Lancaster, Neglia
P-H Coupling Constants in Aromatic Rings

Abraham
CH.CF and CF.CF Coupling Constants

Reuben, Samuel
C17 NMR Spectrum of Methanol

Dickson
A-60 Decoupling of Tetraphosphonitriles

Douglass, McCall
Measurement of Multiple T1's

Higlet
The Characterization of Poly-Substituted Phenols by NMR

Nabore
Long-Range Coupling in Crotonolactones

Lasslo, Musher
Dixial 3J in Bromodecalones

Stothers
Vinyl C13 Shieldings of Some Substituted Styrenes

Hall, G. E.
Perkin-Elmer NMR; Aqueous Referencing; Plea for Compounds

Fraenkel, Meyer
HR-60 Sources of Instability and Multiple R. F. Unit Switching

Alderswiridt, Antounis
Differentiation of Proton Signals by (Enolic) Tautomerism

Barfield
Errata and Long Range Coupling Over Five Saturated Bonds

Parrar, Coyle
1H, 19F, and 11B Spectra of HBF2

Ourisson
RMN de Derivés Cyclolanostaniques

Moreland
The Effect of Conjugation on Chemical Shifts and Coupling Constants in Molecules of the Type, F4-R=CFX

Deadline for Next Issue: 20 October 1964

A monthly collection of informal private letters from laboratories of NMR. Information contained herein is solely for the use of the reader. Quotation is not permitted, except by direct arrangement with the author of the letter, and the material quoted must be referred to as a "Private Communication".
Muller
Temperature Dependence of Chemical Shifts of Protons in Hydrogen Bonds

Koster, Lanti, Hinze, Curl
Proton Magnetic Resonance Spectrum of N-Methyl Methylaniline

Fratiello, Rusell
Electrolytes in Aqueous Mixtures of Amino Acids

Fahay, Graham
An Analysis of the NMR Spectrum of Phenanthrene

de Jongh, Wijnberg
Long Range Shielding Effects by Benzene, Thiophene, and Puran Rings in the Proton NMR Spectra of Diarylspiroketones

Whalley
Anti-Clogging Additive for Magnet Cooling Water System

Hanning, Zimmermann
Studies of the Tetrahydrate of Hydrogen Bromide

Knight, Brekine
A Simple Locked Field System

Shapiro

People
Dr. B. L. Shapiro
Department of Chemistry
Illinois Institute of Technology
Chicago, Illinois 60616

Dear Barry:

Thank you for your subscription reminder. The complicated proton spectra from phenyl phosphorus compounds (Hendrickson, et al., Tetrahedron 20, 449) has been a deterrent to the determination of PH couplings in aromatic rings. We have had occasion recently to look at a few para-substituted phenyl phosphorus compounds. Here, since the para proton is absent, and the cross-ring couplings are small, the spectra appear as only slightly perturbed ABX spectra, where X is the P31 nucleus, and A and B correspond to the ortho and meta protons, respectively.

From these spectra, values of JPH(ortho) (JAX) and JPH(meta) (JEX) can be read off directly.

It has come to our attention that Prof. C. E. Griffin of the University of Pittsburgh has been conducting a parallel and more extensive investigation of para-substituted phenyl phosphorus compounds, and his results will appear shortly in Tetrahedron. Summarizing data from both Prof. Griffin's work and ours, it appears that JPH(ortho) ranges from 10.4 to 11.5 cps. in primary phosphine oxides and phosphonium salts, increases slightly (12.7 to 13.2 cps.) in secondary phosphine oxides, but decreases slightly (6.5 to 7.1 cps.) in phosphines. JPH(meta) ranges from 0.8 to 3.4 cps., with the values from 0.8 to 1.1 cps. applying to phosphines.

In this letter we wish to add the results of double-quantum experiments which determined the relative sign of JPH(ortho) and JPH(meta). Following Whiffen's procedure (Proc. Chem. Soc. April, 1962, p. 144) two double-quantum lines were observed in the center of the AB part of the spectrum at sufficiently high r.f. levels to saturate the normal spectrum. Only a slight broadening was observed due to the presence of the cross-ring couplings. We examined one each of the four types: phosphine, phosphine oxide, secondary phosphine oxide, and phosphonium salt. In all cases, the separation of the double-quantum lines was within 0.5 cps. of one-half of the sum of the JPH(ortho) and JPH(meta) values, and thus one can conclude that they have the same sign.

We would like to thank Dr. Griffin for sending us a preprint of his work.

Very truly yours,

John E. Lancaster
M. T. Neglia

Magnetic Resonance Group
Research Service Department
18th August, 1964.

Dr. B.L. Shapiro,
Editor, IIT.NMR,
Department of Chemistry,
Illinois Institute of Technology,
Chicago,
Illinois 60616.
U.S.A.

Dear Dr. Shapiro,

As my subscription to your news letter is due for renewal shortly, I trust this will keep me "in the news" for the next nine months.

Dr. Cavalli and I have just completed an investigation into CF.CH and CF.CF couplings in substituted ethanes. Our results can be summarised as follows. The average coupling constants, (defined as the coupling constant for equal populations of the rotational isomers) in CH.CF and CF.CF fragments obey a similar electronegativity relationship to the CH.CH coupling. These are, from a collection of the unambiguous values of these couplings (see Table),

\[J_{AV}^{HF} = 53.03 - 3.38 \leq E \]

and

\[J_{AV}^{FF} = 91.4 - 6.15 \leq E \]

where \(\leq E \) is the sum of the electronegativities of the first atom of the four remaining substituents. The mean deviation of the \(J_{AV}^{HF} \) points is 1.3 c.p.s. over a range of 22 c.p.s. The agreement of the F-F couplings is by no means as good, although most of the exceptional cases can be removed by taking the electronegativity of the CF\(_3\) group equal to that of Cl (3.15).

/ cont.
Consideration of these equations with the corresponding one for \(J_{AV}^{HH} \), vis

\[
J_{AV}^{HH} = 14.5 - 0.80 \frac{\zeta}{E}
\]

shows that for a large number of highly electronegative substituents all the couplings decrease to zero. (e.g. In the case where \(\zeta/E \) equals that for \(CF_3.CF_2.CO_2H \), \(J_{AV}^{HH} \) equals 0.0 c.p.s., \(J_{AV}^{HF} \) 1.5 c.p.s. and \(J_{AV}^{FF} \) 2.3 c.p.s. (calculated) and 1.5 c.p.s. (observed)). This limit cannot be reached in practice for those couplings involving hydrogen due to its low electronegativity. However, the point here is that the "peculiarly small" F-F couplings are no more than a consequence of the high electronegativity of fluorine combined with the relative ease of obtaining perfluoroo-ethanes. Also, the similarity between these couplings, coupled with the theoretical predictions that \(J_{AV}^{HF} \) couplings are always positive, suggests that both \(J_{AV}^{HF} \) and \(J_{AV}^{FF} \) approach zero for highly electronegative substituents, and do not change sign and thus accidentally cancel.

The values of \(J_{AV} \) can be used as a base to investigate the temperature dependence of the coupling in an unsymmetric ethane, as \(J_{AV} \) will represent one limit (an upper or lower one depending on whether the coupling is increasing or decreasing with temperature) to the \(J_{AV} \) temperature curve, the other theoretical limit being the coupling in the most stable rotamer. It is of interest to consider F-F couplings in this light as it is known that in some compounds \(J_{AV}^{FF} \) changes with temperature. The molecule \(CF_2Br.CFBrCl \) is an ideal case for this, as both couplings in the individual isomers and the high temperature couplings are known. The mean of the two CF-CF couplings in the rotamers are 13.3, 14.0 and 20.8 c.p.s., and the rotamer with the smallest coupling is the most stable. Thus the high temperature averaged coupling should increase from 13.3 c.p.s. to, at infinite temperatures, \(J_{AV} \) (16.0 c.p.s.). In fact the observed coupling (in \(CFCl_3 \) solution) decreases from 13.95 c.p.s. at 242°K to 13.70 c.p.s. at 371°K and in the pure liquid the coupling again decreases from 14.11 c.p.s. to 13.36 c.p.s. at 466°K.

We attempted to fit these results by using different signs of the coupling constants of the individual rotamers. This, however, gave no reasonable answer. Thus we are left with the conclusion that the observed temperature dependence cannot be accounted for by the change in the percentage of the rotamers with temperature.

/ cont.
An even more striking example is CF₄Br·CFBr₂ in which, from the known coupling constants of the individual rotamers, the observed high temperature coupling will only change from 17.4 c.p.s. at (zero) temperatures to 17.9 c.p.s. at infinite temperatures. i.e. Over any practical range of temperature the variation in the coupling due to the changing populations of the rotational isomers will be less than the experimental error of measurement (ca. 0.1 c.p.s.).

Thus it is clear that in CF.CF couplings, the relatively small differences between the couplings in the individual isomers and the relatively large changes in these couplings with temperature may combine to produce a situation in which the temperature dependence of the observed coupling in an unsymmetric ethane is not primarily due to the changing populations of the rotational isomers.

The situation with CH.CH couplings is the reverse of this. Here J₈₁ does not change appreciably with temperature and the differences between the couplings of the individual isomers are much greater. We suggest that CH.CF couplings resemble CH.CH rather than CF.CF, though here the lack of experimental evidence (e.g. in the temperature dependence of J₈₄) precludes any certainty on this.

2 W.S. Brey and R.C. Ramey, J. C.P., 39, 844 (1963)

Yours sincerely,

R. J. Abraham.
CH.CF and CF.CF Coupling Constants in Various Compounds

<table>
<thead>
<tr>
<th>Compound</th>
<th>J_{AV}^{HF}</th>
<th>Compound</th>
<th>J_{AV}^{PP}</th>
</tr>
</thead>
<tbody>
<tr>
<td>CH$_3$.CH$_2$.F</td>
<td>25.2</td>
<td>(CF$_3$.CFH)$_2$.Hg</td>
<td>17</td>
</tr>
<tr>
<td>CH$_3$.CHF$_2$</td>
<td>20.8</td>
<td>CF$_3$.CFH$_2$</td>
<td>15.3</td>
</tr>
<tr>
<td>CH$_3$.CFCl.CH$_2$.Cl</td>
<td>18.4</td>
<td>(CF$_3$)$_2$.CFI</td>
<td>12.4</td>
</tr>
<tr>
<td>CH$_3$.CF$_2$.CH$_2$.Cl</td>
<td>17.7</td>
<td>CF$_3$.CFI.CF$_2$.Cl</td>
<td>11.8</td>
</tr>
<tr>
<td>CH$_3$.CF$_2$.Br</td>
<td>15.9</td>
<td>(CF$_3$)$_2$.CF.CF:(CF$_3$)$_2$</td>
<td>9.0</td>
</tr>
<tr>
<td>CH$_3$.CF$_2$.Cl</td>
<td>15.0</td>
<td>(CF$_3$)$_2$.CFBr</td>
<td>8.7</td>
</tr>
<tr>
<td>(CF$_3$.CH$_2$)$_2$.Hg</td>
<td>15</td>
<td>CF$_3$.CFClBr</td>
<td>7.8</td>
</tr>
<tr>
<td>CF$_3$.CH$_3$</td>
<td>12.7</td>
<td>(CF$_3$)$_2$.CF.CH:CHF</td>
<td>7.6</td>
</tr>
<tr>
<td>CF$_3$.CH$_2$.CH$_3$</td>
<td>10.5</td>
<td>(CF$_3$)$_2$.CFCl</td>
<td>6.4</td>
</tr>
<tr>
<td>[CF$_3$.((CH$_2$)$_3$)]$_2$</td>
<td>10.4</td>
<td>CF$_3$.CFCl$_2$</td>
<td>5.5</td>
</tr>
<tr>
<td>CF$_3$.CH$_2$.CF$_3$</td>
<td>9.17</td>
<td>CF$_3$.CF$_2$.I</td>
<td>4.6</td>
</tr>
<tr>
<td>CF$_3$.CH$_2$.Br</td>
<td>8.92</td>
<td>(CF$_3$)$_3$.CF</td>
<td>4.0</td>
</tr>
<tr>
<td>CF$_3$.CH$_2$.Cl</td>
<td>8.41</td>
<td>CF$_3$.CF$_2$.H</td>
<td>2.8</td>
</tr>
<tr>
<td>CF$_3$.CF$_2$.H</td>
<td>7.98</td>
<td>CF$_3$.CF$_2$.Cl</td>
<td>1.6</td>
</tr>
<tr>
<td>CF$_3$.CHCl.CF$_3$</td>
<td>5.93</td>
<td>CF$_3$.CF$_2$.CO$_2$.H</td>
<td>1.48</td>
</tr>
<tr>
<td>CF$_3$.CF$_2$.H</td>
<td>2.60</td>
<td>CF$_3$.CF$_2$.CF$_2$.I</td>
<td>0.8</td>
</tr>
<tr>
<td>CF$_2$.Cl.CH$_2$.Cl</td>
<td>9.5</td>
<td>CF$_3$.CF$_2$.CF$_3$</td>
<td>0.7</td>
</tr>
<tr>
<td>CF$_3$.CF$_2$.CF$_2$.CH$_2$.I</td>
<td>13.5</td>
<td>CF$_2$.Cl.CF$_2$.Cl</td>
<td>4.63</td>
</tr>
<tr>
<td>CH$_2$.Cl.CH$_2$.F</td>
<td>17.5</td>
<td>CF$_2$.I.CF$_2$.Cl</td>
<td>8.2</td>
</tr>
<tr>
<td>CH$_2$.Br.CH$_2$.F</td>
<td>19.3</td>
<td>CF$_3$.CFH.CF$_3$</td>
<td>11</td>
</tr>
<tr>
<td>CF$_3$.((CF$_2$)$_5$.CF$_2$.H</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CF$_3$.CFH.CF$_3$</td>
<td>5.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(CF$_3$)$_3$.CH</td>
<td>7</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Dear Barry:

^{17}O NMR Spectrum of Methanol

In connection with a study of hydrogen bonding we have examined the spectra of dilute solutions of ^{17}O-labelled methanol in a variety of solvents. Methanol containing 8.6 atom % ^{17}O was prepared by the partial hydrolysis of trimethyl phosphate in ^{17}O-enriched water. The NMR spectra were obtained at room temperature (23°C) on a Varian D.P. 60 spectrometer operating at 8.13 Mc. As is usual, the derivative of the absorption mode was recorded. A 20 cps modulation frequency was used, the modulation field being kept small to avoid modulation broadening as far as possible. A small capillary tube containing ^{17}O-enriched water was used as an external standard. The ^{17}O-spectrum of methanol appeared as doublet of equal intensity (with some overlap) due to ^{17}O-proton spin-spin coupling. This partial overlap is due to the relatively small ratio J/Δ (see Christ and Diehl, Helv. Phys. Acta 26, 170 (1963)). On the other hand the spectrum of CH$_3$$^{17}O$D (prepared from D$_2$$^{17}O$) consists of a single line (with about the same line width). The ^{17}O-D coupling is expected to be smaller than ^{17}O-H one by a factor of 6.5, so that the J/Δ ratio is smaller by the same factor.

Preliminary ^{17}O NMR parameters for methanol are given in the following table:
<table>
<thead>
<tr>
<th>Solvent</th>
<th>% conc. mole CH$_3$OH/mole solv.</th>
<th>δ (ppm)</th>
<th>Splitting (cps)</th>
<th>Δ (cps)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CH$_3$OH</td>
<td>neat</td>
<td>37.0</td>
<td>76.0</td>
<td>60</td>
</tr>
<tr>
<td>CH$_3$OD</td>
<td>neat</td>
<td>38.8</td>
<td>-</td>
<td>68</td>
</tr>
<tr>
<td>Acetone</td>
<td>6.05</td>
<td>39.1</td>
<td>76.6</td>
<td>55</td>
</tr>
<tr>
<td>Benzene</td>
<td>7.2</td>
<td>34.9</td>
<td>83.0</td>
<td>47</td>
</tr>
<tr>
<td>CHCl$_3$</td>
<td>1.3</td>
<td>33.3</td>
<td>79.0</td>
<td>42</td>
</tr>
<tr>
<td>CCl$_4$</td>
<td>8.0</td>
<td>33.3</td>
<td>76.4</td>
<td>54</td>
</tr>
</tbody>
</table>

(1) Chemical shifts are accurate to within ± 1 ppm.
(2) Splittings are accurate to within ± 2 cps.
(3) Δ is the peak to peak line width.

It is apparent from this table that the chemical shift varies from solvent to solvent and also that there is an isotope effect on the chemical shift. A similar effect was found for water (H$_2$O17 and D$_2$O17) by Christ et al [Helv. Chim. Acta 44, 865 (1961)].

The observed splittings and line widths also vary from solvent to solvent. We are now engaged in a more systematic study of the nature of these effects.

Yours sincerely,

J. Reuben

D. Samuel
August 26, 1964

Dear Barry:

In continuation of our studies on phosphonitrile ring systems with Dr. I. I. Bezman and Mr. C. T. Ford of Mellon Institute (see Mellonnr 63, 31), we have had occasion to obtain N.M.R. spectra of three isomers of \(\text{P}_4\text{N}_4(\text{C}_6\text{H}_5)_4[\text{N} (\text{CH}_3)_2]_4 \), phenyl-N-dimethylaminotetraphosphonitride. This compound, of course, can exist in three cis-trans isomeric forms. The position of the N-dimethyl and phenyl groups had been previously established by chemical methods.

The N.M.R. spectrum (which was obtained on our A-60 as a 20% solution in CDCl\(_3\)) of one of the isomers proves to be most interesting (see Figure 1) in that it appeared that three methyl protonic environments were indicated by three doublets in the spectrum, each doublet corresponding to a \(J_{PH} \) of 10.5 cps. The fact that these doublets did indeed represent three distinct protonic environments could not be adequately proven until a phosphorus decoupling experiment was performed and revealed three sharp singlets (see Figure 2). The intensity of these singlets was in the expected 1:2:1 ratio revealing that the isomer could only have the following configuration:

\[
\begin{align*}
\text{X} &= \text{N} (\text{CH}_3)_2 \\
\emptyset &= \text{Phenyl}
\end{align*}
\]

Further explanation of the chemical shifts of these lines, as well as the complete story on this problem, will appear in Inorganic Chemistry this fall. I do feel, however, this is a rather pretty "textbook" example of decoupling.

Thank you for your recent reminder concerning our contribution to the IITN-N-R Newsletter. I trust this will keep us in good standing for a while.

Sincerely,

Frank E. Dickson
Executive Vice President

Dr. Bernard L. Shapiro
Department of Chemistry
Illinois Institute of Technology
Chicago, Illinois 60616

In continuation of our studies on phosphonitrile ring systems with Dr. I. I. Bezman and Mr. C. T. Ford of Mellon Institute (see Mellonnr 63, 31), we have had occasion to obtain N.M.R. spectra of three isomers of \(\text{P}_4\text{N}_4(\text{C}_6\text{H}_5)_4[\text{N} (\text{CH}_3)_2]_4 \), phenyl-N-dimethylaminotetraphosphonitride. This compound, of course, can exist in three cis-trans isomeric forms. The position of the N-dimethyl and phenyl groups had been previously established by chemical methods.

The N.M.R. spectrum (which was obtained on our A-60 as a 20% solution in CDCl\(_3\)) of one of the isomers proves to be most interesting (see Figure 1) in that it appeared that three methyl protonic environments were indicated by three doublets in the spectrum, each doublet corresponding to a \(J_{PH} \) of 10.5 cps. The fact that these doublets did indeed represent three distinct protonic environments could not be adequately proven until a phosphorus decoupling experiment was performed and revealed three sharp singlets (see Figure 2). The intensity of these singlets was in the expected 1:2:1 ratio revealing that the isomer could only have the following configuration:

\[
\begin{align*}
\text{X} &= \text{N} (\text{CH}_3)_2 \\
\emptyset &= \text{Phenyl}
\end{align*}
\]

Further explanation of the chemical shifts of these lines, as well as the complete story on this problem, will appear in Inorganic Chemistry this fall. I do feel, however, this is a rather pretty "textbook" example of decoupling.

Thank you for your recent reminder concerning our contribution to the IITN-N-R Newsletter. I trust this will keep us in good standing for a while.

Sincerely,

Frank E. Dickson
Executive Vice President
Dr. Bernard L. Shapiro
Department of Chemistry
Illinois Institute of Technology
Technology Center
Chicago, Illinois 60616

Dear Barry:

I have induced Dean Douglass to contribute one of his useful ideas to save our IIT NMR subscription. Other work in progress involves new equipment design and construction for our "relaxation in the rotating frame" experiments. Additional self-diffusion work is being written up. Further relaxation studies in the n-alkanes are under way.

The Bloch decay following a 90° pulse is a useful method of observing a nuclear resonance. It is the Fourier transform of the steady state resonance shape. When the steady state spectrum consists of two chemically shifted lines (A & B) whose widths are small compared with their separation the Bloch decay is an oscillating function that oscillates at the frequency characteristic of the resonance separation. The envelope decays with a time proportional to the reciprocal of the individual line widths.

Let the lines A & B have different T₁'s, T₁A & T₁B. We apply a 180° pulse at times τ before the 90° pulse and observe the Bloch decay. (We assume T₁A & T₁B >> Bloch decay. This is usually so in liquids as the Bloch decay is usually magnet controlled, ~10⁻² sec.). If τ = T₁A/ln2, then the A magnetization is zero when the 90° pulse is applied (and substantially zero during the Bloch decay period to follow) and no oscillation is observed in the decay. Similarly when τ = T₁B/ln2 there will be no oscillation.

The procedure for a resonance composed of two lines is to vary τ and look for the Bloch decays without oscillation. τ's thus determined lead directly to the individual T₁'s.

The advantage of the method is that T₁'s that lie quite close to one another can be distinguished and measured accurately. For example, in acetic acid at 23°C T₁(methyl) = 1.125 sec and T₁(acid) = 1.412 sec.
Dr. Bernard L. Shapiro - 2

When the A and B lines differ in intensity the T₁'s can be unambiguously assigned from the Bloch decay intensities.

The method can be generalized to a larger number of spins but the analysis becomes more involved. A wave analyzer has obvious applications here.

Spin coupling can complicate the analysis.

Sincerely yours,

DAVID W. McCALL

MH-1123-DWM-MC
August 24, 1964

Professor B.L. Shapiro
Department of Chemistry
Illinois Institute of Technology
Chicago, Illinois

Dear Dr. Shapiro:

Recently our laboratory faced the problem of determining which of the oxygen atoms on the aromatic ring of Amaryllisine (I)

\[\text{CH}_3, \text{CH}_3', \text{H} \]

is that of the free phenolic group. This question was settled when it was found that the aromatic proton resonance frequencies of a phenol are affected in a characteristic manner by conversion to the anion. The spectra of ten alkyl- and alkoxy-substituted phenols and their corresponding sodium salts in dimethyl sulfoxide solution were measured (no need to use the deuterated solvent). The upfield shifts resulting from conversion to the anion fell within discrete ranges for the different protons: \text{ortho}, 0.42-0.59; \text{meta}, 0.10-0.38; and \text{para}, 0.71 to 0.79 p.p.m. Amaryllisine proved to possess an \text{ortho} proton.

More variously substituted phenols do not conform to this generalization. However, eight \text{p}-hydroxyacetophenones and vinylogues showed the following characteristic shifts: \text{ortho}, 0.60-0.84 and \text{meta}, 0.22-0.47 p.p.m. Evidently the method can be used to identify the protons remaining on the ring of many poly-substituted phenols if suitable models can be studied.

Yours very truly,

Robert J. Hight
Section on Chemistry
National Heart Institute
Dear Sir:

We would like to receive the I.I.T. - N - M - R - Newsletter. We present some data for substituted crotonolactones which demonstrates the electronic effect of electronegative substituents on allylic and vincinal coupling.

The two \(\gamma \)-protons in both crotonolactone and \(\beta \)-bromocrotonolactone have C-H bonds of essentially equal and fixed orientation with respect to the plane of the double bond. Therefore, the smaller allylic coupling constant in \(\beta \)-bromocrotonolactone results from a disturbance in the \(\pi \)-electron system by the bromine atom. The vincinal protons of \(\alpha \)-bromocrotonolactone couple more effectively than the corresponding protons of crotonolactone.

The chemical shifts for the \(\alpha \), \(\beta \) and \(\gamma \) protons are given in \(\delta \)-values in p.p.m. from tetramethylsilane and the coupling constants (\(J \)) are in c.p.s. (1) Crotonolactone (from Dr. Danny L. Stephenson): \(\alpha \), 6.05; \(\beta \), 7.65; \(\gamma \), 4.88; \(J_{\alpha \beta} \) 5.9; \(J_{\alpha \gamma} \) 2.25; \(J_{\beta \gamma} \) 1.7.

(2) \(\alpha \)-Bromocrotonolactone (from Dr. Yoshiteru Hata): \(\beta \), 7.65; \(\gamma \), 4.87; \(J_{\beta \gamma} \) 2.0.

(3) \(\beta \)-Bromocrotonolactone: \(\alpha \), 6.35; \(\gamma \), 4.88; \(J_{\alpha \gamma} \) 1.9.

Dr. M. G. Ettlinger's suggestions and discussions were helpful.

Sincerely yours,

Tom J. Mabry
Assistant Professor
Department of Botany
University of Texas
Austin, Texas 78712
Cher Barry,

Nous avons mesuré les couplages 4J indiqués, dans des bromodécalones obligemment fournies par les Prs. Bordwell et Fétizon :

$^4J = 1,0-1,5$ cps

Un Mémoire détaillé paraîtra au Bulletin de la Société Chimique. Veuillez créditer cette contribution à J.I.M.

Cordialement,

Pierre Laszlo

Jeremy I. Musher
Vinyl C13 Shieldings of Some Substituted Styrenes

Judging from the number of comments in the No. 71 Newsletter, I am only one of several who are unable to keep track of time and so require your reminder for payment of my subscription to I.I.T. N.M.R.

One feature observed in our survey of carbonyl compounds (reference to which has been made in No.'s 63 and 67) is the apparent lack of sensitivity of carbonyl carbon shieldings to meta- and para-substituents in, for example, acetophenones, benzoates and benzaldehydes. This result may be due to the fact that the carbonyl carbon nucleus is not at a terminal position in the resonance system so that there are no pronounced electron density changes with different polar substituents. As one possible test of this naive interpretation, a series of substituted styrenes has been examined to determine the effects of polar substituents at the vinyl carbons. One would expect the resonance position of the β-carbon nucleus to be dependent on the nature of a meta- or para-substituent if our present view is not totally incorrect. The series included the following substituents: meta- methyl, chloro, bromo and nitro; para- methyl, methoxyl, N,N-dimethylamino, chloro, bromo, and nitro. The observed shieldings for the vinyl carbon nuclei are plotted vs. the Hammett sigma parameter in one of the figures enclosed. It is clear that the β-C shielding is dependent on the polarity of the substituent and in the expected direction while the shielding of the α-C nucleus exhibits approximately the same behavior as the carbonyl carbon in substituted acetophenones. It is interesting that the scatter is greater for the meta-derivatives in the latter cases. To determine the chemical shifts with any certainty for most of these cases we found it necessary to make extensive use of proton spin-decoupling since the vinyl absorption appears in the same region as that of the aromatic nuclei. One example of the sort of spectrum obtained is shown in the other figure enclosed and the assignments are indicated. The lower spectrum is run after first determining the appropriate decoupler frequency for each multiplet separately and then changing the decoupling frequency while sweeping through the C13 spectrum. The NMR Specialties, Inc. SD-60 decoupling unit was used for these experiments. (The sweep rates are slightly different for the two spectra illustrated.)

Sincerely,

J. B. Stothers
Associate Professor
VINYL ^{13}C SHIELDINGS of m- and p-SUBSTITUTED STYRENES

vs. HAMMETT σ's

CH$_2$

(CH)

α

β

meta

para
151 Mc/s Spectra

\[
\begin{align*}
\text{H} & \quad \text{sweep} \\
\hline
339 & \quad 138.7 & \quad \text{p.p.m.}
\end{align*}
\]

\begin{align*}
\text{CH}_3 & \\
\hline
\beta-C & \quad \alpha-C & \quad C-4 \\
\hline
\text{C}-3,5 & \quad \text{C}-2,6 & \quad C-1
\end{align*}
Perkin-Elmer NMR; Aqueous referencing; Plea for compounds

I have been operating a Perkin-Elmer 60 Mcs. proton MR instrument for 10 months now. This has a built-in 200/400 cps. calibrating oscillator controlled by a 4 Kcs. crystal. We could not understand why we were getting chemical shifts some 2% in error although the crystal was spot on, until the P-E service engineer found the oscillator circuit to be free running and its nominal 400 cps. was really 398 cps.

I have investigated the system resorcinol-water and was therefore interested in the letter of E.S.Hand\(^1\) describing his similar system. We too experimented with dioxan as internal standard, and find that with increasing resorcinol concentration the dioxan line does indeed move upfield. But Hand apparently made no allowance for bulk diamagnetic susceptibility effects and we have\(^2,3\). We then find that the dioxan moves upfield and the "water" peak downfield. The results are shown in the accompanying figure\(^4\).

In connection with our high-resolution work, we have a compound which we believe may be

\[
\text{has anybody}
\]

any spectra or compounds they would be willing to let us have, to help in identifying the proposed 1-acyl oxytetrahydrofuran end?

1. HAND Newsletter No.69
4. LAUTERBUR Newsletter No.47

Colworth House
SHARKBROOK
BEDFORD
ENGLAND
Dr. B. L. Shapiro
Department of Chemistry
Illinois Institute of Technology
Chicago, Illinois 60616

HR-60 Sources of Instability and Multiple R. F. Unit Switching

Dear Barry:

We have had instability problems in the HR-60. We hope that this communication will be of use to other people with similar problems. Although each of the following deficiencies could have caused the instability alone, instability generally comes from several sources acting in concert in a complicated way.

Magnet Power Supply (V-21003)

1. The cathode-filament buss bars were corroded. We removed all connections and cleaned them with steel wool.
2. Three of the grid caps on the 304 TL's were internally broken.
3. On one of the 572 A's, the plate stud was pulled loose from the glass envelope.
4. The plate lead connection to the cooling fins of the 304 TL's were badly corroded.
5. The 304 TL's were old and were conducting unequally. - Replaced the whole set.
6. The Power Supply was generally dirty. We cleaned it up.

Super Stabilizer (V-3506)

1. Balance Operate switch was taken apart and cleaned with emery paper.
2. All copper-to-copper contacts in the 5 ohm insert were also cleaned the same way, including the leads to the stabilizer coils.
3. The leads into the socket of the light bulb were making bad connection. The wires were restripped, doubled and then replaced in the socket.
4. Completely realigned the optical system.

Slow Sweep Unit (V-3507)

1. A very common trouble here was unsoldered connections on the resistor board. We soldered the rivets to the lugs on the battery holders.
2. The switches were all cleaned.
3. Removed the Jones plug and soldered the leads to each other directly.
Dr. B. L. Shapiro
September 1, 1964
Page 2

(4) Soldered the crimped lugs on the 2.7 volt battery.

Probe (V-4531A)

(1) Took the probe apart and cleaned each piece with CCl₄.
(2) Insured the transmitter coil was firmly attached to the Faraday Shield.
(3) Glued all components into position with Duco cement so there would be no movement.
(4) Checked insert for cracks.

The final considerations for instability are the temperature control of air and magnet water. We use a diffused air system to hold the room temperature to 1°C, and the water system should hold the magnet temperature to 1°C above room temp. and control to 1°C with distilled water.

We have both Hydrogen (60 mc.) and Boron (19.3 mc.) R. F. Units. We found it time consuming and troublesome to switch all the cabling and to turn the system on and off whenever we wanted to change frequencies. Therefore, we have a switching system which will work with any number of R. F. Units although we only have two.

Our system was a DP-60 but it was decided that we were not going to run Wide Line spectra so all of these components were removed. We also removed all the cabling in the console and recabled using a different Selector Panel. We mounted the Boron R. F. Unit in the console in the right hand table top. A Probe holder was built and attached to the right of the console and holds the Probe (already connected to the R. F. Unit) not in use. We removed the Selector Panel that was originally used.

We do all the change over between frequencies by just putting the new Probe in the field changing to the correct sweep cable, and by switching the knobs on the Selector Panel to their correct positions, see enclosed schematic, see diagram.

To those interested in this system, be sure you have non-shorting switches able to handle the respective currents.

For any further questions please contact us directly.

P³¹ and Li⁷: We now obtain NMR spectra for both of these isotopes using the P¹¹ probe, 19.3 mc.; Li⁷ comes at 11.66, P³¹ at 11.2 K.G. respectively.

Yours sincerely,

Howard C. Meyer
Gideon Fraenkel
Assistant Professor of Chemistry
To Recorder

(A) \(S_1 \) off
(B) \(S_1 \) Int.

Int.

J 702
J 703
J 704

To J 403 of Int.

(A) \(S_3 \) off
(B) \(S_3 \) on

H
B
H
B

J 705
J 706
J 707
J 708

To J 301

To J 314

To Y-Axis of scope

To J 314

To \(B_5 V \)-431

R.F. Unit Power

Recorder Input

Scope Input Integrator

SELECTION PANEL
Concerning: Differentiation of proton signals by (enolic) tautomerism.

Dear Dr. Shapiro,

We have elucidated at these laboratories the structure of some isomeric humulonic acids (isomers A, B₁, C, D₂) which are derived from the degradation of "humulone", one of the main constituents of hops (humulus lupulus). One of these, HAD (I), is especially interesting with respect to its P.M.R. spectrum. As it is extremely difficult to isolate it as such, the most data were obtained through its methyl derivative which has structure II. Its enolization should be rather exocyclic as illustrated, since it is known that cyclopentadiene-one

systems are in general very unstable. We observe in the P.M.R. structure two olefinic triplets (δ = 6,39 and 6,48) with a total surface corresponding to one proton, the allylic coupling being J₃ = 1,5 ± 0,1 c/s (Fig. 1a). This must be attributed to two different tautomeric structures as illustrated (IIa and IIb). With an upfield irradiation at + 231 c/s the triplets become singlets.

The enolic resonance peak at δ = 11,73 points to a rather strong hydrogen bridge. Yet we should not expect any resonance-stabilization, the latter demanding the enolic double bond to become endocyclically. Furthermore this peak, although possessing a broad line width, is single in contrast to the doublets of triplets. From this we can conclude that the rate of proton exchange is faster than the rate of rotation around the exocyclic (double) bond.

We have added two drops of trifluoro acetic acid to the 10% CCl₄ solution. Some broadening of the two triplets is observed, and only by adding more trifluoroacetic acid the peaks collapse into one singlet (fig. 1b).

We hoped also to obtain some more information in running the spectrum in DMSO (dimethylsulfoxide) for which it is known that protonic exchange for alcohols is more difficult. To our surprise how-...
ever the enolic peak has shifted upfield and is very broad, and at the same time, the olefinic protons are not differentiated anymore (fig. 1c). The DMSO medium thus seems to increase the rate of rotation around the ring acyl bond, or seems to lessen its double bond character.

If any of the readers could give us any informations about this peculiar behaviour, or should have observed analogous anormal solvent effects we should appreciate information.

Prof. F. Alderweireldt M. Anteunis, Associated Professor.

Dr. Bernard L. Shapiro
Department of Chemistry
Illinois Institute of Technology
Chicago, Illinois 60616

Dear Barry:

The factor of 3/16 in the expression for $4I_{HH}$, which I reported in IIT NMR Letter No. 71, p. 20, should be replaced by 3/8. The treatment is, however, semi-empirical in that similar eqns. were used to estimate the exchange integral parameters, $K(C_i, v_j)$ from other types of coupling constant data. The recalculated results, in which the minima in Fig. 1 and the maxima in Fig. 2 are increased by about 0.2 cps, will be reported in J. Chem. Phys.

For what it may be worth, use of the same equation and exchange integral parameters, yields $5I_{HH} = 0$ to $+0.4$ cps for proton coupling over five saturated bonds. The maximum value corresponds to the completely staggered conformation.

Sincerely yours,

Michael Barfield
Assistant Professor, Chemistry

MB:af
Dear Professor Shapiro:

We submit the following, and request that Dr. Farrar's name be added to the mailing list to receive the ITT NMR Newsletter.

We have obtained high resolution boron, fluorine, and proton n.m.r. spectra, over a 90° temperature range, for the recently reported compound difluoroborane (HBF$_2$). The n.m.r. parameters for this compound are of considerable interest, inasmuch as it is a member of a very small class of compounds containing hydrogen bonded to a three-coordinate boron atom, and the only such derivative containing both hydrogen and fluorine.

The spectra were recorded at 60.0 (H), and 56.4 (F), and 19.25 (B) MHz with a Varian HR-60 Spectrometer modified for low-temperature work. Measurements were made over the temperature range 140° to 230°K for four different samples containing difluoroborane and varying amounts of boron trifluoride and diborane. Representative spectra are shown in the figures. Sample compositions and chemical shifts are given in Table I.

Table I: Sample Composition and Chemical Shifts

<table>
<thead>
<tr>
<th>Sample</th>
<th>% HBF$_2$</th>
<th>% BF$_3$</th>
<th>% B$_2$H$_6$</th>
<th>δ H</th>
<th>δ F</th>
<th>δ B</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>75</td>
<td>20</td>
<td>5</td>
<td>-0.12</td>
<td>-61.5</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>50</td>
<td>50</td>
<td>1</td>
<td>-</td>
<td>-62.3</td>
<td>11.7</td>
</tr>
<tr>
<td>3</td>
<td>95</td>
<td>5</td>
<td>1</td>
<td>-</td>
<td>-59.6</td>
<td>12.0</td>
</tr>
<tr>
<td>4</td>
<td>10</td>
<td>90</td>
<td>-</td>
<td>-</td>
<td>-62.8c</td>
<td></td>
</tr>
</tbody>
</table>

aShift in p.p.m. from center of terminal hydrogen quartet in diborane.

bShift in p.p.m. from BF$_3$. The BF$_3$ resonance was a single line in all samples.

cIn this sample the BF$_3$ resonance spectrum was a 4-line multiplet. The BF$_3$ and HBF$_2$ concentrations were estimated from the heights of the F resonance.

The proton chemical shift is only slightly different from that of the terminal protons in diborane. The fluorine chemical shift, though somewhat dependent upon sample composition, is in the region of shifts observed in halo- and alkylboron difluorides.
As indicated in the figures, the spectra obtained at the higher temperatures are clearly consistent with the monomeric structure of the compound1. The following values were obtained for the spin coupling constants: \(J_{\text{HF}} = 108 \pm 1 \) Hz, \(J_{\text{11BH}} = 211 \pm 1 \) Hz, \(J_{\text{11BF}} = 84 \pm 1 \) Hz. All coupling constants are averages taken from at least fifteen spectra. \(J_{\text{HF}} \) is constant within experimental error throughout the entire temperature range. \(J_{\text{11BH}} \) and \(J_{\text{11BF}} \) have the values given above in the temperature range 230°K to about 165°K. Below 165°K the multiplet structure arising from the \(\text{11BF} \) coupling begins to collapse, owing to the interaction of rapidly fluctuating electric field gradients with the electric quadrupole moment of boron4. The spin coupling constants were all independent of sample composition.

The value of 211 Hz for \(J_{\text{11BH}} \) -- the largest yet observed for a boron-hydrogen coupling constant -- is of some interest in connection with the possibility that \(J_{\text{11BH}} \) may be related to the boron hybridization. The \(J_{\text{11BH}} \) values for many four-coordinate boron compounds range from 80 Hz in BH\textsubscript{2} up to 100 Hz in some borane complexes. For compounds containing hydrogen bonded to three-coordinate boron, typical values are ca. 135 Hz (in borazoles) to 141 Hz (in \(\text{11BF} \text{3CH\textsubscript{3}} \)). It is interesting to note that the analogous C-H coupling constant in the isoelectronic FCHO is also "high" as are CH coupling constants in a number of fluorinated derivatives.

Preprints of an article prepared for publication are available.

References

Sincerely yours,

Thomas C. Farrar
Inorganic Chemistry Section

Thomas D. Coyle, Chief
Inorganic Chemistry Section
$^{11}\text{B N.M.R. SPECTRUM OF HBF}_2$

$T = -96^\circ C \quad f = 19.250 \text{ MHz}$

H INCREASING →

SAMPLE COMPOSITION

95% HBF$_2$

5% BF$_3$

Solid line is HBF$_2$; Dotted line is BF$_3$
19F N.M.R. SPECTRUM OF HBF$_2$

- $T = -65.0^\circ C$, 56.4Mc
- $T = -100^\circ C$
- $T = -126^\circ C$, 56.4Mc
- $T = -153^\circ C$, 56.4Mc

100 cps
250 cps
200 cps
500 cps
H' SPECTRUM OF HBF$_2$

- $T = -56^\circ C$, 60.0 MHz
- $T = -79.3^\circ C$, 60.0 MHz
- $T = -114.8^\circ C$, 60.0 MHz

Scales: 100 cps, 75 cps, 75 cps
RMM de dérivés cyclolancostaniques

Cher Dr. Shapiro,

Nous poursuivons l'utilisation systématique de la RMM dans l'étude de polyterpènes. Grâce à la réduction sensible des quantités de matière nécessaires avec les mi-crocultures, nous avons pu en particulier identifier une série étendue de triterpènes d'origine diverse, dont certains dans les cultures de tissus végétaux ("plant tissue cultures"). Ce dernier travail est en cours de publication dans Compt.Rend. Ac.Sc., sous forme de notes brèves.

A plusieurs occasions, nous avons ainsi comparé des dérivés du 9:19 cyclo lanostane 1, et les dérivés mono méthylés en 4 correspondent 2.

Dans tous les cas, le système AB du méthylène cyclopropanique C-19 est bien visible, comme cela est connu depuis longtemps. Nous voudrions signaler que la position de ce système AB, mais pas le couplage J_{AB}, dépend de la substitution en C-4, d'une manière très nette et qui nous a été très utile sur le plan...
diagnostic (Tableau I). Cette remarque prend tout
son sens si l'on observe que, dans la famille en question,
les chaînes latérales variées, plus ou moins alcoyées,
rendent difficile l'attribution sûre de tous les groupes
méthyles.

J'espère que notre prochaine contribution
présentera un caractère plus fondamental.

Bien cordialement

Tableau I (Analyse exacte du système AB)

<table>
<thead>
<tr>
<th>Cycle A</th>
<th>Signaux (cps à partir du TMS, 60 Mc)</th>
<th>A (ppm)</th>
<th>B (ppm)</th>
<th>AB (cps)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>5, 9, 20, 24</td>
<td>0,11</td>
<td>0,36</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>17, 21, 31, 35</td>
<td>0,32</td>
<td>0,58</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>6, 10, 22, 26</td>
<td>0,13</td>
<td>0,40</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>16, 22, 34, 38</td>
<td>0,33</td>
<td>0,60</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>22, 26, 36, 40</td>
<td>0,44</td>
<td>0,63</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>31, 35, 45, 49</td>
<td>0,56</td>
<td>0,80</td>
<td>4</td>
</tr>
</tbody>
</table>
September 5, 1964

Dr. Bernard L. Shapiro
Technology Center
Department of Chemistry
Illinois Institute of Technology
Chicago, Illinois 60616

Dear Dr. Shapiro,

Dr. W. S. Bray, Jr. (University of Florida) and I have looked at a number of trifluorovinyl compounds of the type F,F,C-CF₂,Y and have found that the chemical shifts of Fₓ and the coupling constants, Jₓᵧ, depend upon the conjugating ability of the substituent, Y. The data obtained on a representative number of the compounds studied are listed below.

\[
\begin{align*}
\text{Y} & \quad \text{Chemical Shifts of } F_x \text{ from } CF_3COOH, \text{ ppm} & \quad J_{xy}, \text{ cps} \\
\hline
\text{Group I} & \quad & \\
-\text{(CH₂)₂Br} & 26.9 & 84.8 \\
-\text{(CH₂)₂C≡CF₂} & 30.4 & 91.4 \\
-\text{(CH₂)₂Si(CH₃)₃} & 30.1 & 92.5 \\
-\text{Cl} & 25 & 78 \\
-\text{H} & 23 & 87 \\
\hline
\text{Group II} & \quad & \\
-\text{OCF₃} & 40.8 & 87.5 \\
-\text{OCH₂CF₃} & 46.6 & 101.6 \\
\hline
\text{Group III} & \quad & \\
-\text{COF} & 0.6 & 6.6 \\
-\text{CN} & 3.2 & 28.4 \\
-\text{SCF₃} & 6.9 & 30.4 \\
-\text{Si(CH₂)₃} & 11.3 & 71.6 \\
-\text{CF₃} & 19.0 & 57.5 \\
\end{align*}
\]
Each of the compounds of Group I has a substituent that would not be expected to enter into conjugation with the trifluorovinyl group. The two compounds in Group II have a substituent which could enter into conjugation by contributing electrons to the trifluorovinyl group. The chemical shift values for F_a in these compounds are 10 to 23 ppm higher than the values for the compounds in Group I. Each of the compounds of Group III has a substituent which could enter into conjugation with withdrawing electrons from the trifluorovinyl group. The chemical shift values for F_a in the compounds of Group III are 7 to 37 ppm lower than those of Group I, and 21 to 53 ppm lower than those of Group II.

The above proposal that the different substituents in Group III are capable of withdrawing electrons from the trifluorovinyl group can be rationalized as follows: (1) the ability of sulfur, iodine, and silicon1 to withdraw π electrons from an unsaturated system to which they are bonded by utilizing vacant d orbitals, (2) the ability of the highly electronegative group, $-\text{CF}_3$ to participate in double bond-no bond resonance2 and (3) 1,3 conjugation in $\text{CF}_2=\text{CFO}\text{CF}_3$ and $\text{CF}_2=\text{CFCN}$.

The values for J_{ab} also follow the order Group II $>$ Group I $>$ Group III.

Dr. George H. Wahl, Jr., Dr. Carl L. Bumgardner and I have recently joined the Chemistry Department at North Carolina State and are looking forward to doing research on a new HA-100 spectrometer. We realize that participation is the prime requirement for receiving the IIT NMR Newsletter, so I am sending this contribution and I hope it will be of some interest to the readers.

Sincerely,

Charles G. Moreland
Assistant Professor

CGM: JW

References:

Dear Barry:

A recent article by F. Takahashi and W. Li (J. Phys. Chem. 68, 2176 (1964)) raises the question whether the change in chemical shift caused by formation of a hydrogen bond does or does not vary with the temperature.

As a matter of fact, we have had this question under investigation for some time and Mr. Richard C. Reiter has just produced a Ph. D. thesis concerned primarily with this point. We find that the proton shift in a typical, hydrogen-bonded species, represented as O-H --- O^1, should change with the temperature even if it is assumed that the hydrogen bond never breaks. This is a result of the variation of the chemical shift with the degree of excitation of the low-frequency, hydrogen-bond stretching, vibrational mode. This mode is almost certainly sufficiently anharmonic to lead to pronounced change in the effective H --- O^1 distance with increasing excitation, and the chemical shift is very sensitive to such changes.

We are just submitting a preliminary communication of these results to the Journal of Chemical Physics and expect to have a few preprints for readers of the Newsletter who might want them. The title might as well serve also as a title for the epistle: "Temperature--Dependence of Chemical Shifts of Protons in Hydrogen Bonds."

With best regards.

Sincerely,

Norbert Muller

NM: 33
Proton Magnetic Resonance Spectrum of N-Methyl Methylenimine

D. F. KOSTER AND A. DANTI
Department of Chemistry, Texas A&M University
College Station, Texas

AND

J. HINZE AND R. F. CURL, JR.
Department of Chemistry, Rice University
Houston, Texas

Pure liquid samples of the simple but rather reactive species \(\text{CH}_3\text{N} = \text{CH}_2 \) were studied at \(-55^\circ\text{C}\) to obtain the NMR constants of the molecule and to compare them with those of other more stable \(\text{CH}_2\text{N} - \) systems previously studied \(^1,2\).

The compound was prepared with the same equipment and by the same procedure described by Sastry and Curl \(^3\). The high purity that was attained (as evidenced by the NMR spectrum) was aided by the fact that numerous preparations had been made before for the microwave studies \(^3\). Spectra were obtained with the Varian Model A-60 spectrometer equipped with a variable temperature probe. It was found that polymerization proceeds very slowly even at \(-55^\circ\text{C}\), but it was not possible to obtain a lower probe temperature at the time of the studies. A number of spectra of a fresh sample could easily be obtained at \(-55^\circ\text{C}\) before small particles of polymer floating around in the liquid began to decrease the resolution or before polymer peaks appeared. A sudden exothermic and complete polymerization occurs at about \(-35^\circ\text{C}\) \(^4\).

Figure 1 shows the fairly good resolution that was achieved in spite of quadrupolar effects from the nitrogen nucleus. As in previous studies of related systems \(^1,2\), the resonances of the geminal proton that occur at higher field (\(\delta = 6.95\)) are especially broadened and in this case the methyl resonance is also noticeably broadened. Although the
usual constants can be obtained quite well from a first-order interpretation of an ABX₃ case, the values were refined by iterating to a converged solution with the computer program of Reilly and Swalen⁵.

Following the designation in Fig. 1 and previous assignments⁴, the chemical shifts in ppm from TMS as zero are X=3.20, B=6.95, and A=7.24; the coupling constants are \(J_{AB}^{(\text{gem})} = 16.32 \) and \(J_{AX}^{(\text{B})} = 5.7 \) cps. The broader resonances of the B or trans proton would indicate that the coupling of \(^{14}\text{N}\) with B is several times greater than that with A or X.

The results obtained agree quite well with studies of similar systems. For example, the geminal couplings \(|J|_{HH}^{(\text{gem})} \) for the neat liquids of \(\text{CH}_2=\text{N}-\text{C}(\text{CH}_3)_3 \) and \(\text{CH}_2=\text{N}-\text{C}(\text{CH}_3)_2\text{CH}_2\text{C}(\text{CH}_3)_3 \) were found to be 16.52 and 16.97 cps respectively⁴,⁵. The large value of the geminal coupling constant is in agreement with previous work⁴,⁵ and with recent theoretical studies of Bothner-By and Pople⁷.

*These studies were supported by grants to both Universities from The Robert A. Welch Foundation of Houston, Texas.

1. B. L. Shapiro, S. J. Ebersole, G. J. Karabatsos, F. M. Vane, and S. L. Manatt, J. Am. Chem. Soc. 85, 4041 (1963). Attention is also called to the many references cited therein and they will not be repeated here.

7. A. A. Bothner-By and J. A. Pople, A copy of their manuscript was made available to us prior to publication.
Fig. 1. The proton magnetic resonance spectrum of pure N-Methyl methylenimine liquid obtained at -55°C with a Varian Model A-60 spectrometer.
Dr. B. L. Shapiro
Department of Chemistry
Illinois Institute of Technology
Technology Center
Chicago, Illinois 60616

Dear Barry:

Recent measurements, here and elsewhere, have shown that the pH dependence of the nuclear resonance position of carbon bonded protons in amino acids can be used to indicate qualitatively the degree of protonation of these molecules. Observe the δ-pH curves of Fig. 1 for 2M aqueous mixtures of glycine and DL-alanine. At high and low pH values, the CH₃ resonance position of glycine, for example, corresponds to the species NH₂CH₂COO⁻ and +NH₂CH₂COOH, respectively. The methyl signal of alanine behaved similarly but the slopes were not as sharp, presumably because this group is an extra bond removed from the protonation site. In the region over which the shifts are independent of pH (~4-8) dipolar species of the amino acids predominate.

This information proved particularly valuable in our studies of amino acid complexing with added electrolytes. Normally, one would study such solutions in basic media to provide two sites for complexing, the carboxyl group and the nitrogen line pair. However, one must take into account possible cation hydrolysis which can produce results which are ambiguous. Thus, ions such as Zn, Cd, Mg, and to a greater extent, Be and Al, can lower the pH by several units as a result of hydrolysis at a concentration of 1M. From Fig. 1, a pH change in the range 12-9, for example, can cause shifts as large as 0.4 ppm. Thus, when investigating amino acid complexing, the pH of the solution must be closely controlled. We have conducted our measurements with the ions mentioned above, and others, in amino acid solutions of pH 4-8. We can, therefore, attribute the shifts which we observed entirely to ion-dipole interactions.

Anthony Fratiello
CALIFORNIA STATE COLLEGE

Calvin Buzzell

AF/ml
Figure 1.
Chemical shift pH dependence of the CH and CH₃ resonance peaks of DL-alanine and glycine, respectively, using the 2M acid solutions as standards.
Dear Dr. Shapiro:

As a first payment on a subscription to the IIT NMR Newsletter, we would like to offer the results of an analysis of the proton n.m.r. spectrum of phenanthrene.

Spectra were measured at 60 Mc. for several concentrations of phenanthrene in deuterochloroform and analyzed with the aid of the iterative computer program by Swalen and Reilly. The 9-position proton gives a single line and the remaining lines were analyzed as a four spin problem. A variety of transition assignments were tested, but only one, with all couplings positive, accurately corresponded to the observed spectra. The chemical shifts (extrapolated to infinite dilution) and coupling constants are given below:

<table>
<thead>
<tr>
<th>(\delta_{\text{TMS}})</th>
<th>(\delta_{\text{H}})</th>
<th>(J_{ij}) (c.p.s.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\delta_{\text{TMS}})</td>
<td>(\delta_{\text{H}})</td>
<td>(J_{ij}) (c.p.s.)</td>
</tr>
<tr>
<td>1</td>
<td>7.855</td>
<td>12</td>
</tr>
<tr>
<td>2</td>
<td>7.570</td>
<td>13</td>
</tr>
<tr>
<td>3</td>
<td>7.612 ± 0.005</td>
<td>14</td>
</tr>
<tr>
<td>4</td>
<td>8.648</td>
<td>23</td>
</tr>
<tr>
<td>5</td>
<td>7.702</td>
<td>24</td>
</tr>
</tbody>
</table>

The observed and calculated 60 Mc. spectra are compared in the accompanying figure. The above parameters predict a theoretical 100 Mc. spectrum for phenanthrene which is in close agreement with the observed 100 Mc. spectrum, further justifying the assignment used.

Sincerely,

Robert C. Fahey

Gary C. Graham
Observed and calculated spectra of phenanthrene (13% in CDCl₃) at 60 Mc.
Professor B.L. Shapiro,
Department of Chemistry,
Illinois Institute of Technology,
Technology Center,
CHICAGO, ILLINOIS 60616 (U.S.A.)

Dear Professor Shapiro,

The PMR spectra of several diphenyl-, dithienyl- and difuryl-
spiroketones have been analysed and compared with the spectra of
the analogous spiro ketones without aryl groups1. The comparison
reveals that the two aryl rings exert a strong shielding effect
upon the protons or methyl protons at positions 2, 3 and 4 (see
formula below). The upfield shift of the signal of the protons
or methyl protons at the 3 position amounts to 0.95-1.45 ppm for
the diphenylspiroketones and 0.58-1.07 ppm for the dithienyl- and
difurylspiroketones.

\[
\begin{align*}
\text{Ar} & = \text{phenyl, 2-thienyl or 2-furyl} \\
\text{R} & = \text{H or CH}_3 \\
\text{X} & = \text{H}_2, \text{O or thio ketal grouping}
\end{align*}
\]

These appear to be the first examples of long range shielding
effects exhibited by heterocyclic aromatic rings. The shielding
values found in the diphenylspiroketones agree well with the
values calculated from the graphs of Johnson and Bovey2.

The ratio of ring currents in benzene, thiophene and furan as
determined from their shielding effects amounts to 100 : 77 : 60.
This agrees reasonably with the deshielding values of the aromatic
protons of benzene, thiophene and furan (100 : 77 : 76) and ex-
cellently with the deshielding values of the methyl protons of
toluene, methyli thiophenes and methylfurans (100 : 75 : 62). These
deshielding values were obtained by comparing the aromatics with
related olefins in which no ring current takes place. For in-
stance, benzene was compared with cyclohexene, thiophene with
2,3-dihydrothiophene, furan with 2,3-dihydrofuran, toluene with
1-methylcyclohexene, \(\alpha\)- and \(\beta\)-methylthiophene with propyl and
isopropenylsulfides and \(\alpha\)- and \(\beta\)-methylfurans with propenyl and
isopropenyl ethers. The deshielding values of thiophene and furan
used in the ratio calculations above are the mean between the de-
sheilding values of the \(\alpha\) and \(\beta\) protons, which differ appreci-
ably. The same applies for the \(\alpha\) and \(\beta\) methylaromatics.

Submitted for publication to Tetrahedron.

Sincerely,

(H.A.P. de Jongh)
(H. Wynberg)

1. For synthesis of these compounds, see H.A.P. de Jongh and Hans
Dear Dr. Shapiro,

Anti-clogging Additive for Magnet Cooling Water System

I trust that the following comments might be acceptable as a contribution to your excellent Newsletter and also constitute a reply to the recent enquiry from Dr. Chen of the Goodyear Tire and Rubber Company.

For 18 months we have been operating a closed circuit cooling water system for our A60 spectrometer. We circulate distilled or de-ionised water. The total volume of cooling fluid is approximately 40 gallons. To this we add 1 to 2 cc. of Panacide Sodium Salt Solution every 3 to 4 months. This is marketed by the British Drug Houses Ltd., Poole, England.

Using this additive we have not been troubled by the growth of micro-organisms within the cooling water system. Since our circuit contains a Rotameter which has a glass body approximately 2" long, it is easy to observe what is happening inside the circuit. The sight-glass of this instrument has remained perfectly clear during the whole of this time.

I trust this information may be of use to other Magnetic Resonators.

Kind regards,

Yours sincerely,

W. E. Whalley

Dr. B. L. Shapiro,
Department of Chemistry,
Illinois Institute of Technology,
Technology Center,
Chicago,
Illinois,
U.S.A.
Sehr geehrter Herr Prof. Shapiro!

In der letzten Zeit haben wir Untersuchungen am Tetrahydrat des Bromwasserstoffs durchgeführt. Aus den Infrarotspektren geht hervor, daß der Bromwasserstoff im Kristall dissoziiert ist, die Substanz also in der Form \(\text{H}_2\text{O}^+\text{Br}^- \) vorliegt. Das Kation besteht dabei aus einem \(\text{OH}^+ \)-Ion, das über sehr starke Wasserstoffbrückenbindung durch drei Wassermoleküle solvatisiert ist \(^1\).

Die Temperaturabhängigkeit der Leitfähigkeit der polykristallinen Substanz zeigt bei \(-93^\circ\text{C}\) einen scharfen Knickpunkt \(^2\), der auf einen Phasensprung hinweist. Zur Verifizierung des Umwandlungspunktes wurden Breitband-Kernresonanzuntersuchungen durchgeführt. Die zweiten Momente wurden zwischen \(-195^\circ\text{C}\) und \(-60^\circ\text{C}\) gemessen (Abb.1). Erwartungsgemäß beobachtet man bei \(-93^\circ\text{C}\) in der Kurve eine Sprungstelle, die den diskutierten Umwandlungspunkt anzeigt.

Die Bestimmung der Protonenparameter im Kristall allein aus den Kernresonanzspektren war bisher nicht möglich. Röntgenstrukturanalytische Untersuchungen wären zur Ergänzung erforderlich.

1) J. RUDOLPH, Dissertation Techn. Hochschule München (1964)
2) G. HENNING, Techn. Hochschule München, unveröffentlicht.

Mit freundlichen Grüßen

(G. Henning) (H. Zimmermann)
Abb. 1

-200 -150 -100 -60

Gauss²

Abb. 2

a) Tieftemperaturmodifikation (-195°C)
b) Hochtemperaturmodifikation (-65°C)
A SIMPLE LOCKED FIELD SYSTEM

Over the past few months we have developed a simple locked field system based essentially on the double audio frequency modulation systems suggested by Primas (1) and Freeman and Whiffen (2). The system used by the latter authors had the merit of simplicity but the disadvantage that the swept frequency could only be varied over a relatively small fraction of its mean frequency of operation. Larger excursions produced changes in the modulation index that made accurate band intensity measurements impossible.

We have overcome this difficulty by sweeping the control frequency rather than the signal frequency. We are indebted to Dr. K. McLaughlin (National Physical Laboratory - Teddington) for this suggestion. The change in loop gain that occurs as the control frequency is swept is readily tolerated so the system can be used over the entire spectral range for routine analytical purposes. The u-mode signal obtained at the swept frequency (control channel) detector is fed to the super stabilizer. Thus linear variation of the control frequency provides an error signal to the super stabilizer which in turn produces a linear field sweep.

The variable audio frequency is produced from a square wave oscillator and the requisite voltage sweep is provided by a motor driven helipot. Although some power is wasted in high harmonics in such an oscillator it can be made linear to the accuracy required (0.1 per cent), and further the modulation index used is low. The frequency is variable from 1.8 to 3.2 Kc and is fed to a power amplifier driving the sweep coils. The signal channel is our existing audio modulation and integrator unit operating at 2 Kc. The control channel detector is a similar system consisting of an audio amplifier and phase sensitive detector, diagram 1. By careful selection of the phase and amplitude of the signal to the super stabilizer the lock-in cannot be overridden with the fastest scan from our slow sweep unit (approximately 100 cps/s), using an approximately 2 per cent vol/vol TMS solution in CCl₄ to provide the control signal.
A check on the lock-in is provided by a Lissajous figure displayed on a small low cost monitor oscilloscope (Cossor type 1039M). To set up the system the TMS signal is displayed on the spectrometer oscilloscope and the phase shift adjusted until a u-mode signal is obtained. The amplitude of the control frequency is adjusted to a suitable low level to avoid signal saturation and the D.C. level of the detector output (in the absence of signal) is adjusted to zero. The u-mode control signal from the detector output is then switched to the super stabilizer. Final optimization of the control frequency modulation index, magnetic field homogeneity, control channel audio amplifier gain and detector output RC network can be done visually by using the monitor scope display.

A spectrum scan is obtained by driving the helipot providing the control voltage to the variable frequency oscillator. The performance of the field lock system is good as can be seen from the constancy of the band positions in three superimposed ethyl benzene spectra, Figure 2.

As the locked field control is in addition to the existing detection equipment, by switching off the lock and the control frequency the ordinary method of spectrum recording may be resumed.

S.A. Knight

R.L. Erskine

Literature

+ Figures 1 and 2.
ETHYL BENZENE CH₃ AND CH₂ PATTERNS
LOCKED FIELD SYSTEM
I have learned recently of two NMR spectroscopists who might not be too difficult to move from their present positions. Both of these men are well-established NMR researchers of excellent personal and professional reputations. One is rather physics-oriented, the other is more chemical; both are active in experimental NMR.

Anyone knowing of positions available (or real possibilities) should let me know so that I can put one of both of these men in direct contact with the interested parties.

Turning to a different sphere, I am looking for one or two post-doctoral research fellows, and would appreciate hearing from or of prospects. Extensive previous NMR experience, while most desirable, is not essential. The work would involve a rather modest amount of chemical manipulation, as well as extensive high-precision small molecule NMR work. The stipend will be very competitive, and I am willing to let someone start anytime for a period of 9 months or longer. One or more publications can definitely be expected.

B. L. Shapiro

"Organische Fluorverbindungen, IV. Carboxyl-Fluorolfindungen" E. Mechel and W. Wessendorf Ann. Chem. 67A, 1 (1964)

"Untersuchungen an hochsubstituierten Äthylbenzen und Glykoläuren. Bildung eines Spino-Cyclischen Ketons bei der Wasserabspaltung aus 1,4-Di-Oxocyclohexene-(1)-1,2,3-Oxan-5-Ol-(3,4)" W. H. Naboyev, P. Kamps, P. Cordes, K.-D. Müller and W. Milkowski.
Ann. Chem. 67A, 36 (1964)

"The Stability of 6-Bromo-a,4,6,8-Eicosatrienoic Acid and Its 3-Acetate" D. J. Collins and J. J. Shoes Australian J. Chem. 17, 632 (1964)

"The Occurrence of 5-Hydroxy-7,4-Dimethoxy-3-Methylflavone in Eucalyptus Wakes" J. A. Lambertson Australian J. Chem. 17, 692 (1964)

"The 2-Desmethyl Vitamin K$_3$. A New Group of Naphthoquinones Isolated from Noccaea faassenii" R. L. Lester, T. C. White and T. L. Smith Biochim. 3, 949 (1964)

"Ferromagnetic Resonance of Single Crystal Hexagonal Close Packed Cobalt" E. Pratt. J. Appl. Phys. 35, 993 (1964)

"Phenylalaninum Hydrides" J. M. Surtees Chem. Ind. 1650 (1964)

"Structure of 4-Acylamino-3-Methyl-5-Isoxazolones and their Methyl Derivatives" L. A. Summers and D. J.Shields Chem. Ind. 1654 (1964)

"Reaction of Dimethyl Acetone-Dicyanamide with Malonic Acid Derivatives" P. Burleigh, N. G. Cookson, A. Crabtree, T. Renstock, J. Radie, A. W. Johnson and R. H. D. Whitear Chem. Ind. 1313 (1964)

"Mechanism of Inhibition of Non-Enzymic Browning by Sulphites" B. F. L. J. Aset and D. L. Engles Chem. Ind. 1319 (1964)

"Preparation of Nitriles from 6-Chloroacetones and Sodium Cyanide in Dipolar Aprotic Media" P. A. Argabright and D. W. Hall Chem. Ind. 1355 (1964)

"Methylene Proton Splitting in the Nuclear Magnetic Resonance Spectra of Sulphuric Acid Derivatives" J. W. Wilt and W. J. Wagner Chem. Ind. 1367 (1964)

"Sur la Déshydratation de Trichydroxyfuranol Stéroides" G. Desortes, R. Giroud-Abet and J.-C. Martin Compt. Rend. 258, 946 (1964)

"Über die Konfiguration der Rhamnus C 2 und verwandter Rhamnaceae" J. Leitich, W. Oppenauer and V. Prelog Experientia 20, 983 (1964)

"The Stereochernistry of Aspatic Acid" D. Arigoni, R. von Daeche, W. S. Gottfredsen, A. Melera and S. Vangdell Experientia 20, 944 (1964)

"The Addition of Acylating Carboxyls to Acycles. π-(2, l)-(Alkene-4-lactonylo)hobalt Erythrocyan Derivatives and Their Conversion to 2,1-Pentadien-4-lactones" R. E. Heck J. Am. Chem. Soc. 86, 2639 (1964)

Hydroboration of Ureido-Substituted Olefins
D. N. Butler and A. H. Soloway
J. Am. Chem. Soc. 86, 5366 (1964)

Hydrogenation and Proton Exchange of Amines in Acetic Acid. I. Kinetic and Equilibrium Properties for Solutions of Methyaminein
e. Gruenwald and E. Price
J. Am. Chem. Soc. 86, 2965 (1964)

Hydrogenation and Proton Exchange of Amines in Acetic Acid. II. Effect of Structure on Reactivity and the Reaction Mechanism
E. Gruenwald and E. Price
J. Am. Chem. Soc. 86, 2970 (1964)

Carbon-13 Magnetic Resonance, II. Improved Carbon-13 Magnetic Resonance Spectra Obtained by Proton Decoupling and Rapid Sample Spinning
E. G. Paul and B. M. Grant
J. Am. Chem. Soc. 86, 2977 (1964)

Carbon-13 Magnetic Resonance, III. Chemical Shift Data for the Alkanes
D. M. Grant and E. G. Paul
J. Am. Chem. Soc. 86, 2984 (1964)

Nuclear Magnetic Resonance Studies of Hydrogen Bonding, II. Calculation of the Shift upon Complex Formation
P. J. Berkley, Jr. and M. W. Eames
J. Am. Chem. Soc. 86, 2990 (1964)

Exchange of Parts between Molecules at Equilibrium. VI. Alkyl-Derivatized Chain Polyelectrolytes
D. Grant and J. B. van Vlissingen
J. Am. Chem. Soc. 86, 3012 (1964)

Isotopic Proton Magnetic Resonance Shifts in r-Bonding Ligands Coordinated to Paramagnetic Nickel(II) and Cobalt(II) Acetylacetonates
W. N. Boronowsky, Jr., R. C. Taylor, and G. N. Lewis
J. Am. Chem. Soc. 86, 3031 (1964)

A Versatile Ketone Synthesis. The Reduction of a-Diketones and a-Ketones by Hydrobolic Acid
W. Knapp and L. Schaal
J. Am. Chem. Soc. 86, 3063 (1964)

Nitrene Insertion Into a C-H Bond at an Asymmetric Carbon Atom with Retention of Optical Activity. Thermally Generated Nitrene
G. Smolinsky and B. I. Feuer
J. Am. Chem. Soc. 86, 3085 (1964)

Conformational Analysis. I. The Conformational Preference of the Acetyl Group
J. S. Galliste
J. Am. Chem. Soc. 86, 3089 (1964)

The Proton Magnetic Resonance Spectra of Three Fulvenes
W. S. Smith and B. A. Shoulders
J. Am. Chem. Soc. 86, 3116 (1964)

A Nuclear Magnetic Resonance Study of the Products from an Unusual Reaction of Boronamide. The Ionic Additions of B-Chloroethylamine in Sulfuric Acid-Acetate Acid
B. W. Duke and E. B. Winkle
J. Am. Chem. Soc. 86, 3120 (1964)

[Other articles listed]
"Anisotropy of the 19F Chemical Shift in Trapped ClF4 Molecules"
E. Hunt and B. Meyer
J. Chem. Phys. 32, 333 (1964)

"Effect of Hindered Rotation on the Nuclear Quadrupole Resonance Frequency and the Line Width in Trans-1,2-Dichloro-
ethane"
T. Toksako
J. Chem. Phys. 41, 436 (1964)

"Nuclear Quadrupole Resonance of 31P in InI3"
H. R. Brooker and T. A. Scott
J. Chem. Phys. 43, 475 (1965)

"Periodically Pulsed Nuclear Magnetic Double Resonance"
S. L. Gordon and J. D. Baldwin
J. Chem. Phys. 43, 571 (1965)

"Proton Magnetic Resonance Studies of Diacromethane"
D. L. Koster and A. Bardi
J. Chem. Phys. 43, 562 (1965)

"Transformations of Eburic Acid. I. Cleavage of Ring A
by the Fungus Glomerella Turbidae"
A. L. Leekin, P. Grubisic, G. S. Mills, Meyer, and J. Fried
J. Med. Chem. 7, 406 (1964)

"Derivatives of 6-Aminopenicillanic Acid. V. Synthesis of
6-Aminopenicillanil Alcohol and Certain Derivatives"
T. J. Furr, J. B. Cooper, J. H. Belsey, R. S. Fraser, J. C. Godfrey, and S. J. Boldie
J. Med. Chem. 7, 483 (1964)

"Analog of Steroid Hormones. I. 6-(4-9-Decylcyclohexyl) and 6-(4-9-Decycyclohexyl) Derivatives of 5-Ketones"
J. Med. Chem. 7, 519 (1964)

"Synthesis of Some Pregnane 16-Betaesters"
L. L. Smith and D. M. Taylor
J. Med. Chem. 7, 558 (1964)

"15-Acetylated Progesterones. A New Series of Synthetic
Mineralocorticoid Antagonists"
R. C. Twit and C. M. Kajava
J. Med. Chem. 7, 584 (1964)

"Some 20-Substituted 17-Neoprogesterone Derivatives"
D. F. Morrow, A. F. Cuberbonc, H. A. Wittle, M. E. Butler, and W. M. Granger
J. Med. Chem. 7, 537 (1964)

"Photolysis of Morfycyclanone Tosylhydrzone Sodium Salt"
D. N. L. and A. J. Fry
J. Org. Chem. 29, 378 (1964)

"Norsteroids. V. The Application of the Benzilic Acid
Bearing in to the Synthesis of A-Norpregnanes"
H. A. Rane and H. B. Reander
J. Org. Chem. 29, 567 (1964)

"Stereochemistry of Reactions of 7-Horbornes Anions"
J. Org. Chem. 29, 1615 (1964)

"The Cycloaddition Reaction of N-Sufnylaminile with
Horbornes"
G. R. Collins
J. Org. Chem. 29, 1668 (1964)

"Resorbtivities of Unsaturated Groups"
V. Hars and G. Caple
J. Org. Chem. 29, 1691 (1964)

"Constituents of 1A Species. III. Structure of Microcroc-
chialis, A New Sclerotinaceae Larvae"
N. Hors, G. Hohmann, and A. R. de Vivar
J. Org. Chem. 29, 1700 (1964)

"Dithiolim Derivatives. I. 2-Dialkylamino-1,3-Dithiolim
Perchlorates"
E. Campagne and W. W. Jacobsen
J. Org. Chem. 29, 1703 (1964)

"Dithiolim Derivatives. II. Reactions of the 2-Methyl-1,3-
Substituted 1,3-Dithiolim Cation"
E. Campagine and R. L. Hamilton
J. Org. Chem. 29, 1711 (1964)

"The Reaction of Unsaturated Acid Chlorides with Substituted
Thiouracils"
G. G. Overberger and B. A. Friedman
J. Org. Chem. 29, 1720 (1964)

"The Addition of Peroxyformic Acid to Indene and Nuclear Magnetic
Resonance Spectra of 1,2-Diisubstituted Indanes"
K. E. Rosen, L. Horwitz, and R. F. Linfield
J. Org. Chem. 29, 1723 (1964)

"Nuclear Magnetic Resonance Studies of Some Condensation
Products of 2,4-Pentanedione with Formalin and Acetaldehyde"
J. R. W. Green, C. M. Cook, and M. L. Griffith
J. Org. Chem. 29, 1730 (1964)

"Studies on the Pyrimidine Derivatives. XXIX. 3-Xenoxy-2-
ethoxymethylthiopropionitrile with Urea and Thiourea
Derivatives"
A. Takamizawa, K. Kiyoshi, T. Gate, and H. Tori
J. Org. Chem. 29, 1740 (1964)

"Phosphonium Salts. II. 2-Bromophenestrole and Trispheryl-
phosphorus as Novel Phosphonodithiylation Precursors"
E. I. Schweizer and R. D. Bach
J. Org. Chem. 29, 1746 (1964)

"Pyrimidines. III. A Novel Rearrangement in the Syntheses
of 1,2-Diazo-1,2-pygymidines"
T. Neu and J. J. Fox
J. Org. Chem. 29, 1762 (1964)

"The Aminocarb 1,3,4,6-tetra-2-oxo-2-deoxy-1,2-aminotri-
1,3-glucoyglucose"
D. Horton
J. Org. Chem. 29, 1775 (1964)

"Aryl Thiolypropyranosides, Arpy Glycosynapyl Sulfones,
and the Novel Oxidation of Acetylation of Aryl 2-Thio-
1,3-glucoyglucose in 6,1-2-oxo-2-deoxy-1,2-aminotri-
1,3-glucoyglucose Arpy Sulfones"
E. L. Glensman and W. K. Richter
J. Org. Chem. 29, 1782 (1964)

"Preparation of 6-Oxetamido-1,2,3,4-tetra-2-oxo-1,2-deoxy-
1,3-thiopyryrazone"
L. Goodman and E. L. Christensen
J. Org. Chem. 29, 1787 (1964)

"The Synthesis and Reaction of 6-Chloroacrylonitrile"
F. Sculli and J. J. Franzo
J. Org. Chem. 29, 1800 (1964)

"Reactions of Acetylene Amines. VIII. Cyclization of
Acetylene Oxoacids"
N. R. Barton, D. R. Cassady, and C. R. Bollard
J. Org. Chem. 29, 1851 (1964)
"Anomalous Reaction of Epichlorohydrin with Trimethylamine"
D. M. Barness
J. Org. Chem. 29, 1862 (1964)

"The Condensation Reaction between Sulfonyl and Monoketones"
E. S. Ouali and E. C. M. Houf
J. Org. Chem. 29, 1869 (1964)

"Alkylation of Lithium Eolates of 2-Methylcyclohexanone"
D. Caine
J. Org. Chem. 29, 1868 (1964)

"Fluoro Ketones. III. Reactions with Trialkyl Phosphites"
D. R. Lilly and E. R. Simmons
J. Org. Chem. 29, 1876 (1964)

"The Stereochemistry of the Camphorkeene Dimer"
J. S. Baldwin
J. Org. Chem. 29, 1880 (1964)

"The Stereochemistry of the Methylketone Lactone Dimer"
J. S. Baldwin
J. Org. Chem. 29, 1882 (1964)

"Polymeric Peroxide of 2,5-Dimethyl-2,4-hexadiene and a New Selective Reduction of its Peroxide linkage"
K. Streben, A. A. Glass and W. Vanq
J. Org. Chem. 29, 1897 (1964)

"Synthesis and Reactions of 2,6-Dimethyl-7,7'-dicyanomethylene"
E. E. Tsuchiya, G. C. Dehneli and E. O. Kricken
J. Org. Chem. 29, 1899 (1964)

"The Silver and Holophenex Metal Complexes of 6,14,8,14-tetrahydro-1,4,7-cyclooctatriene"
K. D. Smith and E. J. Martin
J. Org. Chem. 29, 1903 (1964)

"The Reaction of Sulfamides with α- and β-Diketones. The Preparation of 1,3,5-Thiathiazole 1,2-Dioxides and 1,2,5-Thiadiazine 1,2-Dioxides"
J. A. Wright
J. Org. Chem. 29, 1905 (1964)

"Thicklers. Reaction of Thiols with Acrylal and Crotonyl Chlorides"
A. A. Schlegel and J. B. Bently
J. Org. Chem. 29, 1910 (1964)

"The Synthesis of 1,3,4-Thienone 4,5-dihydropyrimidine"
E. Noyes and J. R. Beamborg
J. Org. Chem. 29, 1919 (1964)

"Mechanisms of Photochemical Reactions in Solution. XXV. Photochemical and Photocatalytic Decomposition of Dianiocones"
D. G. C. Owen, R. M. Couch, R. F. Koppesky and J. S. Matson
J. Org. Chem. 29, 1922 (1964)

"Steroid of Unnatural Configuration. The Absence of Long Range Conformational Effects in Ring A Modified 20-Keto-pregnanes"
M. F. Rubin and E. C. Bleyce
J. Org. Chem. 29, 1926 (1964)

"Configurational Relationships among Some Sulfoxides"
K. K. Andersen
J. Org. Chem. 29, 1933 (1964)

"The Chlorination of Active Hydrogen Compounds with Sulfonyl Chloride. I. Ketones"
D. P. Wyman and P. R. Kauflman
J. Org. Chem. 29, 1926 (1964)

"Extraction and Acylation of S-Alkylfluorones"
L. H. Klems, R. Huber, and R. E. Klopfenstein
J. Org. Chem. 29, 1940 (1964)

"Preparation, Characterisation, and Reactions of Lithium and Sodium Tetraalkylboron Compounds"
S. Beno
J. Org. Chem. 29, 1971 (1964)

"Proton Magnetic Resonance Studies of Purines and Pyrimidines. XII. An Experimental Assignment of Peaks in Purine Derivatives"
P. J. Bullock and O. Jardtson
J. Org. Chem. 29, 1955 (1964)

"The Synthesis and Proton Magnetic Resonance Spectra of Some Brominated Puren"
J. D. Pongo, A. C. Hutes and W. C. McCarthy
J. Org. Chem. 29, 1981 (1964)

"Preparation and Some Reactions of 2-(1,3-Butiladienyl)magnesium Chloride"
C. A. Auernach, Jr.
J. Org. Chem. 29, 1994 (1964)

"The Assignment of Configurations to Three 2-Aminodeoxyhexapetones by Proton Magnetic Resonance"
B. N. Barlow, L. E. Hall and F. Mies
J. Org. Chem. 29, 2014 (1964)

"Electrophilic Attack at the 2-Methyl Group of 2,3-Dimethylbenzothiophene"
P. G. Bordwell and T. W. Cutshall
J. Org. Chem. 29, 2050 (1964)

"The Photoaddition of Cyclic Ethers to 1-Octene"
E. Einet and R. P. Yousuff
J. Org. Chem. 29, 2031 (1964)

"Reactions of Acrylates. III. Cyclization of Urethanes"
D. R. Cawley and R. H. Benton
J. Org. Chem. 29, 2032 (1964)

"Reactions of Aryl Grignard Reagents with 2,3,4,5-Trimethyl-3-hydroxy-3-pentenoic Acid 3-Lactone"
K. M. Berlina and W. H. Cooper
J. Org. Chem. 29, 2057 (1964)

"The Reaction of Schif Nates with Eicunondide. A New Synthesis of 3,5-Dimino-3,5-dihydro-s-triazine"
B. Bemans and E. L. Moon
J. Org. Chem. 29, 2061 (1964)

"Investigations in Heterocycles. XVII. An Unusual Trans-Formation of a 4-Pyridyltiazole Derivative to a Tetracyclic Heterocyclic System"
G. d'Estevens and V. F. Arzy
J. Org. Chem. 29, 2064 (1964)

"3-Acetyl-3,4-dihydro-octalactone γ-Lactone"
D. R. Strohbe
J. Org. Chem. 29, 2075 (1964)

"The Isolation of Dihydrocinnamic E from Helium catenae"
J. Org. Chem. 29, 2101 (1964)
Reactions of Derivatives of 2-Formyl-1-tetralone
D. Lednicer
J. Org. Chem. 29, 2420 (1964)

"The Synthesis of 3,3,6,6-Tetra-methyl-1,4-cyclohexadiene"
W. Beach, M. Russell, and C. Deussa
J. Org. Chem. 29, 2846 (1964)

"Neopentyl-1,3,5-triarylalkanediene"" A. Applebaum, R. W. Pigh, and M. Rosenblum
J. Org. Chem. 29, 2859 (1964)

"The Synthesis of Thiophene Analogs of Fluorene"
H. Wyenberg and A. Kraws
J. Org. Chem. 29, 2859 (1964)

"Molecular Rearrangements, III. The Nature of the Benzene Condensation Product from Neusaldehyde and Methyl Dichloroacetate"
R. N. McDonald and P. A. Schwab
J. Org. Chem. 29, 2859 (1964)

"Acetylenic Amides, X. Piperazines from Substituted N-(2-Hydroxyalkyl)proparglamines"
P. D. Billard and W. A. Easton
J. Org. Chem. 29, 2864 (1964)

"Alkylation and Metalation of Perylene with n-Butyllithium. 1,2-Hexadiynes"
H. H. Ziegler and J. M. Rosenkranz
J. Org. Chem. 29, 2869 (1964)

"Identification and Separation of the Isomeric 2-Methyl-
pyrazine Xeno-B-isoxides"
W. H. Sumprecht, T. E. Borkolrusan, and R. Paju
J. Org. Chem. 29, 2877 (1964)

"Reactions of 3-Chloroindoles. The Synthesis of 3-Methyl-
ephoxindole"
B. L. Itkam and C. P. Bausman
J. Org. Chem. 29, 2881 (1964)

"Long-Range Deshielding by Chlorine"
E. G. Fort, Jr., G. W. B. Ommelmann and E. C. Taylor
J. Org. Chem. 29, 2890 (1964)

"The Synthesis and Thermal Decomposition of 3,3,6,6-Tetra-
methyl-1,4-cyclohexadiene"" W. Beach, M. Russell, and C. Deussa
J. Org. Chem. 29, 2846 (1964)

"Dehydro-1,1,3-triarylalkanediene"" A. Applebaum, R. W. Pigh, and M. Rosenblum
J. Org. Chem. 29, 2858 (1964)

"The Synthesis of Thiophene Analogs of Fluorene"
H. Wyenberg and A. Kraws
J. Org. Chem. 29, 2859 (1964)

"Molecular Rearrangements, III. The Nature of the Benzene Condensation Product from Neusaldehyde and Methyl Dichloroacetate"
R. N. McDonald and P. A. Schwab
J. Org. Chem. 29, 2859 (1964)

"Acetylenic Amides, X. Piperazines from Substituted N-(2-Hydroxyalkyl)proparglamines"
P. D. Billard and W. A. Easton
J. Org. Chem. 29, 2864 (1964)

"Alkylation and Metalation of Perylene with n-Butyllithium. 1,2-Hexadiynes"
H. H. Ziegler and J. M. Rosenkranz
J. Org. Chem. 29, 2869 (1964)

"Identification and Separation of the Isomeric 2-Methyl-
pyrazine Xeno-B-isoxides"
W. H. Sumprecht, T. E. Borkolrusan, and R. Paju
J. Org. Chem. 29, 2877 (1964)

