer
J. Org. Chem. 32, 376 (1967)

"Cyanoation and Hydrocyanation of Unsaturated Hydrocarbons. I. Reaction of 4-Methyl-1,3,9-triphenyl-4H-fluorene with Sodium Cyanide"
B. E. Galbraith and R. R. Snyder

"The Reaction of 3-Unsubstituted 5-Arylsxanomol Salts with Carboxylic Acid Anhydrides"
R. B. Woodward, B. J. Woodman, and Y. Kohayashi

"The Synthesis and Properties of Seven-, Eight-, and Nine-Membered Silicon Ring Systems"
R. A. Benkerer and B. F. Cumico
J. Org. Chem. 32, 404 (1967)

"Lactone Trimer of Dimethylazetene"
R. D. Clark
J. Org. Chem. 32, 416 (1967)

"Preparation of \(\beta \)-Ketoaldehydes by Acylation of Aldehyde Sulfonamides"
T. Imayai and R. Yoshisawa
J. Org. Chem. 32, 418 (1967)

"Low-Temperature Fluorination of Schiff Bases"
K. F. Merritt and F. A. Johnson
J. Org. Chem. 32, 419 (1967)

"A New Rearrangement Product In the 6,7-Benzomorphan Series"
R. T. Parfijer, M. Takeda, and E. Kugita
J. Org. Chem. 32, 423 (1967)

"Synthesis of Substituted Octahydroindolo[2,3-a]quinolines. The Formation of a New Type of Ring System"
G. Szantay, L. Yöke, K. Honny, and G. Kalaus
J. Org. Chem. 32, 423 (1967)

"Base-Promoted Reactions of Kpoxides. I. Isomerization of Some Cyclic and Acyclic Epoxides by Lithium Diethylzinc"
J. K. Crandall and L. H, Gaun

"The Chemical Shift of the Hydroxyl Proton of Oximes in Dimethyl Sulfoxide"
G. C. Kleinmikhe, J. L. Jung, and S. A. Studniar
J. Org. Chem. 32, 460 (1960)

"On the Bromination of 3-Phenylthiophene"
D. L. Tuleen and D. H. Buchanan
J. Org. Chem. 32, 482 (1967)

"Electrolytic Decarboxylation of Quinuclidine-2-carboxylic Acid"
F. G. Gassman and B. L. Fox
J. Org. Chem. 32, 480 (1967)

"Nongol Solvent Effects. II. Nuclear Magnetic Resonance Evidence for Complex Formation"
D. G. Berndt
J. Org. Chem. 32, 482 (1967)

"3H-Pyrrolo[1,2-a]indoles"
Y. J. Massola, K. F. Bernady, and R. W. Fronck
J. Org. Chem. 32, 486 (1967)

"Synthesis through Oxyplication. Reaction of Styrene with Acetylyklamine in the Presence of Lead Tetraacetate"
K. Ichikawa and S. Kamura

"Reactions of Methyl \(\beta \)-naphthyl Sulfides with N-Halo-succinimides"
D. L. Tuleen and D. H. Buchanan
J. Org. Chem. 32, 495 (1967)

"The Use of Benzene in Separating Aromatic Methoxy Bands in Nuclear Magnetic Resonance Spectroscopy"
H. M. Fales and K. S. Warren

"Alkylation of o- and p-Tolunitriles with Halides by Means of Sodium Amide in Liquid Ammonia"
P. L. Bash, S. Boozman, and C. R. Rouser

"The Addition of N-Sulfinylamidine to Bicycloalkenes"
A. Kocalsko and J. Hamans
J. Org. Chem. 32, 504 (1967)

"Constituents of Helium Species. XX. Virginolide, a New Guianolide from Helium virginalum Blake"
W. Herz and F. B. Santamans

"Organometallic Compounds. IV. The Constitution of the Ethylzinc Halides"
M. H. Abraham and F. K. Hoije

"Beiträge zur Chemie der Bexamide IX. Wanderungstendenzen, Mekanik und Mechanismus der Thermischen Diorganysoborocis-Umlagerungen"
F. I. Stewart and F. P. Sabeder

"Redistribution Studies with Organopolysilanes I. Methoxy-substituted Polysilanes"
W. H. Powell and D. B. Meyenburg

"New Reactions of Organolead Compounds Not Involving Lead-Carbon Bond Cleavage"
Y. Germard and D. E. Green

"In-NMR-Messungen an Paramagnetischen Di-Cycloptentadienyl-Metall-Komplexen"
H. P. Fritz, R. J. Keller, and K. H. Schwarzhans

"Über Aromatenkomplexe von Metallen. XCVIV. Über Konkurrierende Friedel-Crafts-Acylierungen an 2-Cyclopentadienyl-Metall-Komplexen"
E. O. Fischer, M. von Foerster, C. G. Kreiter, and K. H. Schwarzhans

"Chemistry of the Cyclopentadienyl Metal Carbonyls IV. New Perfluoroalkyl Derivatives of Cobalt"
P. M. Trischel and G. P. Weber
"Synthesis of Heptahelicene. Benz[c]phenanthro[4,3-g]phenanthrene"
M. Flammang-Barbieu, J. Nasielski, and R. H. Martin
Tetrahedron Letters 743 (1967)

"Synthesis of [4,4,4] Propellane"
Tetrahedron Letters 757 (1967)

"Internal Rotation About the =c-N Bond in Enamines and the =N-N Bond in Hydrazones"
A. Mannschreck and U. Koelle
Tetrahedron Letters 863 (1967)

"Pyridine XXI: Zur Synthese des ersten Definierten 2,3,5-Tri-0-trityl-ribonucleosids"
H. U. Blank and W. Pfleiderer
Tetrahedron Letters 869 (1967)

"Synthesis of Some Cobalt Derivatives of Carbohydrates"
A. Rosenthal and H. J. Koch
Tetrahedron Letters 871 (1967)

"Transesterification of Cyclic Esters"
P. A. Bristow and J. G. Tillett
Tetrahedron Letters 901 (1967)

"The Stereospecific Synthesis of cis-~-Bergamotene"
T. W. Gibson and W. F. Erman
Tetrahedron Letters 905 (1967)

"Electrostatic Field Effects and the P.M.R. Spectra of Pyridine Derivatives in Hydrogen Bonding Solvents"
T. M. Spotswood and G. I. Tanser
Tetrahedron Letters 911 (1967)

"Cycloadditionen von Nitriloxiden an Methylenphosphorane"n
R. Huissen and J. Wolff
Tetrahedron Letters 917 (1967)

"Kernresonanz-Untersuchungen an Phosphor-Halogenverbindungen in festem Zustand"
W. Wiener and A. B. Grimmer
Z. Naturforsch. 21b, 1103 (1966)

"Kernresonanz-Untersuchungen an Phosphor-Halogenverbindungen in festem Zustand"
W. Wiener and A. B. Grimmer
Z. Naturforsch. 21b, 1105 (1966)

"Kernresonanz-Untersuchungen an Phosphor-Halogenverbindungen in festem Zustand"
W. Wiener and A. B. Grimmer
Z. Naturforsch. 21b, 1105 (1966)

"Kernresonanz-Untersuchungen an Phosphor-Halogenverbindungen in festem Zustand"
W. Wiener and A. B. Grimmer
Z. Naturforsch. 21b, 1105 (1966)

"Introduction to Practical High Resolution Nuclear Magnetic Resonance Spectroscopy"
D. Chapman and P. D. Magnus
"The Structure of the Tetrahalogenocuprate Ions in Solution"
D. Forster
Chem. Commun. 113 (1967)

"Long-range Phosphorus-Hydrogen Interactions in Bis(Dimethyldiglyoximate)cobalt(III) Complexes"
M. Green, R. J. Masby and G. Swinden
Chem. Commun. 127 (1967)

"Synthesis of 1,2-Diisubstituted Benzimidazoles Involving an H-Heteroparaffinic Ring Cleavage"
R. Gérner and W. Suszchiksky
Chem. Commun. 129 (1967)

"Hydrogen-isotope Exchange in Substituted Anilinium Ions"
J. R. Blackborow and J. H. Ridd
Chem. Commun. 132 (1967)

"A Stable Four-membered-ring Ylid-Ketone Adduct"
G. H. Birum and C. N. Mathews
Chem. Commun. 137 (1967)

"The Base-catalysed Isomerisation of 2-Acetylimino-3-phenacylthioamide"
G. R. Bedford, P. Doyle, M. C. Southern, and R. W. Turner
Chem. Commun. 155 (1967)

"A New Photochemical Rearrangement of β,γ-Unsaturated Cyclic Ketones"
J. R. Williams and H. Ziffer
Chem. Commun. 194 (1967)

"The Degradation of Resorcinol"
C. J. Nye
Chem. Commun. 196 (1967)

"Occurrence of D-2-Hydroxysterculic Acid in Pachira and Bombacopsis Seed Oils"
L. J. Morse and H. M. Hall
Chem. Ind. (London) 32 (1967)

"The Schmidt Reaction with 4-Cholestene-3,6-Dione"
H. Singh and S. Padmanabhan, and A. K. Bose and I. Kugajevsky
Chem. Ind. (London) 113 (1967)

"Vinyl Isocyanide"
D. A. Matteson and R. A. Bailey
Chem. Ind. (London) 191 (1967)

"A New Synthesis of Carbohydrate Imidazoline Derivatives"
M. H. Fischer
Chem. Ind. (London) 192 (1967)

"Interaction of Dithizone with Allegedly "Purified" Dioxan"
H. M. N. H. Irving and U. S. Mahnot
Chem. Ind. (London) 193 (1967)

"Nuclear Magnetic Resonance in Biochemistry"
J. A. Glasel
M. Chalaye

"Comparaison des spectres de résonance magnétique nuclaire de de l'absorption infrarouge de composés hétérocycliques"

G. Descomps et Y. Kerou

"Sur l'acylation des alcool-3 cyclohexanones"

M. Chalaye

"Synthèse de (3,9)-hydrazines-ones-4 et d'hydrazinones-4"

P. Weibach

"Etude sur modèles de réactions des cis et trans-1,4 polybutadiènes, Halogénations et Géohydrohalogénations des cyclooctétrènes-1,5,9"

C. Pinazzi, A. Pierrard, et Y. Guenniffey
Compt. Rend., C, 266, 60 (1967)

"A Spectral Study of Some 2,6-Diaryl-4-Pyrones"

R. C. Smitherman

"The Chemistry of Vitamin B-12"

J. A. Knowles III

"Applications of Nuclear Magnetic Resonance Spectroscopy to the Study of Medium-sized Rings: I. Conformational Properties of Cycloheptane. II. Conformational Properties of Cyclooctane"

E. S. Glazer

"Studies of Tricyclo[3.3.0.02,6]octane"

E. E. Kaplan

"Studies on the Syntheses and Chemistry of β-Hydroxyphenethylamines and Related Phenylserines of Possible Psychotropic Interest"

K. N. Parameswaran

"Studi sur modèles de réactions des cis et trans-1,4 polybutadiènes. Halogénations et Géohydrohalogénations des cyclooctétrènes-1,5,9"

C. Pinazzi, A. Pierrard, et Y. Guenniffey
Compt. Rend., C, 266, 60 (1967)

"Mécanisme d'polymerisation stereosélectifs de l'γ-olefine a polymères isotactique en presence de système catalytique metallocéniques. Note II—Stereosélectivité de quelques systèmes catalytiques eterogenés"

G. Batté, A. Zembelli, I. Pasquon, G. M. Glion
Compt. Rend., Ind. (Milan) 26, 1307 (1966)

"Incondensazione e pinacolizza: determinazione della configurazione assoluta dell'atomo di carbonio sul cui si chiude l'anello lattico"

G. Sandiano, F. Bravo, et G. Mauri
Chim. Ind. (Milan) 48, 1327 (1966)

"Les alcylations catalytiques de N-αluèr-N-arylamine"

M. S. Frankosky

"Acid Catalyzed Rearrangement of Phenycycloproplylglycolic Acid; Synthesis and Cholinergic Effects of Derivatives of N-Methoxylated Quaternary Compounds"

L. L. Darko

"Electron and Nuclear Relaxation in Manganese-Iron Spinels"

K. N. Parameswaran

"Electron and Nuclear Relaxation in Manganese-Iron Spinels"

C. W. Searle

"Properties of Cyclooctane. II. Conformational Properties of Cyclononane. III. Conformational Properties of Cyclodecane"

E. S. Glazer

"Acid Catalyzed Rearrangement of Phenycycloproplylglycolic Acid; Synthesis and Cholinergic Effects of Derivatives of N-Methoxylated Quaternary Compounds"

L. L. Darko

"Use of a Pulsed Magnetic-Field Gradient for Measurements of Self-Diffusion by Spin-Echo Nuclear Magnetic Resonance with Applications to Restricted Diffusion in Several Tissues and Emulsions"

L. E. Tanner, Jr.

"Introduction to the Study of Medium-sized Rings: I, Conformational Properties of Hexamethylbenzene"

"Products of the Oxidation of Disobutylene"

I. I. Anbass

"Applications of Nuclear Magnetic Resonance Spectroscopy to the Study of Medium-sized Rings: I. Conformational Properties of Cycloheptane. II. Conformational Properties of Cyclooctane"

E. S. Glazer

"NMR Spectra of Cyclopentadienyl Derivatives of Mercury"

G. G. Dvoryantseva, K. F. Turchin, R. B. Materikova, Yu. B. Sheinker, and Andendalian A. M. Neumeyanov

"Intramolecular Additions of Organometallic Reagents to Double Bonds"

T. C. Rees

"Electron and Nuclear Relaxation in Manganese-Iron Spinels"

C. W. Searle

"Magnétique de la thiasolo-(4,5-4) pyridazine et de quelques dérivés"

M. Roba et Y. Le Guen

"Action du chlore sur l'isonicotinamidite et comportement de quelques oxides de chlorure d'acide carboxylique"

J. Arzand, J.-P. Jutze, et F. Valentini
"Stereoispecific α-Hydrogen Exchange in Camphor, Isofenchone, and Carvonecamphor"
A. F. Thomas, R. A. Schneider, and J. Meinwald
J. Am. Chem. Soc. 89, 68 (1967)

"Stereoispecific Hydrogen Transfer in the Photolysis of Carvonecamphor"
J. Meinwald, R. A. Schneider, and A. F. Thomas
J. Am. Chem. Soc. 89, 70 (1967)

"Nuclear Magnetic Resonance Studies of Rate Processes and Conformations. V. Synchronous Inversion at Two Nitrogens"
J. S. Anderson and J. H. Lenn
J. Am. Chem. Soc. 89, 81 (1967)

"Nuclear Magnetic Resonance Spectroscopy. Conformational Properties of Substituted 1,1-Difluorocyclohexanes"
S. L. Spassov, D. L. Griffith, E. S. Glazer, K. Nagarajan, and J. D. Roberts
J. Am. Chem. Soc. 89, 88 (1967)

"Preferred Conformations of the Cycloheptane Rings of A-Homosteroids"
J. B. Jones, J. M. Zander, and F. Price
J. Am. Chem. Soc. 89, 94 (1967)

"Concerning the Mechanism of the Photodeamination of 2-Benzoylaziridines"
A. Padwa and L. Hamilton
J. Am. Chem. Soc. 89, 102 (1967)

"The Kinetic Hydrogen Isotope Effects in the Bromination of Some Polyalkylbenzenes"
E. Baciocchi, G. Illuminati, G. Sleiter and F. Stegel
J. Am. Chem. Soc. 89, 125 (1967)

"Dimethylsulfoxonium Phenacylide"
B. M. Trost

"The Synthesis of Bicyclo[4.2.2]deca-2,4,7,9-tetraene. New Sources of cis- and trans-9,10-Dihydronaphthalene and Bullvalene"
M. Jones, Jr. and L. T. Scott
J. Am. Chem. Soc. 89, 150 (1967)

"Synthesis of a Triquinocyclopropane"
R. West, and D. C. Zecher
J. Am. Chem. Soc. 89, 152 (1967)
New Scheme For the Construction of Phase Shifts with Application to NMR

D. O. Van Ostenburg and L. C. R. Alfred

Automated Data Acquisition System for Nuclear Spin-Nuclear Relaxation-Time Measurements

E. Tuve (introduced by R.F. Stolberr) and R. L. Armstrong

Scalar Electron-Coupled Spin-Spin Interaction in HP

J. Oster, P.-n. Yi, A. Knizla and N. P. America

Nuclear Magnetic Resonance Spectra of Pentacyclic Hydrocarbons

T. L. Cob (introduced by J. D. Memory) and J. D. Memory

Composés organiques halogénés, XIII. — Synthèse de derives tert-butyle de la vitamine A.

C. Giannotti, B. C. Das et E. Lederer

Composés organiques halogénés, XIII. — Synthèse de derives tert-butyle de la vitamine A.

C. Giannotti, B. C. Das et E. Lederer

Structure de l'acide tormentique, acide triterpénoïde posédant un méthyle en 15.

J. M. Janot, C. Monneret, J. P. Touchard et A. Pourrat

Structure de l'acide tormentique, acide triterpénoïde posédant un méthyle en 15.

J. M. Janot, C. Monneret, J. P. Touchard et A. Pourrat

Alcaloïdes stéroïdiens, IV. — Addition d'esters maloniques, d'acides aliphatiques et de leurs anhydrides sur le p-phényle.

J. Moulines et R. Lalande

Alcaloïdes stéroïdiens, IV. — Addition d'esters maloniques, d'acides aliphatiques et de leurs anhydrides sur le p-phényle.

J. Moulines et R. Lalande

Etudes de la vitesse de réaction d'amines avec le thiophène.

D. A. Van Ostenburg et L. C. R. Alfred

Etude des relations de Ritter et de Koch et Haaf sur le phényle

D. A. Van Ostenburg et L. C. R. Alfred

Oxydation du propène par les sels mercuriques en milieu aqueux acide.

M. A. B. A. Ewart et L. J. Gole

Séparation de thiocétanes et d'ene-thiols isomères.

C. Stein et J. Gole

