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I. INTRODUCTION

The phenomenon of rotational tunneling and its in-
fluence on the NMR absorption lineshape have
received a good deal of attention in recent years (1-
6). The physics of the phenomenon is fairly simple,
but tends to be obscured by the mathematical
machinery necessary to handle the effect in three-
spin (CH3) and four-spin (NH!£) groups. This paper
attempts to describe the theory of tunneling first for
the conceptually simpler two-spin system. It then
shows how the procedures are generalized to the
more complicated four-spin system.

II. NMR ABSORPTION IN
TW0-SPIN-V2 SYSTEMS

A collection of non-interacting nuclei in a magnetic
field TCis described by the Zeeman Hamiltonian

where a>o = yJCis the Larmor frequency and /:' the z
component of the spin operator for the /th nucleus.

The spin states for this system are thus labelled by
the eigenvalues of lj:m,• = ± Vz. For example, for two-
spin states <j> = |mim,>

I + + > £= -hw.
| + - >, | - + > £=0, doubly degenerate

It is convenient to form these spin states into sym-
metric and antisymmetric combinations <j>, and •„

• « " " + -
(-.) = .-•

and

£=-ha)o

£=0
E=hto0

E = 0

Under spin exchange 1 )«- 2 (180° rotation), the <t>,
states are invariant while the <f>a state is negated

i (2,1 ) = «)», (1,2)
*. (2,1) = - • . (1 ,2 )

Now introduce the interaction between nuclei as
the secular part of the dipole-dipole interaction

3CD =
|J \i- i/4(i: I2 + i! U2)]

where the internuclear vector is of length r and
makes an angle 6 with the applied magnetic field.

Note that for a two-spin system 3CO is a product of a
symmetric spatial and a symmetric spin part. As a
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result XD can couple only spin states of the same
symmetry type. That is

<i|3CD|A<|>..> = 0

The eigenstates <(>s and §« are thus preserved, but
the degeneracy in the E = 0 level is removed,
resulting in a splitting of the NMR absorption line
(Figure 1).

(a )

- » • OJ
a»o

(b)

Figure 1.(a) Energy level scheme for two-spin-1/2 system.
(b) Splitting of NMR absorption line by 3Co-

However, not- all compounds exhibit the full
lineshape at rigid lattice temperatures expected
from the above considerations. For example, some
methyl (CH3) and ammonium (NH4

+ ) compounds
and solid methane (CH4) exhibit considerably nar-
rowed lineshapes at liquid helium temperatures. It
becomes necessary then to consider the other
molecular coordinates, for example, the orientation
or rotational coordinates.

A more complete Hamiltonian for the system
would be

X=XK + Xz + XD

where the rotational Hamiltonian is

V($,6,\p) specifies the potential energy of the nuclear
group in the local crystal field.

If we suppose the temperature to be low enough
for only ground vibrational and electronic states to
be occupied, we can ignore their associated coor-
dinates.

Since XD is a small perturbation on xK + X,,, the
total wave function can be represented as a product
of space (rotational) and spin parts

{V = v(space)<j>(spin)

For example, if I/is small, xp free rotor state; if I/is
large, xp torsional oscillator state.

The two-spin system has 180° (spin exchange)
symmetry. There are therefore two degenerate
spatial states y, and ip2; ip2(n, r2) = v,(r2, /-,). From
these we can form symmetric and antisymmetric
combinations as for <}>.

If, = tfl, + If 2

\\)a = \p, " lf2

which are degenerate if 1/ is large enough for there
to be no overlap, <\p,\ip2> = 0. If V\s decreased, the
overlap splits the spatial states apart so that E, > £„.
This is referred to as tunneling.

A. Spin Statistics

Since protons are fermions, the total wavefunction
V is antisymmetric under proton exchange (180° rota-
tion). This restricts the combinations of yj and <j>
states allowed to

= \p „$, or xp ,$

andi.e., the symmetry requirement associates
states of opposite symmetry only.

The splitting of the spatial states resulting from the
overlap of y, and ip2 (tunneling) therefore leads to a
splitting of the associated spin states. This splitting
is of the order <if|3eH|Aif> and may be much less
than, of the order of, or much greater than the
dipolar splitting, depending on whether I/is large or
small. The overall energy level scheme, as various'
parts of the Hamiltonian are introduced, is shown in
Figure 2.

The NMR absorption is observed by exciting the
system with an RF field X, along the x axis. The per-
turbing Hamiltonian
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Figure 2. Energy level scheme for two-spin-1/2 system as each contribution is added to the total Hamiltonian.

induces transitions between levels for which Am =
±1. However, since &, is completely symmetric
under spin exchange, it couples only spin states of
the same symmetry. Therefore, only transitions bet-
ween the s states are induced and the effects of tun-
neling are not observed by absorption in the two-
spin system.

III. TETRAHEDRAL FOUR-SPIN-1/2
SYSTEM (NH4)

In a four-spin-1/2 system there are 16 spin states <j>
m1m2mJm<>, where m, = ±1/2.

No. of
States

1
4
6
4
1

m

2
1
0
-1
-2

States

|
j - + + + > , + perms -hwo
| — ( - + > , + perms 0
j + — > , + perms hwo
I > 2hwo

For a tetrahedral arrangement of spins, as in NH4 ,
we must consider the molecular symmetry.
However, since molecular inversion would require

vastly more energy than rotation, we can restrict our
consideration to the tetrahedral rotation group T,
consisting of the elements E (identity), 4C3 (four 120°
rotation axes), 4CJ (four 240° rotation axes), and 3C2
(three 180° rotation axes). Two of the elements are il-
lustrated in Figure 3.

Figure 3. A C2 and a C, rotation axis of the tetrahedral four-
spin system.
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From the 16 spin states we can form combinations
which have definite transformation properties under
the operations of T. These are the irreducible
representations of T (7), for example, completely
symmetric states A

and so on. In this way we can form five singlet A
states (m = 0, ±1, ±2), three triply degenerate F
states (m = 0, ±1), and one doubly degenerate E
state (m = 0), that is, 5A + 3F + E. In a similar way,
the spatial states can also be classified according to
their behaviour under T.

If the crystal field V (0, <f>, v) is very large, the \p
states are close to torsional oscillator states. These
are 12-fold degenerate, corresponding to the 12
equivalent orientations of the tetrahedron, v>2 = C3
i^,, etc. The 12 degenerate spatial states break down
into the combinations A + E + 3F, for example,

A. Spin Statistics

A rigid rotation of the molecule is equivalent to an
exchange of two pairs of protons, for example, from
Figure 3

C 2 S(13) (24)

Therefore, the total wavefunction w must be com-
pletely symmetric under all rotations of T. This
means that only spatial y and spin <f> states of the
same symmmetry type can be combined: \pA$A, ^.4*,
and iffi}if.

Overlap of the spatial wavefunction splits the 12-
fold degenerate spatial states apart (tunneling), so
splitting the associated spin states. The level split-
ting will depend on the symmetry as well as the
strength of the crystal field potential V($,6,tp) as
shown in Figure 4.

•3F

TETRAHEDRAL GENERAL

F

F

Figure 4. Comparison of the spatial energy level scheme
for crystal fields of tetrahedral and of general symmetry.

The dipolar Hamiltonian is invariant under spin and
space operations, but not under spin operations
alone.3CD therefore mixes the A, E, and F spin states.
The tunneling splits transitions between these mix-
ed levels, thus leading to observable effects in the
absorption lineshape. The smaller the crystal field,
the larger the spatial overlap and the further certain
transitions are removed into the wings of the spec-
trum, eventually becoming lost in the noise and leav-
ing the remaining observable part considerably nar-
rowed.
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