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In handling calculations in the field of
magnetic resonance spectroscopy group
theoretical methods enable an exceedingly
important generalised approach to be
carried out in calculating magnetic
resonance data for a vast range of models
using a few readily determined parameters.

1. Symmetry coupling coefficient

Two ket vectors which transform as the
irreducible representation r i and r 2
of a particular group couple to yield a
ket vector |T oc> which transforms as
the TT irreducible representation of the
group where T o occurs in the direct
product r^F2* The expression relating
the ket vector | rqc> to the basic ket
vectors | r ̂ a> and ^ 2 ^ i-s given by
the coupling relation

Irir2r3c> = £ <r1r2ab|r1r2r3c>|r1a>|rib>
a,b

where <rjr2ab|
coupling coefficient.

are the symmetry

Two simple methods have been used for
calculating these symmetry coupling
coefficients for single and double
groups: the first is to consider the
transformation properties of the direct
product under the generators of the group,
and the other is to define the irreducible
representation vectors in terms of the
|JM> ket vectors and to use the Wigner
coefficients to determine the direct
products. Both methods give the same
results and it is only in the construction
of the V symmetry coefficients that the
difference in approach becomes
significant. (For details see (1-3) and
the appropriate references given in those
papers).

I shall define the
follows

a b -(

coefficients as

Here Tj an<* 1*3 in the exponent refer to
the values J2 and J^ of the coupling, c is
the component value of the specific
component of the irreducible
representation T-$ ° f dimension A(F3)*

The V symmetry coupling coefficients are
related to the 3 T symmetry coupling
coefficient as

2 (
b c

r2
b f)

In defining the V coefficients we need
to examine the meaning of -(c). Now

i 2 3

a b -(c
r2
b ?•]

where 0 or 1. Since we define
sets of irreducible representation vectors
which transform as |r^c> as

|JYr3c> = T
M

it follows that

I JYr3-(c)> = I C(JMYr3c)|J - M >

In the octahedral and icosahedral double
groups, 0* and K* respectively, r 31 = 1$
in all cases. (This is not the case for
the double groups (1) Cn*. Dn* and T*.)

The V symmetry coupling coefficients
possess three basic properties:

(a) it is unchanged by an
permutation of the columns

even

(5) i t is changed by an odd permutation
of the columns by the
factor (-1) rl

+r2
+r3
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(c) for a change of sign of a, b and c
the V coefficient is changed by the
factor (_i j r1+r2+r3

The energy level diagram for a d-electron
in such a potential field is shown in Fig.
1.

a b c I
Vf r, r2 r3

-(a) -(b) -(c)

b 1 c1

These properties greatly reduce the number
of V symmetry coefficients that need to
be evaluated.

A

- U '

t" 3

2. Symmetry reduced matrix elements

The evaluation of matrix elements can very
simply be carried out through the
application of the Wigner-Eckart theorem
which in group theoretical notation is
given by

ii:

Here J is required if the derived product
of T-j x Fo contains F» more than once.

3. The definitions of the irreducible
representations.

The definitions of the irreducible
representations for the octahedral and the
icosahedral double groups are given in
references (4) and (5) respectively.

4. A d-electron problem

The hamiltonian representing a crystal
field interaction of octahedral symmetry
may be written as

Fitld.

FIGURE 1

We sha l l next add a c r y s t a l f i e ld
component of the form

1 L 6
/5

where the distortion is along the z-
axis. We may rotate this distortion so
that it is along any axis, namely,

= -f/3 sinin2e/e za Y22(e,((i) +
I

/3 si Y

+ 1 (3 cos2e - 1) Y20(0,*)ll4/» 6 .
2 \ ^

[2 ]

JT. A _^ ) (
D(a , 6.Y ^ refers to a rotation operator
(6).
In group theoretical notation we may write
[2] as
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D(O,0,Y)|E6> = /3 sin2e COS 2a|Ee>
2

-/3 i sin2e sin 2a|T2o>
2

+/3 sins cose eia|T2-l>

+/3 sing cose e1a|T2l>
72

Since in this problem the wave functions
transform as U1 or E" all the matrix
elements may be expressed in terms of five
reduced matrix elements <U'||E||U'>,
<U• | |T2| U'>, <U'||3T2||U«>, <UI||E||EM>
and <U' ITJ|E">.

Up to now we have not needed to define the
U' and E" wavefunctions. To evaluate the
five reduced matrix elements we need to
determine at least five matrix elements
for a specific system. We choose the U1

and E" wavefunctions from the T2 level
for the single d-electron in a crystal
field of octahedral symmetry.

For example, since

(3 cos28 - 1)| E8>.

|T 2 E 'U 'K '> = /2 |T20>|E'8'> + 1 |T2-1>|EV>
73 7J

and |T2E'E"6"> - - 1 |T20>|E'e'> + /2 |T2 -
TJ 7J

[3]

Therefore the distortion crystal field
matrix element may be written as

and <T20l#|T20> = (3 cos28 -1) «

<T2 - ± {3 cos2e
2

I t follows that

As an example, we shall evaluate one
matrix element

cos2S -

<U I K ' |D(a ,6 , Y )Ee|U l A l >

noting that 0 ' x U1 = A, + A, + E + 2T, +
2T2.

Using [3] and [1] we have

and - J _ (3 cosz6 - 1 ) 6
•2

. - . <U'I|E||U'> = 2/2 6

and <U' l lE | |E"> - -2/2 6 .

<UV|O(a,f5,Y)E9iUV> The other reduced matrix elements are

/3 sinB cosS
"72

' U1 T 2 ] <UMIT 2 | |U '>
X1 - l j

+ VfU1 U1 3T21<U'II3T2|1U'>\
V X1 -1 J 1

1 s1n8 cos8 e"1 af2<U*| |T2HU*> - <U' | |3T 2 | | ''>}•

<U'II3TZ||U'> « 0

and <U'||T2||E">» -2/3 5
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The spin-orbit coupling matrix elements
are as follows:

<u'clia..&iu'c1> = -c/2 -H
• E* -2

and <E"c"IU.4|E"c"> = c.
From these matrix elements the energy
level pattern may be determined when the
crystal field distortion is parallel to
any specific directions defined by the
angles a and g. As an illustration the
angle dependence of the energy separation
-)f the three doublets is plotted when
a = ir/4 and when g varies from 0 to 90 ,
namely, in the plane containing the z-
axis, the C2 rotation axis and the C'n
rotation axis.

The energy pattern is shown in Fig-2
where C= 3 6/10.

•U '

FIGURE 3

FIGURE 2

5. An f-electron Problem

Next we shall consider the case when an f-
electron is in a crystal field environment
of approximately octahedral symmetry. In
this case since the spin-orbit coupling is
usually much larger than the crystal field
interaction the energy level diagram is as
shown in Fig. 3.

As an illustration we shall only consider
the crystal field distortion within the
5/2 U1 level. The matrix elements in the
form of the symmetry reduced matrix
elements are as before. In this case the
reduced matrix elements are

<U'||E||Uf> *

<U' 1 lT2t IU'> = - 4/3
5

<UI||3T2||UI> = 0 .

The crystal field distortion will split
the U' level into two doublets the
separation depending on the direction of
the distortion. If we wish to determine
the g-values for the two doublets we next
need consider the magnetic field
interaction. This is given by the
hamiltonian

= u BU+ 24) . B

Uz
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Since the magnetic field vector transforms
as T1 the operators (lx + 2sx),(l + 2s )
and (lz + 2sz) transform as Tix,T, and
Ti where for the octahedral group

|T1z> =|T10>.

Therefore using [1] the magnetic field
matrix elements may be determined in terms
of four reduced matrix elements. As an
illustration:

< U ' K ' | T 1 X | U ' X ' > = < u ' I I T J I | U ' > / 2 V / 5

- <U* I |3Tj| |u'>/4 75.

The reduced matrix elements are evaluated
as outlined before and the appropriate
values for the f-electron when j = 5/2 are

I I J__ _J._ J Lto 70

FIGURE 4

The g-value angular dependence in the
plane defined when y - 0 anda = Tr /4 of the
two doublets arising from within the
level is given in Figs. 4 and 5.

'> =-4/15
7

<U' l |T i l |E"> = -<E"| |Ti l |U'> = 4/30
7

<E" | |T 1 | |E"> = 5/6 .
7

With the knowledge of the magnetic field
matrix elements we may determine the g-
values. When calculating the g-tensor
components, however, it is more
appropriate to define

B U X . + Z i x , )B x , = cosa COSB M B U X + 2 i x )B x + sine COS6 p g U y + 2*y)By

- sinB tio(-£ + 2-4,)B,

r ' - s i n o "BUx + 2ix)Bx + C0Sa4ly

„ ( * + Z * ) B . «= cosa sine vJl • 2* ) B X + sin« sins
z 2 z B x x

i j j 1

FIGURE

\
\
\

1

S

u

f//
{ 1

60
1
7"

J J

+ 2A )B. From these results it can be seen that the
g-tensor is axially symmetric when the
distortion is parallel to the four-fold

cosB
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and the three-fold axes only.

In addition the g-values are very
sensitive to the direction of the
distortion especially near the three-fold
axis.

Cj(V2)|V2>+Ĉ (V2)|V-2>

C,(V1)|V1)+C*(V1)|V-1>+CJ{VO)|O>

f -ions in an environment6.
approximately icosahedral symmetry

of

In this case we shall proceed as outlined
for the f-electron in an environment of
approximately octahedral symmetry. The
crystal field hamiltonian of icosahedral
symmetry may be expressed as:

- /7irY65(e,») .*m 6/143AA
35

[4]
where A is the appropriate crystal field
parameter such that when spin-orbit
coupling is neglected, the splitting of
the f -system by the crystal field is A •
The crystal field hamiltonian given by [4]
defines the z-axis along the five-fold
axis and is the appropriate form for use
in group theory methodology.

One method for examining a distortion from
icosahedral symmetry is to consider a
crystal field distortion component,
expressed in terms of spherical harmonics,
as

= a2Y20(e,*) a6Y60(e,*).

[5]
To generalise the calculations by using
group theoretical symmetry coupling
coefficients it is necessary to define
that the z-axis is parallel to the five-
fold axis and consider the crystal field
distortion component at a general angle to
the axis system defined by Eq. [4],

The result of rotating the spherical
harmonics in the distortion harailtonian
[5] may be expressed in group theoretical
notation as:

DKB,0)YJ0(e,<|.) = Cj(Aa)|Aa>+Cj(UK:)tUK)+C*(UK)|Uv>

+ CJ(UX)1UA>+C*(UX)1UU>

where C- ( a) is the complex conjugate of
Cj( a ) . J

The reduced matrix elements are evaluated
as outlined in section 4. These are given
for fn-ions in a recent publication by
Golding, Pascual and Hoare (7). In
addition the variation of the principal g-
values for the three 9/2W1 - doublets as
the direction of the crystal changes are
shown when the distortion is in the plane
containing a five-fold, a three-fold and a
two-fold axes. This work also shows how
very sensitive the g-values are to small
changes in the direction of the distortion
especially near the symmetry axes. Also
in (7) some specific results are given for
the f -ion case and compared with electron
paramagnetic resonance, optical and
magnetic susceptibility data.

7. Conclusion
The examples I have chosen illustrate how
versatile group theoretical methods are in
generalising a very wide range of
calculations in interpreting data such as
magnetic resonance results. It is clear
that group theoretical methods give a much
greater wealth of information than may be
determined from a single calculation such
as for a specific fn system in a pre-
determined crystal field environment and
will lead to a much greater understanding
of the system under investigation.
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